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Executive Summary  
Shark attacks are rare but traumatic events that involve complex and dynamic interactions 
between sharks’ ecology and human demographics and behaviours. To better understand the 
biological and ecological factors contributing to the series of incidents of white shark 
(Carcharodon carcharias) attacks off Western Australia, sharks were fitted with acoustic 
transmitters (‘tags’) that emit unique identification codes every 50 to 150 seconds. Tagged 
sharks were monitored by up to 143 acoustic receivers off the metropolitan Perth coast since 
2009, by another 149 receivers around the South-West of the State since 2012 and by up to 42 
off Ningaloo Reef. Between December 2007 and July 2015, 50 white sharks were tagged 
between Perth and Israelite Bay (approximately 200km east of Esperance) in Western 
Australia and 151 were tagged by collaborators in South Australian waters. Acoustic tags 
were surgically-implanted into 30 of the sharks1 tagged in Western Australia, potentially 
allowing their movements to be monitored for up to a decade. Another 55 large bronze whaler 
sharks (Carcharhinus brachyurus) and 70 tiger sharks (Galeocerdo cuvier) were also 
internally-tagged with acoustic transmitters so that their presence at key coastal locations can 
be monitored. 

Across the more than 183 acoustic receivers, collectively known as the Shark Monitoring 
Network (SMN) plus another 151 compatible receivers located around the Western Australian 
coast by collaborating partner organisations, more than 22,000 detections of 64 tagged white 
sharks; 150,000 detections of 46 tagged bronze whaler sharks and 7000 detections of 21 tiger 
sharks have been recorded up to July 2015. In addition to recording the presence and 
movements of tagged sharks around more than 2,000 kilometres of coastline through 309 
‘passive’ Vemco VR2W receivers which must be retrieved from the ocean floor to download 
detection data, 25 satellite-linked Vemco VR4Global (VR4G) receivers have provided 
continuous near-real-time monitoring off some of the State’s most popular beaches. These 
receivers’ communication capabilities have been used to develop a purpose-designed system 
for notifying public safety officials about the presence of tagged sharks in high-use coastal 
areas. This information is also published via social media and interactive web-based maps to 
inform the community of the whereabouts of tagged sharks, allowing water users to make 
more informed decisions about their safety. The detections of tagged sharks by the satellite-
linked receivers has also enabled the Department of Fisheries to identify and advise the 
public about otherwise unobserved transient environmental conditions that attracted tagged 
and, potentially, untagged sharks close to water users.  

The combination of detection data from both the VR2W and VR4G receivers has also 
provided the first set of detailed data on the locations and periods of tagged shark activity and 
movement patterns off the Western Australian coast. In the metropolitan region, white sharks 
were most commonly detected by receivers off the northern end of Garden Island and across 
Gage Roads, at detection rates of nearly 10 times those of beachside receivers. More than one 
third of the 36 tagged white sharks detected off the metropolitan coast were only recorded by 

                                                 
1 Six more white sharks were internally-tagged in August 2015, after data for this report were compiled    
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receivers located West of Rottnest Island, indicating that many white sharks travelling past 
Perth do so too far offshore to pose a threat to the majority of water users in the region. Of 
the 23 white sharks that were detected closer to the coast, only five were detected for more 
than seven consecutive days. Only three white sharks have so far been detected again in the 
metropolitan region more than one year after their release or initial detections, suggesting that 
regular long-term returns to Perth by individual sharks may be uncommon2. This contrasts 
with the much more regular return behaviour exhibited by bronze whaler sharks. Greater 
numbers of white sharks were detected off Perth during spring and early summer 
(September–December) and, on average, those sharks spent longer in the region during those 
months (eight days per month in October), than at other times of year. 

Off the South and South-West coasts, tagged white sharks were mostly detected in deeper 
offshore waters, with the majority (94%) of detections in depths of more than 50m and 
further than 10km off the mainland coast (88%). Although sharks appear to be more 
consistently active off the South and South-West coasts throughout the year, relatively more 
sharks were detected during late summer and autumn, with fewer detected in early winter 
than off the metropolitan coast. Movements of the sharks detected around the South and 
South-West coasts, were characterised by rapid transits (in both directions) between receiver 
arrays and there was minimal evidence of sharks spending extended periods in particular 
areas off the South-West of the State.  

A total of 211 inter-regional movements3, totalling 134,592km were recorded for 51 tagged 
white sharks. These included 54 movement events (i.e. movements between receiver arrays, 
release locations or locations of known mortalities) of over 1,000km and up to 3,375km. 
Cumulatively, individual sharks travelled distances of up to 6,542km (mean individual 
cumulative distance=2,639km).  Estimated Rates of Movement (ROM) in excess of 3 km per 
hour (mean=1.8kmh-1; max.=5.6kmh-1) were common, even over distances of thousands of 
kilometres. Pooled tag detection data revealed that white sharks may be encountered off 
metropolitan Perth and the South-West coasts of WA at any time of the year. There was 
considerable variability in the direction and timing of individual sharks’ movements and few 
clear patterns in seasonal movement directions were observed.  However, northerly 
movements along the west coast, particularly by a small proportion of sharks that travelled as 
far as Ningaloo Reef, were most frequently observed during spring and summer, with 
southerly return movements during late summer and autumn.   

By 1 July 2015, the satellite-linked VR4G receiver network had detected 73 different white, 
bronze whaler and tiger sharks, a total of 3,139 times. These detections resulted in 2,748 
near-real time notifications of 920 individual potential “shark hazard events”. An automated 
SMS and email system has been developed to rapidly notify public safety officials about 
detections of tagged sharks at key locations, enabling hundreds of pre-emptive public safety 
responses. Detections are also published via social media and interactive web-maps, to enable 
members of the public to make more-informed decisions about their water use. Unlike other 
                                                 
2 Since data were extracted, 2 more sharks have been re-detected in a third consecutive year  
3 i.e. between receiver arrays; between release and first detection locations and between locations of last 
detection and known mortalities. 
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sources of shark reporting, the species and size (at release) of sharks detected by VR4G 
receivers are automatically validated; repeat detections of the same sharks can be identified 
and monitoring occurs 24h per day and year-round. The Warnbro Sound, Garden Island, 
Middleton Beach (Albany) and Meelup receivers have recorded the most tagged shark 
detections in the VR4G network, with notification rates about ten times greater than the 
median rate across the VR4G network of 7.3 notifications per 100 days.  

Although some external tags are known to have remained attached to sharks for up to three 
years, results have been influenced by the relatively short-term retention of externally-fitted 
transmitters. Since 2012, there has been a greater emphasis on internal-implantation of 
transmitters, resulting in over 30 white sharks, 55 bronze whalers and 70 tiger sharks being 
permanently-fitted with acoustic tags. It may therefore be possible to collect decadal time 
series of movement data for these sharks, which might provide improved insights into their 
movement patterns. Nevertheless, it is hoped that this initial description of the ecological 
dynamics associated with white shark movements around Western Australia, may assist 
public safety agencies, Government and the community develop ways to potentially minimise 
the risks of human encounters.  
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Background  
In response to an increasing number of encounters with white sharks (Carcharodon 
carcharias), including those resulting in injuries and death in Western Australian (WA) 
waters, the State Government’s Shark Hazard Committee recommended that a “pilot research 
program of electronic shark tagging in relation to public safety and shark hazard mitigation” 
be undertaken (DoF, 2004). This recommendation was, in part, informed by early satellite 
tracking and archival tag data that showed tagged white sharks moving between South 
Australia (SA), southern WA and along the west coast as far as North West Cape (Bruce and 
Stevens, 2004, Bruce et al. 2006). Prior to this, the Committee had considered electronically-
tagging sharks to be an unfeasible hazard mitigation strategy due to the lack of predictable 
tagging opportunities in WA waters. The emerging satellite telemetry data, however, 
suggested that it might be possible to monitor this species’ movements through WA waters by 
fitting sharks with tags at predictable aggregation sites is SA, specifically at the Neptune 
Islands, off the Eyre Peninsula. Furthermore, successful tagging collaborations between 
CSIRO and cage-diving tourism operators, which already existed at these locations (Malcolm 
et al., 2001; Bruce et al., 2005), provided a proven opportunity to cost-effectively tag 
relatively large numbers of sharks outside of the State.  

At the time, a number of electronic tagging technologies were considered, as white shark 
tracking data had already been successfully obtained from satellite positioning tags 
(SPOT/SPLASH), Popup Archival Transmitting (PAT) tags (Wildlife ComputersTM) and 
acoustic transmitters (‘tags’).  Each of these technologies was however, recognised as having 
particular individual strengths and weaknesses. For example, satellite positioning tags can 
provide accurate location data over large distances, almost anywhere on earth. However, 
these tags are expensive to buy (thousands of dollars each) and cannot communicate with 
satellites when submerged. As sharks usually only partially (and infrequently) break the 
surface, satellite tags need to be attached to the top of their dorsal fins to provide their best 
chances of satellite communication and position estimation. Fitting satellite tags therefore 
requires sharks to be captured and restrained, which can be logistically complex and 
expensive. Additionally, at the time that electronic tagging was first being considered, 
satellite tags’ battery-life was limited to several months and white sharks were known to 
travel long distances without surfacing. Thus the potential use of this technology to monitor 
sharks’ presence off any particular area of interest (e.g. off metropolitan Perth) or for periods 
long enough to provide information on underlying patterns of movement and habitat use, 
seemed limited. Pop-up Archival Transmitting (PAT) tags record depth, temperature and light 
data before releasing themselves and floating to the surface to remotely transmit the recorded 
data. These data can be used to provide an approximate retrospective daily estimate of the 
tag’s location over the course of the shark’s track (e.g. Abecassis et al., 2012; Duffy et al., 
2012). Although PAT tags were considered as a potentially useful source of information about 
how frequently and how close sharks come to shore (indicated by depth data), as well as their 
temperature-related swimming behaviour, distribution and large-scale movements, due to the 
retrospective nature of their data, the Committee did not see their application for identifying 
real-time shark hazards.  
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Acoustic tags are small transmitters that emit unique identification signals either 
continuously, for manually tracking animals over limited distances and for short periods 
(Stevens et al., 2009; Pita and Freire, 2011; Werry et al., 2012) or at longer-intervals, which 
significantly lowers their power consumption thereby allowing much longer detection periods 
(now estimated to be up to ten years). Unlike satellite tags, acoustic tags transmit while 
submerged in water, allowing their detection without the need for sharks to break the surface. 
Because of this and their relatively small size, acoustic tags can either be fitted externally to 
sharks without the need to capture and restrain them (simple, cheap but impermanent) or they 
can be permanently implanted inside sharks to ensure their retention. Passive acoustic 
telemetry monitoring (sending and receiving acoustic data) also requires compatible acoustic 
receivers to detect, decode and record transmitters’ presence. Given the low power output of 
the acoustic transmitters used to study fish, the detection range of these receivers is however 
typically only several hundred metres, which has historically limited acoustic telemetry 
studies to relatively small geographic scales. Also, because receivers traditionally had to be 
physically retrieved to download tag detection data, when first considered, passive acoustic 
telemetry technology was considered to have relatively limited potential to be used as a shark 
hazard monitoring tool.  

By 2006 however, the major manufacturer and supplier of acoustic telemetry equipment for 
marine species research (Vemco) began development of a new generation of acoustic 
receivers that was capable of remotely reporting tag detections in near-to real-time. Given 
this technology’s potential for providing rapid notifications of acoustically-tagged sharks’ 
presence at key locations, WA Government Development and Better Interests Funding 
(DBIF) was sought and obtained in 2008 to examine whether acoustic telemetry approaches 
could be used to monitor the movements of tagged sharks off the Western Australian coast 
and, if detected at monitored beaches, mitigate the risks posed to the public. Before the 
results from this three-year feasibility trial could be reported however, an unprecedented 
sequence of five fatal white shark attacks between September 2011 and July 2012, led to a 
rapid and extensive expansion of acoustic monitoring infrastructure around the South-West of 
the State. As the Shark Monitoring Network project moved directly from a metropolitan-only 
feasibility trial between 2009 and 2011 (inclusive) to an operational data-provision system in 
2012, this report is the first to evaluate the potential benefits of these acoustic telemetry 
approaches to shark hazard mitigation. 
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1 Introduction 

1.1 Western Australian shark attack records  
Shark attacks are very rare events that can nonetheless have traumatic consequences for those 
involved, their families, friends and affected communities. Despite being a very infrequent 
cause of injury and death in Australian waters, shark attacks receive disproportionately high 
levels of media attention and may have flow-on economic effects for tourism and other 
marine-related industries (Francis, 2011; Neff, 2012; Neff and Yang, 2012). The Australian 
Shark Attack File (ASAF)4 has recorded a total of 120 injurious and fatal “shark attacks” in 
WA waters between March 1803 and June 2015, inclusive. Twenty six (26) of those incidents 
caused or are presumed to have caused fatal injuries to the people involved (West 2011; 
ASAF, 20155). Although the annual frequency of WA shark attacks has been highly variable, 
there has been an increasing decadal trend since the 1970s (DoF, 2012; Figure 1A). 
Notwithstanding under-estimation of historical records due to a lack of organised data 
collection programs before the late 1980s, approximately half of all recorded shark attacks 
(n=64) and fatalities (n=12) in WA occurred between 1 July 1996 and 30 June 2015. 
Furthermore, there were eight fatal shark attacks in WA over the five years between July 2010 
and June 2015 (inclusive).  

  

                                                 
4 Although several shark attack databases exist, the authors consider the Australian and International Shark Attack Files 
(ASAF and ISAF, respectively) to be the most authoritative records of shark bite statistics available. All references to shark 
bite statistics in this report are therefore derived from those data sources. 
5 Australian Shark Attack File, http://taronga.org.au/conservation/conservation-science-research/australian-shark-attack-file. 
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Figure 1.  Frequency of recorded shark attacks in: A Western Australian waters (including Cocos 
Keeling and Christmas Islands; black=fatalities; white=injuries; ASAF, 2015); B the rest 
of Australia (i.e. excluding WA; black=fatalities; white=injuries; ASAF, 2015); C worldwide 
(grey=unspecified; black=fatalities; white=injuries; reproduced from ISAF, 2014) and D 
attributed to white sharks (black=WA, white=rest of Australia and grey=worldwide). *Data 
from the decade beginning 2010 are complete up to 30 June 2015 for WA and up to 1 
January 2014 for other regions.  

The increasing trend in shark attacks in WA over the last 40 years (DoF, 2012), is generally 
consistent with increasing trends elsewhere in Australia (Figure 1B) and internationally 
(Figure 1C).  However, the increasing rate of fatalities in WA is in contrast to the relatively 
lower and more stable rates in other Australian jurisdictions. While there are several possible 
explanations for the observed differences in survival rates in different parts of the nation (e.g. 
proximity to medical care; species responsible; victims’ activities; availability of records; 
etc.), an increasing number of incidents involving white sharks, particularly since 2000, has 
contributed to the increasing fatality rate WA (Figure 1D). In contrast, the number of attacks 
attributed to this species has remained lower and more consistent in other parts of Australia. 
Many hypotheses have been proposed to explain the reasons for the increasing frequency of 
white shark bites in WA. However, a paucity of reliable high-resolution information about 
this species’ spatial distribution, movements, and behaviour around the State’s coastline, has 
been one of the impediments to understanding the ecological factors contributing to 
encounters with this species and for testing commonly-held theories about the causes of 
attacks. Obtaining better data on the distribution, movements and habitat use by white sharks 
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in Western Australian waters could therefore assist with improving hazard mitigation 
strategies.   

1.2 White sharks’ distribution, population structure and 
movements 

White sharks occur in coastal temperate and subtropical regions around the world but they 
can also occur in tropical areas (Compagno, 2001; Last and Stevens, 2009). They are 
generally found in continental shelf waters and around oceanic islands, although in some 
regions they may spend considerable periods in the open ocean (Weng et al., 2007; Bruce, 
2008; Domeier and Nasby-Lucas, 2008). They are most frequently encountered off South 
Africa (Bonfil et al., 2005), southern Australia (Bruce et al., 2006), New Zealand (Duffy et 
al., 2012), northern California (Boustany et al., 2002), Mexico (Santana-Morales et al., 2012) 
and north eastern United States (Casey & Pratt, 1985; Skomal et al., 2012). White sharks 
tagged at several locations intersperse coastal movements with extended offshore excursions 
(Boustany et al., 2002; Bonfil et al., 2005; Bruce et al., 2006; Bruce & Bradford, 2012; Duffy 
et al., 2012). Some individuals have been tracked crossing ocean basins and inter-continental 
movements have also been inferred from historic genetic lineages (Gubili et al., 2011; 2012; 
Jorgensen et al., 2012). These linkages suggest that there may be some interaction between 
populations that are otherwise geographically widely separated. However, despite such long 
distance movements, genetic data suggest that separate international populations exist 
(Pardini et al., 2001; Gubili et al., 2011, 2012). 

In Australia, the species has been regularly recorded from central Queensland around the 
south coast to the North-West of Western Australia, but may occasionally occur further north 
on both coasts (Paterson, 1990; Bonfil et al., 2005; Bruce et al., 2006; Last & Stevens, 2009). 
White sharks are widely but not evenly distributed in Australian waters and appear to occupy 
some areas more frequently than others. These include waters in and around some fur seal 
and sea lion colonies such as the Neptune Islands (South Australia), areas of the Great 
Australian Bight as well as islands in the Recherche Archipelago off the lower west coast of 
Western Australia (Malcolm et al., 2001). Juveniles appear to aggregate seasonally in certain 
key areas including the 90 Mile Beach area of eastern Victoria and the coastal region between 
Newcastle and Forster in New South Wales (Bradford et al., 2012). Other areas, such as the 
Portland region of western Victoria and the coast off the Goolwa region of South Australia 
and waters of the western GAB are also areas reportedly frequented by juvenile white sharks 
at certain times. Most research on white sharks in Australia has been conducted in and around 
the waters off South Australia, particularly at the Neptune Islands and Dangerous Reef 
(Bruce, 1992; Bruce et al., 2005a; 2005b; Robbins, 2007; Robbins & Booth, 2012; Bruce & 
Bradford, 2013; Huveneers et al., 2013; Semmens et al., 2013) and along the mid-north New 
South Wales coast (Bruce & Bradford, 2012; Bruce and Bradford, 2015). 

1.2.1 Population structure 
Genetic analyses suggest some differentiation of and sub-structuring within white shark 
populations from different parts of the wold (Pardini et al., 2001; Gubili et al., 2011, 2012). 
Various genetics studies are currently underway and these may lead to higher-resolution 
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understanding of the species’ international and regional population structure(s) than has 
previously been possible. Recent genetic analyses of Australian white sharks (Blower et al., 
2012) and electronic tagging data (Bruce et al., 2006; Bruce & Bradford, 2012), indicate 
evidence for functionally-separate populations, east and west of Bass Strait. This recent 
differentiation of populations has important implications for understanding historic trends and 
current status of Australian populations. For example, it would suggest that any inferences 
about population status derived from long-term New South Wales and Queensland shark 
control program data (Reid & Krogh 1992; Reid et al., 2011) are not directly relevant to the 
population distributed to the west of Bass Strait, which is referred to throughout this report as 
the south-western Australian population.   

1.2.2 Sexual segregation 
The seasonal, sex-specific occurrence of white sharks was studied at the South Farallon 
Islands, California between 1987 and 2000 by Anderson and Pyle (2003). Individual males 
were sighted every year, whereas individual females showed a biennial occurrence pattern. 
The authors suggested that female sharks may travel significant distances to give birth, 
whereas mating may occur closer to the South Fallon Islands, allowing males to return 
annually. These results support a two-year reproductive cycle in females that is similar to 
estimates of gestation periods (Mollet et al., 2000). More recently, Domeier and Nasby-Lucas 
(2012) demonstrated that some adult female white sharks tagged at Guadalupe Island off the 
Pacific Coast of Mexico, undertake offshore excursions of up to 16 months as part of a two-
year migration cycle, again consistent with a biennial presence at the island. During their 
offshore phase, mature males and mature females remained spatially segregated. Sexual 
segregation has also been reported over fine spatial scales. Kock et al. (2013) reported the 
autumn and winter presence of both male and female white sharks in waters around Seal 
Island, False Bay in South Africa. However, during spring and summer, females were 
recorded almost exclusively along the coast inshore whereas males were rarely detected. This 
coincided with the presence of migratory teleosts and other elasmobranchs in inshore waters.  

Patterns in seasonal visitations of male and female white sharks to the Neptune Islands in 
South Australia was studied by Robbins (2007). This study reported that male sharks were 
common around the Neptune Islands in all months except for April and May and that they 
generally preferred cooler water temperature than females. In 2003 the observed water 
temperature was lower throughout the year and this corresponded with an absence of females, 
prompting the suggestion that females preferred warmer water that may be beneficial for the 
development of young (Robbins, 2007; Robbins & Booth, 2012). However, more recent 
analyses based on a 14-year data record suggest that 2002-2004 was an anomalous period at 
the Neptune Islands where few sharks were present (Bruce and Bradford 2015). The analyses 
by these authors confirmed that there is a seasonal pattern in the presence of males and 
female sharks at this site with males arriving and departing year-round, whereas females visit 
almost exclusively from April to September, with the number of sharks recorded being inter-
annually variable. These observations suggest that the spatial and temporal distributions of 
white sharks are far more complex than simple linear relationships with water temperature 
alone. 
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1.2.3 Habitat use 
White sharks can be found from close inshore around rocky reefs, surf beaches and shallow 
coastal bays to outer continental shelf and slope areas (Pogonoski et al., 2002; Bruce et al., 
2006; Last & Stevens, 2009). However, they also make open ocean excursions, can cross 
ocean basins and both adults and juveniles have been recorded diving to depths of 1,000m 
(Bonfil et al., 2005; Weng et al., 2007; Bradford et al., 2012). Most white shark movements 
and activity in Australian waters have been reported to occur between the coast and the 120m 
depth contour (Bruce et al., 2006; Bruce & Bradford, 2012). Although the importance of 
offshore and high seas habitat cannot be dismissed, unlike sharks tracked off the West coast 
of North America (Weng et al., 2007; Domeier & Nasby-Lucas, 2008), there is no evidence 
thus far that white sharks in Australia utilise oceanic habitats other than for transit between 
temporary sites of continental residency. 

White sharks do not live in one specific area or territory but travel great distances between 
sites of temporary residency (Bruce, 2008). There is also mounting evidence for common 
movement pathways between some areas in Australian waters with transit paths common 
over depths between 60 and 120m (Bruce et al., 2006). These depths hold reef structures 
associated with relic coastlines that may provide navigation cues and opportunistic feeding 
opportunities (Bruce & Bradford, 2012). Thus, the species may be more frequently 
encountered in coastal habitats that are in close proximity to these depth zones (Werry et al., 
2012). 

Distinct coastal nursery areas have been located in various localities around the world, 
although the spatial scale of these varies between regions. Juveniles occupy broad areas of 
the central Californian Bight (Weng et al., 2007, Lyons et al., 2013) over a 400km stretch of 
coast whereas Bruce and Bradford (2012) have documented a geographically discrete nursery 
area with a coastal footprint of only 60km off Port Stephens in central New South Wales and 
a second nursery area along 90 Mile Beach and in the vicinity of Corner Inlet in southeast 
Victoria with a coastal footprint of approximately 100km. Individual juveniles between 1.7 
and 2.8m TL revisit these two eastern Australian nursery areas on an annual basis for up to 5 
consecutive years after tagging, with several recorded moving between the two on a seasonal 
basis. 

1.2.4 Movements 
White sharks are known to travel widely over distances of 1000s of kilometres, which can 
include travel associated with shelf waters and offshore excursions. Cross-ocean basin travel 
has also been documented between South Africa and North-West Australia (Bonfil et al., 
2005). Open ocean excursions have also been recorded for sharks from the Farallon Islands 
(off California) and those tagged at Guadalupe Island (off the Pacific coast of Mexico). In 
both cases, sharks have been recorded moving to the same offshore region of the central 
eastern Pacific with some individuals moving as far west as Hawaii (Boustany et al., 2002; 
Domeier & Nasby-Lucas, 2008; Weng & Honebrink, 2013). Sharks returning to their tagging 
site on a seasonal or in some cases more frequent basis has been a feature of most of these 
studies. Both males and females have been recorded making such offshore excursions 



Fisheries Research Report [Western Australia] No. 273, 2016  11 

although the timing of movements may differ between the sexes in some areas (Domeier & 
Nasby-Lucas, 2008). Recent tagging in New Zealand waters has also demonstrated 
movements from the Chatham Islands and Stewart Island to New Caledonia and Tonga as 
well as to the southern Great Barrier Reef (Duffy et al., 2012). Records of 2.1m juvenile and 
3.2m sub-adult white sharks crossing the Tasman Sea from NSW to New Zealand indicates 
that large scale movements are not restricted to adults (Bruce and Bradford 2012; Francis et 
al. 2015). The reasons for these broad scale offshore movements are unclear but are 
presumably related to feeding opportunities and/or reproductive activities (Bonfil et al., 2005; 
Bruce et al., 2006; Bruce & Bradford, 2012).  

In Australia, coastal movements have been documented from the Neptune Islands, South 
Australia to North West Cape in Western Australia and from the Neptune Islands to 
Rockhampton (Queensland) and return (Bruce et al., 2006). Extensive north-south 
movements of white sharks have been documented on the east coast of Australia between 
eastern Tasmania and the southern Great Barrier Reef (Bruce & Bradford, 2012). No 
individuals have been observed to travel up both west and east coasts of Australia. Not all 
movements appear to be this extensive with white sharks also recorded to move regularly 
between the Neptune Islands and the central and western regions of the Great Australian 
Bight (Malcolm et al., 2001; Bruce et al., 2005b). Some sharks have been recorded returning 
to the Neptune Islands on a highly seasonal basis, sometimes within a few days of their date 
of arrival the previous year, while others were more frequent in their visits (Bruce et al., 
2005b). These patterns of site fidelity are similar to those reported for white sharks in 
Californian and South African waters (Klimley, 1985; Cliff et al., 1996; Long & Jones, 1996; 
Bonfil et al., 2005). White sharks are not known to form and defend territories and are only 
temporary residents in areas they inhabit. However, their ability to return on a highly seasonal 
or more regular basis implies a degree of site fidelity that influences the probability of 
encounters with them at those locations.  

Acoustic and satellite telemetry studies indicate that temporary residency of white sharks at 
particular sites can vary from days to weeks. Bruce and Bradford (2013) used acoustic tags 
and receivers to investigate the number of days that tagged white sharks were detected within 
the vicinity of the Neptune Islands in South Australia. Most visits were between one and six 
days duration, although some individual sharks remained active in these areas for up to 90 
days. Bruce and Bradford (2012) used satellite telemetry to identify periods of residency of 
juvenile white sharks at aggregation sites in central NSW and eastern Victoria. Some 
juveniles remained resident in these areas for periods up to 70 days and showed evidence of 
fidelity to individual beaches. Juveniles travelled extensively after departing the central NSW 
region moving as far north as Fraser Island in southern Queensland, south to eastern Bass 
Strait and northern Tasmania as well as across the Tasman Sea to New Zealand. 

1.2.5 Seasonal movement and distribution 
The satellite tracking reported by Bruce et al. (2006) and Bruce and Bradford (2012) suggest 
relatively limited mixing of white sharks between waters to the west and those to the east of 
Bass Strait. In general, white sharks appear to move north along the east coast from autumn 
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to spring and return south during summer. This pattern is supported by the capture of white 
sharks by shark control programs in New South Wales and Queensland. Historical catches 
(1950–1993) show highest catch rates occur in New South Wales from May to November 
with a peak from September to November (Reid & Krogh, 1992). Of the 100 white sharks 
caught by the NSW shark control program since 1990/91, 57 were caught in September and 
October (Green et al., 2009). Catches similarly peak in the Queensland program during 
September and October (Paterson, 1990).  

Despite the recorded movements of some individuals across the Tasman Sea to New Zealand 
(Bruce et al., 2006; Bruce & Bradford, 2012) most white sharks tracked in Australian waters 
have remained in coastal Australian waters where they made extensive coastal movements. 
This is in contrast to the regularity of movements by tagged white sharks into open ocean and 
international waters from California, Mexico, New Zealand and to some extent, South Africa 
(Boustany et al., 2002; Bonfil et al., 2005; Weng et al., 2007a; Domeier & Nasby-Lucas, 
2008, 2012; Duffy et al., 2012). 

In Western Australia, satellite-tagged white sharks have moved north along the coast as far as 
North West Cape during winter and spring and returned south during spring and summer 
(Bruce et al., 2006). However, coastal movements are more complex than simple seasonal 
migrations north and south along both coasts. Movements of individuals are not synchronous, 
with some sharks moving north while others move south during the same period (Bruce & 
Bradford, 2012; Gallen et al., 2013) and white sharks can be recorded in some northern 
localities at any time of the year.  

1.3 Legislated protection of white sharks 
White sharks are listed as a protected species in several parts of their range, including in 
South Africa, Namibia, Israel, Malta, California and Florida. They are also listed under 
Appendix II of the Convention on International Trade in Endangered Species of Fauna and 
Flora (CITES) and on Appendices I and II of the Convention on Migratory Species. These 
international listings recognise the cumulative international impacts that threaten this species 
and the need for international cooperation for its conservation. 

In Australia, the white shark was initially declared a protected species under Tasmanian 
legislation in 1995/96, shortly before its listing under all State fisheries Acts and the 
Commonwealth Endangered Species Protection (ESP) Act, between 1997 and 1999 (Malcolm 
et al., 2001). In 1999, the ESP Act was replaced by the Environment Protection and 
Biodiversity Conservation (EPBC) Act, under which white sharks were designated as a 
‘vulnerable’ species due to evidence of population decline, their conservative life history 
characteristics (longevity and low reproductive capacity), limited local distribution and 
abundance and, ongoing pressure from the Australian commercial fishing industry 
(Environment Australia, 2002). At the time of their protection under State and 
Commonwealth legislation, white sharks were notionally thought to constitute a single 
Australian population. 
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1.4 Objectives and scope of the current study 
This study is one of a number of initiatives that have been funded by the Western Australian 
Government to improve understanding of and monitor the risks posed to the public by sharks. 
White sharks have been responsible for more shark bite injuries in Western Australia (49%) 
than any other species over the last decade and consequently, the primary objectives of this 
work have focussed on this species. However, as some objectives relate to the broader risks 
of encountering sharks (e.g. objectives ii and vii, below) and where appropriate, results for 
tiger and bronze whaler sharks are also reported and summarised6. All data reported in this 
publication were compiled and therefore current on 30 June 2015.  

The Shark Monitoring Network (SMN) project has undergone two distinct phases in its 
development: a feasibility trial conducted between 2009 and 2011 (inclusive) and an 
operational data-collection phase (2012-2015, inclusive). The following evaluation of the 
project’s “benefits”, are therefore defined in terms of its feasibility-phase objectives to:   

(i)  collect information on the occurrence, movements and behaviour of white sharks 
off metropolitan beaches and the associated risks of human encounters and 

(ii)  evaluate the feasibility and public safety benefits (relative to aerial surveillance) of 
using communicating acoustic receivers as an ‘early-warning’ system for notifying 
public safety authorities of the presence of acoustically-tagged sharks’ close to 
populated beaches 

and operational-phase objectives to: 

(iii)  monitor movements and behaviour of tagged white sharks in the South West of the 
State (namely, the Capes and Albany regions); 

(iv)  obtain a more accurate understanding of white sharks’ large-scale movements from 
South Australia (the core of the species’ distribution) into the South West and lower 
west coast regions of WA; 

(v)  collect data for investigating what environmental conditions contribute to the 
apparently fluctuating abundance of white sharks off the lower West and South 
West coasts of WA; 

(vi)  collect data for investigating whether individual sharks repeatedly visit particular 
locations in the SW of the State and whether sharks tagged in the area are resident 
or temporary visitors to those areas and 

(vii) provide a system for alerting public safety officials and the public, about risks of 
encountering tagged sharks (and sharks more generally) close to populated areas, 
beaches and surf breaks in the Capes and Albany regions.   

The data reported here are the most current and comprehensive description of tagged white 
sharks’ movements in Western Australia that may assist the WA public, safety authorities and 
Government decision makers to potentially develop ways to minimise the risks of human 
encounters around the State’s extensive coastline.  

                                                 
6 NB, although bull sharks are recognised as a potentially dangerous species, they are relatively uncommon in marine waters 
off southern Western Australia and none were encountered during tagging operations. 
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2 Methods 

2.1 Tags and tagging 
During the initial SMN feasibility trial phase, Vemco V16-6H acoustic transmitters (‘tags’) 
were externally-fitted to 83 white sharks around the North and South Neptune Island groups 
in South Australia and to 11 white sharks off the South and lower West coasts of Western 
Australia between 20 December 2007 and 1 September 2011 (Figure 2). Tags transmit unique 
identification signals at random intervals of between 50 and 130 seconds or 70 and 150 
seconds. All of the tags deployed in SA during the project’s feasibility phase were fitted to 
sharks by CSIRO staff or by cage-dive tourism operators, in accordance with CSIRO 
protocols (Bruce et al., 2005, Bruce and Bradford, 2011). Nine sharks were tagged by 
Department of Fisheries staff in WA prior to 2012 after they were located scavenging on 
whale carcasses off the metropolitan coast (n=4) and at Two People’s Bay (n=5), while the 
other two were tagged during research fishing activities. External transmitters were attached 
via 1.6mm diameter 316 grade stainless steel wire rope tethers to sharpened, stainless steel 
anchors, which were embedded in sharks’ dorsal musculature using applicator needles 
mounted on fiberglass hand-spears. Externally-tagged sharks’ lengths (TL) were estimated to 
the nearest 10cm, their sex was determined (where possible) and the times, dates and 
coordinates of each tag deployment (‘tag release metadata’) were recorded.  

Since 2011, an additional 69 white sharks have been tagged by the same external-attachment 
methods at the Neptune Islands and off the eastern tip of the Eyre Peninsula (SA), through 
various studies undertaken by the CSIRO (Bruce and Bradford, 2011), South Australian 
Research and Development Institute (SARDI; Huveneers et al., 2013; 2014) and the Fox 
Shark Research Foundation (FSRF; Robbins and Booth, 2012). Eight (8) white sharks have 
also been externally-tagged in Western Australia by Department of Fisheries’ (DoF) research 
staff and Fisheries and Marine Officers during the SMN project’s operational phase (2012 to 
2015, inclusive). At the time of writing, a further 30 white sharks were caught by setlines 
during targeted DoF tagging activities off the WA coast since October 2012 (Figure 2). 
Captured sharks were secured in an inverted position alongside tagging vessels and V16-5L 
and V16-6L transmitters were surgically-implanted in their abdominal cavities according to 
standard techniques (e.g. Heupel and Hueter, 2001). Incisions were sutured; sharks were 
measured (to the nearest centimetre Fork Length, FL) and tagged with uniquely-numbered 
yellow Jumbo Rototags in their first dorsal fins for visual recognition, before being released. 
Of these 30 internally-tagged sharks, 22 were also tagged with external transmitters as per the 
methods described above, to collect data for estimating external tag shedding rates. Two of 
these dual-tagged sharks, as well as a third which had previously been externally-tagged at 
the Neptune Islands, were recaptured and re-tagged with new internal and external tags. 

In addition to white sharks, 53 bronze whaler sharks caught during shark tagging activities 
were also tagged because of their relatively large size (>2m) and relevance to various 
agencies’ public safety protocols. A further 55 bronze whaler sharks tagged in South Australia 
through various fishery research projects, were also included in the data that could be 
monitored by SMN receivers. Similarly, 70 tiger sharks (Galeocerdo cuvier) that were 
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(internally) tagged during Department of Fisheries’ research surveys, Western Australia Shark 
Hazard Mitigation Drum Line program trial (2014) and a University of Western Australia 
research cruise were also monitored. The release locations, size and sex compositions of all 
SMN-monitored sharks are given in Figures 2 and 3, respectively).  

 

Figure 2.  Release locations of (A) 201 acoustically-tagged white sharks (including 3 sharks that 
were re-captured and re-tagged), (B) 108 tagged bronze whaler sharks and (C) 50 
tagged tiger sharks (locations of 20 tiger sharks tagged by the University of Western 
Australia are not included). 

A B 

C 
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Figure 3.  Size and sex compositions of (A) 133 South Australian (externally) tagged white sharks; 
(B) 48 Western Australian tagged white sharks (including 3 re-tagged sharks), (C) 53 
South Australian (internally) tagged bronze whaler sharks; (D) 50 Western Australian 
(internally) tagged bronze whaler sharks;  (E) 45 Western Australian (internally) tagged 
tiger sharks. NB as sexes and sizes were not recorded for all sharks, these sample sizes 
are not equal to the numbers of sharks tagged. 
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2.2 Acoustic monitoring 
An array of 19 Vemco VR2W and 20 prototype satellite-linked VR4G acoustic receivers was 
installed along the Perth Metropolitan coast between January 2009 and May 2010, in what is 
known as the Shark Monitoring Network (SMN). Receivers were configured as disjunct 
inshore and offshore lines. The inshore line extends between Ocean Reef in the North and 
Fremantle in the South (diverted around Three Mile Reef between Mullaloo and Trigg; 
Figure 4A). The offshore line originally extended between Rottnest and Garden Islands 
(Figure 4A) and comprised four VR4G receivers and five VR2W receivers. Two of the VR4G 
receivers at Stragglers Reef in the centre of the offshore line were removed in April 2010 and 
December 2011 and relocated to Warnbro Sound and Mullaloo, respectively. Offshore SMN 
VR2W receivers were removed in January 2015. In early 2009, the SMN array was 
augmented by a cross-shelf array of 53 VR2W receivers, provided by the Canada Foundation 
for Innovation-funded international Ocean Tracking Network project (OTN; 
http://oceantrackingnetwork.org) and also by a Department of Fisheries’ (DoF) demersal 
scalefish research array of (up to) 52 VR2W receivers, that extended across the top of and 
inside Cockburn Sound (Figure 4B). Receivers in the OTN array are located at 800m 
intervals, which theoretically provides a continuous detection ‘curtain’ across the continental 
shelf. In January 2015, the inshore component of the OTN line and offshore component of 
the SMN VR2W array were consolidated and relocated to 800m intervals between Rottnest 
and Garden Islands and between Garden Island and the mainland (Figure 4C). 

  

http://oceantrackingnetwork.org/
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Figure 4. Locations and types of acoustic receivers in the original 2009 configuration of (A) the 
metropolitan SMN array; (B) associated OTN and DoF demersal scalefish research 
arrays and (C) consolidated arrays since 2015. Yellow and blue circles indicate VR4G 
and VR2W receivers, respectively. 

Vemco VR2W acoustic receivers are submersible recording devices, which in the SMN, OTN 
and DoF scalefish research projects, are installed on moorings close to the seabed (Figure 5). 
When these receivers detect a compatible transmitter (‘tag’) within their approximately 400-
500m detection range, the tag ID number and the detection time and date are recorded in 
receivers’ on-board memory. These receivers need to be retrieved so that their detection logs 
can be downloaded, batteries replaced, software updated and other maintenance performed. 
Receivers located in less than 30m depth are recovered and replaced by SCUBA divers and in 
depths greater than 30m, VR2W receivers are recovered using a combination of a Seabotix 
vLBV 300 Remotely Operated Vehicle (ROV) and Teledyne-Benthos 875-T and 875-TD 
acoustic releases (OTN array only). Deep-water OTN stations are gradually been replaced by 
ROV-serviced mooring assemblies, as the latter have proven to be a much more reliable 
method for securing and recovering receivers, with a realised 98% receiver recovery rate over 
three years. 

 

 

A B 

C 



Fisheries Research Report [Western Australia] No. 273, 2016  19 

          

     

Figure 5.  Diagrammatic views of diver-serviced (top-left panel) and ROV-serviced (top-right panel) 
VR2W installations; Vemco VR2W acoustic receiver (lower-left panel); diver-serviced 
VR2W mooring assembly (lower-centre panel) and deep-water (acoustic release) VR2W 
mooring assembly (lower-right panel). 

 

Vemco VR4G receivers are equipped with Iridium satellite modems that enable remote 
transmission of detection data without the need for their recovery (Bradford et al., 2011). 
These receivers are effectively 2-piece devices, comprising a satellite modem and battery 
(surface) unit that is attached to a submerged hydrophone via a data cable. To enable satellite 
communication and to protect them from boat collisions, submersion and other damage, all 
but one of the VR4G receivers’ surface units are installed atop modified Meridian Plus spar 
buoys (Fendercare Australia Pty. Ltd.), approximately 2m above the sea surface (Figure 6). 
Receivers’ hydrophones are mounted at a depth of approximately 4m on galvanised steel sub-
frames that attach buoys to their moorings. The data cables connecting hydrophones and 
surface modem units are run through internal conduits in the buoy and sub-frame to protect 
them from strain, abrasion and other damage. Mounting hydrophones at 4m depth is intended 
to reduce acoustic interference from turbulence in the surface layer, thereby maximising 
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receivers’ detection range. Based on limited initial range testing, VR4Gs detection range 
appears to be similar to that of VR2W receivers (400-500m). The initial 20 prototype VR4Gs 
have gradually been replaced with second-generation metal-cased units, which have required 
modifications of the buoys on which these later-generation (Mk2) receivers are installed. A 
single VR4G receiver is located off the Busselton foreshore in water that is too shallow 
(≈4m) for a buoyed installation. This receiver is instead mounted in a thermo-plastic piling 
with the hydrophone installed beside it on a modified VR2W mooring. As a result of these 
various modifications, there is now considerable variation in the appearance of VR4G 
installations throughout the network (Figure 6). 

 
 

Figure 6.  Cross-sectional diagrammatic view of a (third-generation) Meridian Plus VR4G receiver 
buoy (left panel, receiver components are coloured in black); prototype VR4G off 
Mullaloo Beach (upper-centre panel); Mk2 VR4G (in 3rd generation buoy) off North 
Cottesloe (upper-right panel); VR4G piling installation off Busselton (lower-centre panel) 
and diver inspecting hydrophone assembly on VR4G steel sub-frame (lower-right panel).  

 
During the SMN project’s expanded operational phase, an additional three cross-shelf lines, 
comprising 125 VR2W receivers were deployed around the South-West coast of WA in April-
May 2012 (Figure 7). These receivers were installed at 800m intervals off Hamelin Bay (48 
receivers); Chatham Island (44 receivers) and Bald Island (33 receivers). While these lines 
were notionally intended to span the entire continental shelf (i.e. to a depth of 200m), all 
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three are between 3km and 5km short of the closest points of the 200m isobath.  A fourth line 
of 18 VR2Ws was opportunistically-installed across 20km of continental shelf waters in the 
Recherche Archipelago in November 2014. Between October and December 2013, an 
additional three VR4G receivers were installed off Back Beach, Bunbury; the Busselton 
foreshore and Meelup beach in Geographe Bay and another 2 were installed at Frenchman’s 
Bay and Middleton Beach in King George Sound, Albany. Following extensive logistic and 
environmental assessments, a VR4G was also installed off Smith’s Beach, Yallingup in 
December 2014. With the consolidation of the metropolitan VR4G array to 19 receivers in 
December 2011, 25 VR4G receivers were operating in the SMN at the time of writing.  

 

Figure 7.  Locations and types of receivers deployed during the SMN operational phase (2012-
2015) in (A) the Geographe Bay/Cape Naturaliste array, (B) Chatham Island array, (C) 
Albany and Bald Island arrays and (D) Recherche Archipelago array. Yellow circles 
indicate VR4G stations, blue circles indicate VR2W stations.  

Additional detections of tagged sharks have been obtained from The Australian Animal 
Tracking and Monitoring System’s (AATAMS) Ningaloo Reef Ecosystem Tracking Array 
(NRETA), the CSIRO VR4G that was installed at North Neptune Islands Bay between May 
2008 and June 2013 (Bradford et al., 2011), AATAMS’ Gulf St. Vincent (GSV) array (Figure 
8) and a temporary 6 receiver VR2W array in Two Peoples Bay between July and September 
2010 (25km East of Albany, Figure 7C). 

A B 

C D 

Two Peoples Bay 
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Figure 8.  Locations and types of receivers from which ancillary data were obtained (A) at Ningaloo 
Reef (AATAMS) and (B) in South Australia (VR2Ws = AATAMS and VR4G = CSIRO). 
N.B. the location of the temporary Two Peoples Bay array is shown in Figure 7C. 

2.3 Data acquisition and management  
Detection data from both VR2W and VR4G receivers are maintained with associated receiver 
deployment and recovery times, dates and locations (‘metadata’) in a purpose-designed SQL 
database. Detection logs from VR2W receivers are uploaded to the database approximately 
annually once receivers have been physically recovered and downloaded. Detection logs from 
VR4Gs are delivered via email and uploaded to the SMN database weekly. In addition to 
sending log files containing records of every detection, VR4G receivers are programmed to 
immediately report detections of specified tag ID numbers. For the public safety purposes of 
the Shark Monitoring Network, specified tag ID codes include all white, tiger and WA-tagged 
bronze whaler shark tag IDs. However, because effective public safety response actions do 
not depend on notification of every detection of the same shark by a receiver (i.e. every 50-
150 seconds), VR4Gs are programmed to report only the first (and last) detections of 5 
minute reporting periods7. Thus, when a shark is initially detected by a VR4G, an immediate 
notification is sent via the protocols outlined below. If that same shark is re-detected by that 
receiver during the following 5 minutes, those detections are stored in the receiver’s memory 
but will not be reported (they are, however, recorded in the weekly log file). After the initial 5 
minute reporting period has expired, the next detection will be reported and the 5 minute 
reporting schedule is re-started. Alternatively, if the same shark is not re-detected within 7.5 
minutes of the previous notification (i.e. the 5 minute reporting window plus maximum 150 
second transmission interval time), its last detection will be reported to the Shark Monitoring 
system. For further information about VR4G messaging protocols, see Bradford et al. (2011). 

As originally designed, VR4G receiver notifications were sent to the SMN database by email. 
However, delivery of these time-critical notifications was occasionally delayed by 3rd party 
service provider issues that were beyond the Department of Fisheries’ and Vemco’s direct 
control. Thus since 2012, tagged shark notifications have also been received from Vemco via 
                                                 
7 The 5 minute reporting schedule was arbitrarily determined before SMN data were routinely used for public 
safety responses. As this reporting frequency is inconsistent with safety authorities’ subsequently developed 
shark hazard response protocols (eg. Surf Life Saving WA specify that shark hazard responses remain in place 
for 1 hour from detection/sighting), this reporting schedule could be reviewed. 

A B 
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a secure, direct-communication link. This data delivery system has not only improved 
notification delivery time (1-2 minutes after detection) but has also provided significant 
improvements in the reliability of data-transfer. However, email notifications are still 
received and used as a backup system.  

When VR4G notification messages are received, the tag and receiver serial numbers are 
referenced to the associated data in the SMN database. The species of shark, receiver location 
and the local time and date (notifications are given in Universal Time Coordinate, UTC) are 
then automatically sent by SMS and email to registered contacts within multiple stakeholder 
organisations. Contacts are assigned to regions (e.g. metropolitan, Albany, Geographe Bay), 
so that they only receive notifications from receivers within their jurisdictional responsibility 
area. The same information (species, location and time) are also ‘Tweeted’ through the Surf 
Life Saving Western Australia (SLSWA) Twitter service, thereby any member of the public 
can receive SMN alerts directly to their mobile phone or computer, free-of-charge. Because 
this function involves sending a single message (for each notification) to the SLSWA Twitter 
feed (i.e. not to thousands of individuals), Tweeting shark detection notifications to the public 
does not compromise the SMN system’s intended primary function of promptly alerting 
public safety agencies. Members of the public can also view up-to-date information about 
tagged shark detections, reported shark sightings and the latest tagged shark detections by 
VR2W arrays (including the OTN) through interactive maps on the Shark Smart website 
(http://sharksmart.com.au). The intention of providing public access to up-to-the-minute and 
accurate scientific information about tagged shark detections, is to facilitate and encourage 
more informed decision-making about the risks posed by sharks to water users. This 
additional functionality also addresses long-standing community interest in being kept 
informed of the latest research into shark distribution and movements in local waters.   

2.4 Data analyses and presentation 
For ease of reference to when and where sharks were tagged and in accordance with the terms 
of data sharing agreements with collaborating research organisations8, tagged sharks have 
been assigned aliases based on their State of release (white sharks) or species (bronze whaler 
and tiger sharks) and their chronological order of release.  White sharks have been designated 
with “SA” prefixes for South Australian-tagged sharks and “WA” for Western Australian 
tagged sharks; bronze whalers are designated by “BW” prefixes and tiger sharks by “TG” 
prefixes, followed by the same release State codes used for white sharks. In addition to the 
release State and species designations, the chronological tagging order is designated by 3 
digit numbers from 001 upwards for white sharks and 2-digit numbers for bronze whaler and 
tiger sharks. Therefore tag WA024, is the 24th white shark tagged in Western Australian 
waters, BWWA31, is the 31st bronze whaler tagged in WA, etc.  

Detection data from VR2W receivers were most recently collected between November 2014 
and 19 June 2015, while VR4G detections were collected weekly (each Monday morning via 
email attachments). As all data reported below were extracted from the Shark Monitoring 

                                                 
8 Namely: the Commonwealth Scientific and Industrial Research Organisation (CSIRO); South Australian 
Research and Development Institute (SARDI), Fox Shark Research Foundation (FSRF) and Flinders University. 

http://sharksmart.com.au/shark-activity/
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Network database on 30 June 2015, VR2W data are current as of those receivers’ retrieval 
dates and VR4G data are current as of Monday 29 June 2015 (Australian WST), inclusive.  

Various measures are used below to describe the frequency of tagged shark detections by 
acoustic receivers. These measures are defined as follows.  A detection is an acoustic tag ID 
recorded by either a VR2W or VR4G receiver; a notification is a message generated by a 
VR4G receiver to report the first and last detections within the 5 minute reporting period (see 
2.3 above); a detected shark refers to an individual shark detected by a receiver (regardless 
of how many times that shark’s tags are detected, i.e. detection of both of a dual-tagged 
shark’s tags is a single detected shark); a shark (detection) day is a calendar day on which a 
shark is detected, regardless of how many times that shark is detected (e.g. 1 individual shark 
detected on 2 separate days = 2 shark days; 2 individual sharks detected on the same day = 2 
shark days, etc.) and a shark hazard event is adapted from Surf Life Saving WA’s (SLSWA) 
shark safety protocol9, defined as the first detection of a shark by a receiver or the first 
detection of a shark that is more than 1h after its previous detection by the same receiver.   

Distances of tagged sharks’ movements between acoustic receiver arrays (Δσ), were 
calculated as displacement vectors between two receivers, according to the great-circle (or 
orthodromic) equation: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑∅1. 𝑑𝑑𝑑𝑑𝑑𝑑∅2 + 𝑑𝑑𝑎𝑎𝑑𝑑∅1. 𝑑𝑑𝑎𝑎𝑑𝑑∅2. cos (𝜆𝜆1 − 𝜆𝜆2)). 𝑎𝑎 

Where ∅1 , 𝜆𝜆1 and ∅2 , 𝜆𝜆2are the latitude and longitude of receivers 1 and 2 and r is the radius 
of the earth (in radians).  

Wherever possible, tagged sharks’ movements (displacement vectors) between arrays and 
sharks’ release and terminal locations, were calculated as the least-possible (great-circle) 
distance between locations. To avoid estimating unrealistic movements across land, where 
necessary, displacement vectors were forced around arbitrary turning points. Turning point 
locations were the same for all sharks and defined as points off: 

 Dirk Hartog Island (25.5⁰S 118.0⁰E); Cape Naturaliste (33.5⁰S 115.0⁰E); Cape 
Leeuwin (34.4⁰S 114.9⁰E); Black Point (35.0⁰S 116.0⁰E); Albany (35.2⁰S 118.0⁰E) 
and Cape Arid (34.1⁰S 123.3⁰E) 

As displacement vectors assume constant straight-line travel, these should be considered as 
minimum displacement distances and their associated speeds, as minimum average speeds. 

 

                                                 
9 “If the shark is 2 - 3 metres in length … (beaches are closed) … 1km either side of the shark location for one 
hour” (http://surflifesavingwa.com.au/safety-rescue-services/shark-safety). 

http://surflifesavingwa.com.au/safety-rescue-services/shark-safety
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3 Results 
Shark Monitoring Network and associated WA receivers have detected 64 individual 
acoustically-tagged white sharks, a total of 22,291 times since 2009 (Table 1).  The majority 
of sharks and detections were recorded in the Perth metropolitan region, followed by the 
Chatham Island, Bald Island and Hamelin Bay SMN arrays (Hamelin Bay receivers recorded 
the most detections but fewest sharks of the 3 south-western arrays).  

Table 1.  Annual detection frequency and abundance of tagged white sharks by region. NB South 
Australian detections are not included in this table. 

   White Bronze whaler Tiger 
Region Year Detections Sharks Detections Sharks Detections Sharks 
Albany 2010 1,914 5     (Including Two  
Peoples Bay) 

2013   2 2   
2014 151 3 16 5   
2015 2 1 1 1 10 3 

Albany Total 2,067 9 19 8 10 3 
Bald 2012 81 6 9 2   

 
2013 210 7 19 6   

 
2014 266 15 93 12 22 3 

 
2015 132 7 9 4 52 5 

Bald Total 689 28 130 21 74 6 
Chatham 2012 70 5     

 
2013 221 11 129 15 21 1 

 
2014 296 15 60 21 48 2 

 
2015 221 9 61 17 197 5 

Chatham Total 808 31 250 32 266 6 
Geographe 2013 16 2 9 5   

 
2014 39 4 132 13 12 2 

 
2015 4 1 72 6 15 3 

Geographe Total 59 7 213 19 27 4 
Hamelin 2012 19 3 4 3 48 1 

 
2013 392 10 66 6 16 1 

 
2014 587 11 35 6 131 4 

 
2015 182 7 24 2 133 6 

Hamelin Total 1,180 24 129 15 328 7 
Metro 2009 1143 5     

 
2010 2 1     

 
2011 79 6     

 
2012 4,524 7 15,316 21 615 2 

 
2013 9,172 10 53,201 26 1807 4 

 
2014 1,588 15 72,341 33 2,438 11 

 
2015 15 2 8,399 13 87 5 

Metro Total 16,523 36 149,257 42 4947 12 
Ningaloo 2008 3 1     

 
2010 7 2     

 
2011 41 3     

 
2012 22 3     

 
2013 21 2   1,039 9 

 
2014 6 1 9 2 313 6 

 
2015     13 1 

Ningaloo Total 100 11 9 2 1,365 12 
Recherche 2013 865 2 9 3 0 0 

 
2014   1 1 0 0 

Recherche Total 865 2 10 4 0 0 
Grand Total 22,291 64 150,017 46 7,017 21 
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As some of the objectives from the project’s two distinct phases are complementary, in some 
cases, the following results are reported under combined objective headings. 

3.1 Objective (i) collect information on the occurrence, 
movements and behaviour of white sharks off metropolitan 
beaches and the associated risks of human encounters 

In total, 36 acoustically-tagged white sharks have been detected in metropolitan waters since 
May 2009. Eighteen of these were tagged in South Australia, one off Albany, one off Cheynes 
Beach and the rest were tagged off the metropolitan coast. Sharks tagged in WA were 
detected significantly more frequently (n=16,277 detections, χ2=15,460, d.f.=1, p=0.000) and 
on significantly more days (n=396, χ2=15,710, d.f.=1, p=0.000) than South Australian-tagged 
sharks (n=278 detections and n=35 shark detection days).  

Three sharks tagged off Perth (WA018, WA020 and WA027), were responsible for more than 
70% of metropolitan detections. One of these (WA020) was detected during five calendar 
months between October 2012 and November 2013; WA018 was detected over two discrete 
periods from October 2012 to January 2013 and again between June and August 2013, while 
WA027 was detected during four consecutive months between September and December 
2013 (Figure 9). Only five sharks were detected off Perth for more than seven consecutive 
calendar days (median consecutive detection period=3.3d). The longest consecutive detection 
period by an individual shark (referred to as WA018) in the metropolitan Perth region was 
17d between 21 November and 7 December 2012. This shark was also detected by 
metropolitan receivers for consecutive periods of a week or more, on 5 other occasions 
between October and December 2012 and July and August 2013. The four other sharks 
detected off Perth for consecutive periods of a week or more (WA013, WA020, WA027 and 
WA041), are known to have visited Perth waters for shorter periods of between 1 and 6 
weeks. 

Data collected so far, suggest that inter-annual returns to the metropolitan region are 
relatively uncommon. Only three WA-tagged sharks (WA003, WA020 and WA028) have 
been re-detected more than one year after their release10 and only one of those (WA003) was 
re-detected after more than 2 years (865d), although there was a 787d hiatus between two 
discrete detection periods in May-August 2009 and October 2011. Two other sharks were re-
detected 326d (WA018) and 349d (WA029) after their releases.  

Although external tag shedding is likely to have limited long-term re-detection rates prior to 
2013, there was little evidence that SA-tagged sharks regularly return to waters off the Perth 
coast. Although three SA-tagged sharks (SA093, SA125 and SA126) were re-detected by 
receivers in South-West WA over periods exceeding a year (see section 3.4 below), none of 
the SA-tagged sharks were detected over such long periods in the metropolitan region (Figure 
9). Nine (50%) of the SA-tagged sharks detected off Perth were detected for periods of less 

                                                 
10 Since data were extracted (30 June 2015), another shark (WA029) has been re-detected by metropolitan 
receivers in three consecutive (calendar) years.  
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than 24h (median of those 9 sharks’ detection periods=19.6h) and only 3 were re-detected 
over periods of more than 100d (SA042, SA088 and SA132; max.=182d).  

The number of sharks detected by the combined metropolitan receiver arrays has been highly 
variable over the six years that data have been collected and there have been complete 
absences of tag detections in many months (Figures 9 and 10). However, monthly detection 
rates have steadily increased since 2012, when internal tagging commenced in the region 
(Figure 10A). By pooling data from all years, tagged white sharks appear to be most 
abundant off the metropolitan coast between September and December, although they have 
been detected in all months (Figure 10B). On average, individual sharks spent relatively 
longer in the region during winter (6.5 dm-1 in June) and spring (8 dm-1 in October) than in 
summer and autumn (1-1.5 dm-1, between February and May). The pooled monthly 
abundance of detected white sharks was also noticeably lower (n=2-6) during late summer-
autumn than in winter and spring (n=9-14).   

 

 
Figure 9.  Summary of individual white sharks’ monthly detections by combined (SMN, OTN and 

DoF) metropolitan Perth receiver arrays. Circle diameter indicates number of detection 
days per month (dm-1):    = less than 10dm-1;      = 10-19 dm-1;        = 20-30 dm-1;     
     = initial tag release date. 
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Figure 10. Monthly abundance (no.) of tagged white sharks detected by metropolitan acoustic 

receiver arrays: (A) by month (May 2009-Jun 2015, inclusive) and (B) pooled across all 
years (indicated as bars against the left axis). Pooled monthly detection frequency of 
tagged white sharks (shark detection days) is indicated as the solid black line in (B).   

The highest tagged white shark detection (day) frequencies were recorded by receivers in the 
southern metropolitan area, specifically: around the northern end of Garden Island, within 
Cockburn Sound and across Gage Roads (Figure 11A). Maximum frequencies of 68-74 white 
shark detection days, recorded by receivers off Garden Island, were almost twice those of 
OTN receivers across Gage Roads (24-40d) and nearly 10 times the mean rate of beachside 
(VR2W and VR4G) receivers (7.7d). A similar pattern was observed in the abundance 
(number) of tagged white sharks detected by receivers at those locations (Figure 11B). As 
many as nine different white sharks were detected by receivers around the northern end of 
Garden Island (mean of 7.2), slightly more than the maximum of eight across Gage Roads 
(mean of 6.8). Although the mean frequency of white shark detections by receivers located 
West of Rottnest Island (4.8) was less than one third of receivers closer to shore, the number 
of sharks detected by offshore OTN receivers was generally higher (mean=4.8) than detected 
by receivers within 3km of the mainland (mean=2.7). Additionally, more than half (n=13) of 
the 24 white sharks detected by OTN receivers west of Rottnest (Figure 4B) were not 
detected by any receivers closer to shore, indicating that many white sharks travel rapidly 
past Perth and generally too far offshore to pose a threat to the majority of water users in the 
region. 

While these results might suggest that white sharks occur in southern metropolitan waters 
more than those in the northern part of the region, it should be noted that the most frequently-
visited receivers are located further offshore than receivers in the northern metropolitan 
waters.  A slightly higher detection frequency by offshore VR2W receivers was also observed 
along the outside of Three Mile Reef off Scarborough-Hillarys, suggesting that distance from 
shore may be important in determining white sharks’ fine-scale regional preferences. 
Nevertheless, differences in the habitat-structure and/or seasonal prey availability in areas 



Fisheries Research Report [Western Australia] No. 273, 2016  29 

around the northern end of Garden Island and Gage Roads may play a role in attracting white 
sharks to this particular part of the metropolitan coastline. The channels through the southern 
part of the near-continuous reef between Garden and Rottnest Islands are known to be the 
exclusive passageways and staging posts for snapper entering Cockburn Sound to spawn 
during spring and early summer. As several white sharks (and many more bronze whalers) 
have been caught and tagged in close proximity to spawning aggregations of snapper in the 
Sound, it seems likely that sharks are using the same channels to enter (and exit) the area. 

 
Figure 11.  White sharks’ (A) detection frequency (shark days) and (B) abundance (number of 

detected sharks) at Metropolitan (SMN, OTN and DoF demersal scalefish research) 
receivers. 

In addition to recording the presence and movements of tagged white sharks, metropolitan 
receiver arrays have also detected 42 bronze whaler sharks a total of 149,257 times, over 
3,616 shark detection days and 12 tiger sharks a total of 4,947 times, over 263 shark detection 
days. Because the data collected for these species are outside the scope of this project’s 
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original objectives but, nevertheless inform a more general understanding of potential and 
perceived shark hazards off the metropolitan coast, data collected for these species by 
metropolitan receivers are summarised in Appendix 1.  More detailed examinations of these 
data are planned for future publications.  

 

3.2 Objectives (ii) evaluate the feasibility and public safety 
benefits (relative to aerial surveillance) of using 
communicating acoustic receivers as an ‘early-warning’ 
system for notifying public safety authorities of the presence 
of acoustically-tagged sharks close to populated beaches and 
(vii) provide a system for alerting public safety officials and 
the public, about risks of encountering tagged sharks (and 
sharks more generally) close to populated areas, beaches and 
surf breaks in the Capes and Albany regions. 

Because satellite-linked VR4G receivers’ coverage (i.e. the number and geographic extent of 
VR4G installations) and the number of acoustically-tagged sharks in the study have 
continually changed since the first receivers were deployed in January 2009, caution should 
be exercised in comparing the following results between years. Similarly, as the type, number 
and geographic scales of aerial surveillance data sources have changed since the first 
metropolitan fixed-wing shark surveillance program began in the summer of 2001/02, aerial 
surveillance data are also not directly comparable between years. 

3.2.1 VR4G acoustic receiver detections 
A total of 73 different acoustically-tagged sharks have been detected by VR4G receivers, a 
total of 3,139 times since the first three receivers were installed off the metropolitan coast in 
January 2009 (Table 2). These detections resulted in 2,748 near-real-time notifications of 920 
specific white, bronze whaler and tiger shark hazard events (i.e. involving confirmed species 
of mostly measured lengths). Pooled VR4G notification frequencies of white, bronze whaler 
and tiger sharks’ (combined) detections throughout the expanded SMN are shown by 
location, in Figure 12. Notification frequencies and numbers of sharks detected by VR4G 
receivers are shown separately for each individual receiver station in Appendix 2. 
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Table 2.  Annualised summary of numbers of sharks detected by VR4G receivers and numbers of 
detections, notifications, detection days and identified shark hazard events.  

      No. VR4G VR4G Shark  Shark 

Name Species Year Sharks Detections Notifications 
Hazard 
Events days 

White Carcharodon carcharias 2009 1 15 7 4 4 
White Carcharodon carcharias 2010 0   

  White Carcharodon carcharias 2011 2 5 5 2 2 
White Carcharodon carcharias 2012 4 469 381 72 26 
White Carcharodon carcharias 2013 6 123 100 38 21 
White Carcharodon carcharias 2014 11 558 425 109 48 
White Carcharodon carcharias 2015 3 15 13 10 9 
Total     23 1185 931 235 110 
Bronze 
whaler Carcharhinus brachyurus 2012 6 24 23 12 8 
Bronze 
whaler Carcharhinus brachyurus 2013 16 141 131 58 51 
Bronze 
whaler Carcharhinus brachyurus 2014 28 740 695 301 180 
Bronze 
whaler Carcharhinus brachyurus 2015 14 258 233 86 58 
Total     39 1163 1082 457 297 
Tiger Galeocerdo cuvier 2012 2 17 16 4 2 
Tiger Galeocerdo cuvier 2013 4 263 244 70 28 
Tiger Galeocerdo cuvier 2014 7 436 411 133 48 
Tiger Galeocerdo cuvier 2015 6 75 64 21 15 
Total     11 791 735 228 93 
Grand total (3 species)  73 3139 2748 920 500 

 
Because acoustic tags transmit every 50-150 seconds, continuous sequences of detections or 
notifications by VR4G receivers cannot be considered as representing separate shark hazard 
events. Therefore, a variation on Surf Life Saving WA’s shark safety protocol6 was adopted to 
define the number of discrete potential shark ‘hazards’ identified by the VR4G network. 
White sharks were generally detected for brief periods by VR4G receivers, with a mean 
continuous detection period of 6 minutes and 36 seconds (n=201, SD=8.6 minutes). Bronze 
whaler and tiger sharks’ mean continuous detection periods were similarly brief at 5.7 and 7.2 
minutes (S.D. of 5.0 and 7.6 minutes), respectively. The VR4G network identified 920 
separate, confirmed ‘shark hazard events’ (see definition in 2.4) between 2 July 2009 (5 
months after the first receivers were installed) and 19 June 2015, some of which (e.g. during 
daylight hours, near a beach etc.) resulted in pre-emptive safety responses (e.g. evacuating 
bathers from the water). Bronze whalers accounted for nearly half of these (n=457), while 
similar numbers of white (n=235) and tiger (n=228) shark hazard events were identified. 

Six VR4G receivers were responsible for more than 75% of tagged shark notifications and 
each of these has provided more than 100 notification alerts to public safety authorities (Table 
3). However, as receivers have been active for different periods (due to staggered 
deployments11 and maintenance issues), comparison of notification and detection rates (e.g. 
rates per 100 days of operation: 100d-1) is a more appropriate basis for comparing relative 
levels of tagged shark activity between different receiver locations (Table 3). In these terms, 
the Warnbro Sound, Garden Island, Middleton Beach (Albany) and Meelup receivers have 
                                                 
11 Ocean Reef, 2km off Scarborough and Garden Island receivers were installed in December 2009, Warnbro 
Sound in May 2010,Bunbury, Busselton, Meelup, Middleton Beach, Frenchman’s Bay, Mullaloo North and 
South receivers in late 2013 and the receiver at Smith’s Beach in December 2014. 
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been the most active in the network, with notification rates an order of magnitude greater than 
the median rate of 7.3 notifications per 100 days across all VR4G receivers. In contrast, 
several of the popular metropolitan beach-side receivers have been relatively inactive, with 
notification rates lower than the median rate. Unlike Meelup and Garden Island receivers 
which have detected the highest number of different sharks, the detection records of VR4G 
receivers at Ocean Reef, Warnbro Sound and Middleton Beach (and to a lesser extent 2km off 
Scarborough) were dominated by protracted detection sequences of individual sharks. For 
example a single white shark (WA032) was responsible for all of the 108 notifications from 
Middleton Beach; 74% of Warnbro Sound notifications were caused by single white (WA041; 
n=189), tiger (TGWA11; n=246) and bronze whaler (BWWA45; n=214) sharks and 251 of 
the Ocean Reef notifications were caused by concurrent detections of 2 white sharks (WA018 
and WA020) over a continuous five day period in October 2012.  

 
Figure 12. Relative frequencies of (combined white, bronze whaler and tiger) shark notifications by 

VR4G receivers in (A) the metropolitan, (B) Albany and (C) Geographe Bay-Capes 
regions. Individual species notification rates are given in Appendix 2. N.B. numeric labels 
in or beside receiver locations indicate receiver number (not notification frequency) for 
reference to Table 3. 
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The majority of receivers (n=21) have detected fewer than 10 sharks in total, at rates of 
generally less than one per hundred days of operation (Table 3). The Meelup and Garden 
Island receivers are the obvious exceptions with detections of 29 and 41 different sharks, at 
rates of 4.6 and 2.1 sharks per 100 days, respectively. Those two receivers were also 
responsible for detecting the most white (6 and 7, respectively) and bronze whaler (19 and 
30, respectively) sharks. Smaller numbers of tiger sharks (1-4) were more evenly detected 
across the metropolitan VR4G receiver array but only five have so far been detected by a 
single regional VR4GS. 

Table 3.  VR4G receiver stations’ notification frequencies, numbers of sharks detected and 
associated rates (per 100 days). NB Station number refers to numerical labels in Figure 
11 and Appendix 2. 

 Notifications Number of sharks detected 
Station white 

sharks 
bronze 
whalers 

tiger 
sharks 

Total Rate 
(100d-1) 

white 
sharks 

bronze 
whalers 

tiger 
sharks 

Total Rate 
(100d-1) No* Location name 

1 Ocean Reef 258 4 35 297 14.7 4 1 3 8 0.4 
2 Mullaloo North  18 63 81 14.0  2 4 6 1.0 
3 Mullaloo South  28 42 70 12.1  2 3 5 0.9 
4 2.5 km off Mullaloo 12 5 9 26 1.3 3 2 3 8 0.4 
5 3.5 km off Trigg 3 1 2 6 0.3 3 1 1 5 0.3 
6 2.5 km off Trigg 4 11 5 20 1.2 1 2 2 5 0.3 
7 2km off Scarborough 74 17 98 189 10.1 3 3 4 10 0.5 
8 1.5km off Scarborough 5 8 18 31 1.9 2 2 3 7 0.4 
9 Scarborough 42 2 29 73 3.1 5 1 3 9 0.4 
10 Floreat 58 10 36 104 5.1 5 3 3 11 0.5 
11 City Beach 3 3 15 21 1.2 2 2 3 7 0.4 
12 Swanbourne 8 0 14 22 1.3 2  3 5 0.3 
13 North Cottesloe 10 1 17 28 1.9 2 1 3 6 0.4 
14 Cottesloe 23 0 19 42 1.8 4  2 6 0.3 
15 Leighton 17 2 2 21 1.1 2 2 2 6 0.3 
16 Strickland Bay, 

Rottnest 
9 2 13 24 1.6 2 1 2 5 0.3 

17 Bickley Point, Rottnest 4 16 11 31 1.6 1 3 3 7 0.4 
18 Stragglers Reef 6   6 0.4 1   1 0.1 
19 Garden Island (north) 43 324 25 392 19.7 7 30 4 41 2.1 
20 Warnbro Sound 189 430 253 872 55.3 1 8 4 13 0.8 
21 Frenchman Bay, 

Albany 
7 5 6 18 3.2 4 2 2 8 1.4 

22 Middleton Bch, Albany 108 5 3 116 20.4 1 1 1 3 0.5 
23 Bunbury 11 8 2 21 3.3 1 4 1 6 0.9 
24 Busselton 4 14  18 3.4 2 1  3 0.6 
25 Meelup 33 163 18 214 33.9 6 19 4 29 4.6 
26 Smiths Beach  5  5 2.5  4  4 2.0 

* Station numbers refer to numeric labels in Figure 12 
 

3.2.2  Aerial surveillance data 
There have been three distinct periods of aerial shark surveillance in Western Australia since 
the first flights commenced in November 2001. Summer patrols over metropolitan beaches 
were conducted in fixed-wing Cessna aircrafts by pilots and observers from Edith Cowan 
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University’s aviation school between 2001/02 and 2007/08 (Nardi and McAuley, 2008; Table 
4). For the first three seasons, fixed wing patrols flew on most days between November and 
January and after 2003/04 they flew on most days between November and February and also 
on weekends and public holidays in October and March. Since 2008/09 Surf Life Saving WA 
(SLSWA) have conducted aerial shark surveillance using the Westpac “Lifesaver” Rescue 
Helicopter along the metropolitan coast and with a second Westpac “Lifesaver” Rescue 
Helicopter (Busselton) patrolling the State’s south west coast since the end of 2011 
(http://surflifesavingwa.com.au/safety-rescue-services/helicopters).  

Table 4.  Shark sightings reported by Western Australian aerial shark surveillance programs. 
Surveillance hours and timing of programs are also given. 

Season Aircraft 
Hours 
(duration) Sharks Species 

2001/02  Cessna 172 RG ‘Cutlass’ n/a (Nov-Jan) 5 5 unidentified 
2002/03 Cessna 172 RG ‘Cutlass’ 316 (Nov-Jan) 7 7 unidentified 
2003/04 Cessna 172 RG ‘Cutlass’ 448 (Nov-Jan) 19 19 whalers 
2004/05 Cessna 172 RG ‘Cutlass’ 604 (Oct-Feb) 6 6 unidentified 
2005/06 Cessna 172 RG ‘Cutlass’ 584 (Oct-Mar) 57 1 white, 1 hammerhead, 4 whalers, 

51 unidentified  
2006/07 Cessna 172 RG ‘Cutlass’ 553 (Oct-Mar) 197a 1 white, 1 hammerhead  
2007/08 Cessna 172 RG ‘Cutlass’ 539 (Oct-Mar) 698b 698 unidentified 
2008/09 Agusta Westland 119ke 

(Koala)  
265 (Dec-Mar) 23 2 white, 1 hammerhead, 2 tiger, 2 

whaler, 16 unidentified 
2009/10 Agusta Westland 119ke 

(Koala)  
301 (Oct-Apr) 13 5 hammerheads, 4 tiger, 4 whaler 

2010/11 Agusta Westland 119ke 
(Koala)  

331 (Oct-Mar) 169 23 hammerheads, 8 tiger, 1 whale, 
137 unidentified 

2011/12 Agusta Westland 119ke 
(Koala) & Eurocopter 
AS350SD 

620c 247 3 white, 3 whale, 3 whaler, 25 
hammerheads, 11 tiger, 202 
unidentified 

2012/13 Agusta Westland 119ke 
(Koala) & Eurocopter 
AS350SD 

751c 285 24 white, 1 whale, 6 whaler, 93 
hammerheads, 64 tiger, 97 
unidentified 

2013/14 Agusta Westland 119ke 
(Koala) & Eurocopter 
AS350SD 

703c 247 19 white, 1 whale, 23 whaler, 25 
hammerheads, 71 tiger, 108 
unidentified 

a 192 sharks were sighted in aggregations in Cockburn Sound and include multiple re-sightings on the same day 
b 695 sharks were sighted in aggregations in Cockburn Sound and include multiple re-sightings on the same day 
c Year round metropolitan service; peak summer period and other key holiday periods service in the south west 

Aerial surveillance programs have reported a total of 1,973 shark sightings since 2001 (Table 
4). The initial fixed-wing program was characterised by very low sighting rates during its 
first four years, followed by a rapid upward trend in sightings during its last three years, when 
nearly all sightings were repeat observations of shark aggregations in Cockburn Sound. When 
sightings of these aggregations were excluded and declining surveillance effort (patrol hours) 
between 2005/06 and 2007/08 was considered, the sighting rates of non-aggregated sharks 
declined from 1.4 sharks per 100h to 0.6 sharks per 100h during the last 3 years of fixed-wing 
patrols. Sighting rates of 8.7 and 4.3 sharks per hundred hours were reported during the first 
two years of helicopter surveillance in the metropolitan region, an order of magnitude higher 
than the rates reported by fixed-wing aerial surveillance. Metropolitan helicopter sighting 
rates then jumped to 51.1 sharks per 100h in 2010/2011 before dropping to 29.6, 25.2 and 
40.3 per 100h in the subsequent 3 years. Sighting rates by the south-western helicopter have 

http://surflifesavingwa.com.au/safety-rescue-services/helicopters
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been similar at 43.5, 61.6 and 38.8 sharks per hundred hours in the 2011/12, 2012/13 and 
2013/14 seasons, respectively. Data were not available for 2014/15 at the time of writing. 

The species and sizes of sharks sighted by fixed-wing patrols were reported to Department of 
Fisheries through electronic reporting logs between 2002/03 and 2007/08 (Nardi and 
McAuley, 2008). Most of the sharks sighted during these patrols were unidentified species 
(92%) and described as small to medium -sized (Table 4). Only two white sharks were 
identified during the 7 years of fixed-wing surveillance, one of which was confirmation of a 
sighting reported by a member of the public. The species and sizes of sharks sighted during 
the helicopter surveillance program were reported by SLSWA in a series of annual reports to 
the Shark Hazard Committee between 2008/09 and 2010/11, inclusive (Peck and du Plessis, 
2011). Since then, the composition of helicopter sighting records has been obtained directly 
from SLSWA.  

During the initial 3 years of metropolitan-only helicopter surveillance (2008/09-2010/11, 
inclusive), 205 shark sightings were reported by the helicopter. Of those: 75% were reported 
as unidentified species (n=153), 14% as hammerhead sharks (Sphyrna spp.12, n=29), 7% as 
tiger sharks (n=14), 3% as whaler species (Carcharhinus spp., n=6) and 1% as white sharks 
(n=2; Peck and du Plessis, 2011). Between 2011/12 and 2013/14 (inclusive), combined 
metropolitan and South-West helicopter patrols reported 779 shark sightings: 52% of which 
were unidentified species (n=407), 18% were identified as hammerhead sharks (n=143), 19% 
as tiger sharks (n=146), 4% as whaler species (n=32) and 6% as white sharks (n=46). 
Verification of shark sightings varies according to the particular circumstances of each 
sighting. 

3.2.3 Other sightings records 
Since 2009, Western Australians have been encouraged to report shark sightings to the WA 
Water Police call centre. Sighting information is then relayed via SMS to safety officials and 
since 2014, sighting reports have also been published via SLSWA’s Twitter service and the 
Government’s live web-mapping http://sharksmart.com.au/shark-activity/. While all 
reasonable efforts were made to preserve the complete history of these SMS records over six 
years between 2009 and 2015, these data have been reconstructed from multiple mobile 
phones. As a consequence, SMS records (particularly from November 2012 to August 2013) 
may be incomplete. Furthermore, as the original source of shark sighting reports was usually 
unspecified in messages, it is impossible to accurately determine the source of all sightings. 
In those cases, the current authors’ judgement was used to attribute the sources of these 
reports. It is, however, likely that these ‘other’ sightings records include some unattributed 
aerial surveillance records that are previously-reported in 3.2.2 and are therefore duplicated 
here. Excluding reports that were clearly attributed to SMN project activities and official 
aerial surveillance programs (previously reported in 3.2.1 and 3.2.2, respectively), at least 
1,046 shark sightings were reported by ‘other’ sources between October 2009 and 30 June 
2015 (Table 5). 

                                                 
12 The smooth hammerhead shark (Sphyrna zygaena) is by far the most commonly encountered hammerhead 
species in metropolitan and south-western waters.   

http://sharksmart.com.au/shark-activity/
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The majority (n=704) of other shark sightings were reported by members of the public, whilst 
engaged in various aquatic activities, including commercial and recreational fishing, boating, 
beach-going, diving and surfing. Most of the remaining other sighting records were reported 
by unknown sources (n=160) and organisational representatives (n=157), the latter including 
Department of Fisheries and contractor drum-line vessels, Volunteer Marine Rescue crews, 
beach-based Surf Life Savers, Department of Parks and Wildlife officers and Water Police. 
The remainder of the other shark sightings were reported by commercial, private and media 
aircraft.  

Relative to aerial surveillance data, a much higher portion of white sharks was identified by 
these other sources (19%). The percentages of tiger sharks (13%) and unidentified species 
(64%) were similar to those recorded in the combined metropolitan and south-western 
Lifesaver helicopters. However, as the sources and descriptions of these other reports are 
extremely diverse and usually unverified, their reliability is highly uncertain. Furthermore, 
accurate identification of shark species can be a difficult task even under ideal conditions and 
particularly for similar-looking whaler species. Thus, some of the reported species (e.g. bull, 
reef and school sharks), which are very unlikely to occur in the regions they were reported, 
are thought to be descriptive names rather than attempted species identifications and some 
reports have later been found not to be sharks [e.g. dolphins, pinnipeds (seals and sea lions), 
rays, sunfish (Molidae) and other teleosts].  
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Table 5.  Other reported shark sightings (from reconstructed SMS records). 

      Other Land and sea Unknown Total all 
Name Species Year aeriala Organisations

b 
MOPc Sources Sources 

Tiger Galeocerdo cuvier 2010   1 2  3 
Tiger Galeocerdo cuvier 2011     6 2 8 
Tiger Galeocerdo cuvier 2012   1 7 4 12 
Tiger Galeocerdo cuvier 2013 4 2 6 7 19 
Tiger Galeocerdo cuvier 2014   65 13 1 79 
Tiger Galeocerdo cuvier 2015   1 13 3 17 
Total tiger     4 70 47 17 138 
Whaler Carcharhinus spp. 2011     2  2 
Whaler Carcharhinus spp. 2012     2 2 4 
Whaler Carcharhinus spp. 2013     5 4 9 
Whaler Carcharhinus spp. 2014 2 2 4  8 
Whaler Carcharhinus spp. 2015     11  11 
Total whaler     2 2 24 6 34 
White Carcharodon carcharias 2009     2  2 
White Carcharodon carcharias 2010   3 4 1 8 
White Carcharodon carcharias 2011     27 2 29 
White Carcharodon carcharias 2012   1 20 21 42 
White Carcharodon carcharias 2013   2 16 2 20 
White Carcharodon carcharias 2014 3 10 42 4 59 
White Carcharodon carcharias 2015     36  36 
Total white     3 16 147 30 196 
Unidentified  2009     4 1 5 
Unidentified 

 2010 2 6 24 3 35 
Unidentified 

 2011 2 12 92 25 131 
Unidentified 

 2012 2 5 53 41 101 
Unidentified 

 2013 5 5 95 13 118 
Unidentified 

 2014 4 17 112 18 151 
Unidentified 

 2015   22 101 3 126 
Total unidentified 
  

  15 67 481 104 667 
Hammerhead Sphyrna spp. 2010 1 1 2  4 
Hammerhead Sphyrna spp. 2011   1 2 2 5 
Hammerhead Sphyrna spp. 2012     1 1 2 
Total hammerhead 1  2 5 3 11 
Grand Total 25  157 704 160 1,046 

a Includes commercial, police and media aircraft (mainly helicopters); b Department of Fisheries (mostly releases from the 
trial drum line program in 2014; DoF., 2014), WA Water Police, Volunteer Marine Rescue, SLSWA (non-helicopters) and 
Local Government Authority beach inspectors/rangers; c MOP = Members of Public. 
 

3.3 Objectives (iii) monitor movements and behaviour of tagged 
white sharks in the South West of the State and (iv) obtain a 
more accurate understanding of white sharks’ large-scale 
movements from South Australia into the South West and 
lower west coast regions of WA 

The number of tagged white sharks detected in the combined South-West receiver arrays has 
steadily increased in-line with the number of sharks that were cumulatively tagged over the 
three years that data were recorded. Nonetheless, there were complete absences of tag 
detections in four calendar months after receivers were deployed in April 2012 (April, July 
and October 2012 and June 2014; Figure 13A). Pooled detection data indicate that tagged 
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white sharks are more consistently abundant throughout the year off the south and south-
western coasts than in the metropolitan region. Although sharks were detected in all months, 
they were less frequently detected during June and July than in other months. Also, individual 
sharks’ mean detection periods (no. shark detection days) were more consistent in the south-
western arrays than in the metropolitan region (Figure 13B).  

     
Figure 13.  Monthly abundance of tagged white sharks detected by combined south-western 

acoustic receiver arrays (Geographe Bay/Cape Naturaliste, Hamelin Bay, Chatham 
Island, Bald Island and Recherche Archipelago): (A) by month and (B) pooled across all 
years (2009-Jun 2015, inclusive; left axis). Pooled monthly shark detection frequency 
(shark days) is also shown on the right-hand axis of (B).   

 
Tagged white sharks were detected throughout all three South-West receiver arrays, although 
the majority of detections were in waters deeper than 50m (94%) and further than 10km from 
the mainland coast (88%; Figures 14 and 15). On average, receivers located in depths greater 
than 50m off the South and South West coasts detected more than twice the number of white 
sharks (2.12 receiver-1) than those in shallower waters (0.80 receiver-1). This apparent 
preference for deeper offshore waters in the south-west of the State is in contrast to data from 
the comparable cross-shelf metropolitan OTN array, which contain a relatively larger 
proportion of detections from shallow water receivers (67% of OTN detections were by 
receivers in less than 20m depth), located within 10km of shore (74% of OTN detections; 
Figure 11). However, the majority of inshore OTN receiver detections (77%) were derived 
from four sharks (WA004, WA018, WA027 and WA029) that remained in the region for 
relatively extended periods (Figure 9) and, in two cases (WA018 and WA029), were detected 
over multiple separate periods. Bronze whaler and tiger sharks’ south-western detection 
frequencies are shown separately in Appendix 3. 
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Figure 14.  White sharks’ detection frequency (no. detections) at the (A) Hamelin Bay; (B) Chatham 

Island and (C) Bald Island arrays and abundance (number of sharks) at the (D) Hamelin 
Bay; (E) Chatham Island and (F) Bald Island arrays. Detection frequency symbol values 
for (A) – (C) are given in upper left hand panel and number of sharks detected symbol 
values are given for (D) – (F) in the lower left hand panel.  
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Figure 15. Frequency distributions of white shark detections and number of sharks detected relative 
to water depth (A & B, respectively) and distance off the mainland coast (C & D, 
respectively). Black bars show South-West receiver array data (Hamelin Bay, Chatham 
Island and Bald Island) and grey bars show metropolitan data (OTN only). N.B. 
detections by South Australian receivers are not included. 

 

Including data from South Australian, South-West, metropolitan and Ningaloo receiver 
arrays; as well as the known locations of tagged sharks’ release, re-captures and deaths, 211 
inter-regional movement vectors, totalling 134,592km were recorded for 51 tagged white 
sharks. The majority of individual movements (n=145, 69%) were between adjacent receiver 
arrays (or release/mortality locations) and over distances of less than 300km (Figure 16A). 
However, more than 25% (n=54) of individual movement vectors were over distances 
exceeding 1,000km, up to a maximum distance of 3,375km. That maximum movement 
distance was one of 6 between the Neptune Islands in South Australia and Ningaloo Reef in 
the North-West of WA. Multiple inter-regional movements were recorded for most tagged 
white sharks (n=35) and individual sharks were recorded travelling cumulative distances of 
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up to 6,542km (mean individual cumulative movement distance=638km; Figure 16B). 
Individual white sharks’ cumulative movement vectors are shown in Appendix 4. 

The maximum Rate of Movement (ROM) of 5.6kmh-1 was estimated for a shark that 
travelled between VR2W receivers off Bald and Chatham Islands (a straight-line distance of 
193km) in less than 35h. Thirteen other sharks were estimated to have maintained ROMs in 
excess of 4kmh-1 over similar distances (Figure 16C), two of which exceeded average speeds 
in excess of 3kmh-1 over much larger distances. Those sharks were detected by the CSIRO 
Neptune Islands VR4G receiver, only 24 and 43 days prior to their respective detections by 
OTN Perth and NRETA receivers, indicating that they maintained ROMs of at least 3.8kmh-1 
and 3.2 kmh-1 over minimum distances of 2,213km and 3,288 km, respectively. A weak 
positive linear relationship was found between minimum displacement distance and the time 
between detections (time interval) although this relationship was highly variable (Figure 16D; 
r2=0.32).  

 
Figure 16.  Frequency of estimated minimum displacement distances (A) for inter-regional 

movements, (B) cumulatively for individual sharks, (C) average speeds and (D) as a 
function of detection time interval (with 95% confidence bounds). 
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The pooled monthly frequency and directions of tagged white sharks’ movements between 
acoustic receiver arrays are shown in Figure 17. Although the majority (68%) of inter-
regional displacements occurred within single calendar months, movements over 2 or 3 
calendar months (15%) were included in the following results by assuming sharks moved 
unidirectionally in each of the months during which those movements took place. Inter-
regional displacements taking more than 3 months (17% of all data) were not considered due 
to greater uncertainty that movements were unidirectional (i.e. greater potential for sharks to 
have circumvented arrays and been detected travelling in the opposite direction). In order to 
explicitly include detections by the relatively small number of VR4G receivers around 
Geographe Bay and Cape Naturaliste, direct displacements between the Hamelin Bay and 
Metropolitan arrays and vice-versa, were considered to have passed through those 
intermediary receivers, thereby exaggerating the actual number of Geographe Bay detections. 

Although all arrays recorded shark movements in both directions during most months, there 
was a net westward movement of tagged white sharks from SA and the Recherche 
Archipelago to the Bald Island array between May and January (Figure 17A). However, the 
relatively small and disparate receiver coverage in south-eastern WA and South Australia 
severely limited the availability of data and interpretation of movement patterns to and from 
the East of Bald Island and should be treated with caution. Similarly, receiver coverage north 
of Perth was limited and, except for one shark that beached itself and died near Geraldton 
(SA128), no data were collected from the mid-west and Gascoyne coasts. Nevertheless, a 
subtle net northward movement of sharks along the mid and upper West coasts was inferred 
from metropolitan and NRETA detections during October, November and December, 
followed by a net southward movement between January and March (Figure 17F). This 
pattern is consistent with the more general northerly movement patterns between Hamelin 
Bay, Geographe Bay and metropolitan arrays during spring/summer and to the south in late 
summer and autumn (Figure 17 D, E, F). While there was a general increase in the frequency 
of movements between south coast arrays (Bald and Chatham Island) during winter and 
summer months, the directions of those movements remained approximately equal 
throughout the year.  

When displacement data were seasonally aggregated and viewed across all receiver arrays, it 
was apparent that white sharks may be active in southern and south-western WA waters at 
any time of the year (Figure 18). These data also confirm the conclusions drawn from more 
limited previous satellite telemetry data. Bruce and Stevens (2004) observed that white 
sharks’ northerly movements along the west coast, particularly those that travel as far as 
Ningaloo Reef, are most likely to occur during spring and summer, before they return 
southwards during late summer and autumn. Nine of the eleven sharks (six females and 3 
males) detected by AATAMS receivers at Ningaloo Reef were first detected in the region 
between late November and early January, possibly indicating that movements to the North-
West of the population’s range may be both more common and more synchronised than was 
previously understood. Co-ordination of movements to the north-west may also be indicated 
by two separate examples of the detection of ‘groups’ of sharks, tagged within a month of 
each other at the Neptune Islands (SA054, SA055 and SA057) and off Perth (WA018, 
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WA019 and WA020), being then detected within days to weeks of each other at Ningaloo 
Reef. While these concurrent movements to Ningaloo could have been coincidental, the three 
WA-tagged sharks were also subsequently re-detected in Perth and off the south-west within 
a few weeks of each other. The three female South Australian-tagged sharks’ movements 
subsequently differed, with SA054 being re-detected at the Neptune Islands three months 
later and SA055 being re-detected at Ningaloo 6 months after first detection there. Shark 
SA057 was not re-detected. Despite these specific examples of co-ordinated or, at least co-
incidental, movement behaviour, data from the current study indicate that movements along 
WA’s temperate coastline are more generally asynchronous and bi-directional.  

Of the 151 sharks tagged in South Australia between 20 December 2007 and 18 April June 
2015, 34 have been detected by Western Australian-located receivers, including one that was 
recaptured and re-tagged in King George Sound, Albany in June 2013 and another which 
stranded on a beach near Geraldton in July 2014. This represents a detection rate of South 
Australian-tagged white sharks in WA of 23%. However, due to unknown and possibly 
variable rates of external tag-shedding and changes in the extent of acoustic receiver 
coverage in WA, the true number of South Australian-tagged sharks that travelled into 
Western Australian waters is likely to be higher than indicated by these figures. A higher 
proportion (32%) of sharks tagged in South Australia since 2012 has been detected in WA 
during the period that SMN receiver arrays have been installed in waters South of Perth. 
Nevertheless, this is also likely to be an underestimate of the true interstate movement rates 
due to tag shedding. After excluding four sharks that were externally-tagged off WA between 
2007 and 2010 (2-5 years before south coast receivers were installed) and eight sharks that 
were internally-tagged off Cape Arid in November 2014 and April 2015 (after Recherche 
Archipelago receivers were last downloaded), 30 of the 39 WA-tagged sharks have been 
detected by WA receivers. Only one WA-tagged shark (WA017) has so far been detected by 
South Australian receivers, although a second (yet to be identified individual) was 
photographed at the Neptune Islands after data were compiled for this report. The apparently 
low detection rate of WA-tagged sharks in South Australia is likely to be a direct consequence 
of the low and geographically-limited acoustic receiver coverage in SA. A recent expansion 
of receiver deployments in SA waters and specifically in areas of the eastern GAB may 
improve data on interstate movements across southern Australia. 
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Figure 17.  Pooled monthly movements of tagged white sharks: (A) East of the Bald Island array (i.e. 

to and from Recherche and South Australian receivers); (B) between Bald and Chatham 
Islands arrays; (C) between Chatham Island and Hamelin Bay arrays; (D) between 
Hamelin and Geographe Bays arrays; (E) between Geographe Bay and Metropolitan 
arrays and (F) north of the metropolitan arrays (i.e. to and from NRETA receivers). Black 
bars indicate westward/northward movements and grey bars indicate 
eastward/southward movements. 
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Figure 18.  Seasonal movements of tagged white sharks between receiver arrays during (A) autumn 
(March-May), (B) winter (June-August), (c) spring (September-November) and (D) 
summer (December-January). Arrow sizes indicate the number of sharks and direction to 
next and from previous arrays. N.B. arrows’ distance from shore does not indicate 
distance from shore of actual movements (i.e. northerly and westerly movements are not 
necessarily further offshore than southerly and easterly movements).  
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3.4 Objective (vi) collect data for investigating whether individual 
sharks repeatedly visit particular locations in the SW of the 
State and whether sharks tagged in the area are residential or 
non-residential in those area 

All but eight of the 39 individual white sharks detected by the South-West SMN arrays13 
were tagged and/or detected in South Australia, metropolitan Perth or Ningaloo regions, 
indicating that the majority of sharks occurring in the South-West of WA make extensive 
movements through and outside the region (Appendix 4). Seven of the eight sharks that were 
not detected outside of the SW travelled rapidly and extensively (minimum cumulative 
movement distances of between 94 and 1872km) between widely-separated locations within 
the region over periods of 2 to 128d. The eighth shark (a 5.04m FL female, WA032), spent 
36d moving between VR4G receivers off Frenchman’s Bay (Table 3, Station No. 21) and 
Middleton Beach (Table 3, Station No. 22) in Albany, during March-April 2014 and has not 
been detected since. As all of these sharks’ detection patterns indicate that they were healthy 
while they were being monitored, their fate(s) after last detection is unclear. Although tag 
shedding may have reduced the potential to detect the two externally-tagged sharks outside of 
the region, it is unlikely to explain the fate of the other six sharks. More likely explanations 
for their fate are therefore that they either died, emigrated from the region, tags failed or their 
movements were outside the ranges of receiver arrays.    

Despite very limited receiver coverage in SA, two of the SA-tagged sharks detected in south-
western WA were subsequently redetected by receivers at the Neptune Islands (SA054 and 
SA093). One of these (SA093), travelled from the Neptune islands to south-western WA 
twice between August 2012 and January 2013 and again between July and August 2013. 
However, only one WA-tagged shark (WA017) was detected in SA prior to July 2015. 
Although being detected by AATAMS receivers in Gulf St. Vincent, this shark was not 
detected by any receivers at the Neptune Islands14. Following those South Australian 
detections in February and March 2014, WA017 was redetected by receivers in the Recherche 
Archipelago in October 2014 before being caught and killed off Esperance on 5 October 
2014. It is likely that external tag shedding and the limited receiver coverage reduced the 
potential to detect WA-tagged sharks in SA and, therefore, that inter-State movements were 
actually more common than the data in this report show.   

Temporal patterns of south-western detections, were characterised by short detection periods, 
punctuated by relatively rapid movements between adjacent arrays (Figure 19), further 
suggesting that sharks did not “reside” within or between monitored areas for more than brief 
periods. Only two sharks (WA022 and WA032) were detected within individual South-West 
receiver arrays for periods exceeding 10 days in a single month (Recherche Archipelago and 
Albany VR4G arrays, respectively).  However, neither of these sharks was subsequently 

                                                 
13 An additional five white sharks that were only detected by the temporary array deployed in Two People’s Bay 
in 2010, are not included 
14 A second, as yet unidentified, shark has been sighted by a cage-diving operator at the Neptune Islands since 
VR2W receivers were last downloaded.  
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detected by the same arrays, suggesting that these types of extended visits to particular 
locations may not be regular or predictable behaviours. Shark WA032 has not been re-
detected since April 2014 After a 36 day period of nearly daily detections by the Middleton 
Beach and Frenchman’s Bay receivers, WA022 was detected by Chatham Island and Hamelin 
Bay receivers (approximately 700km to the west) five months after being in the Recherche 
Archipelago but has not been re-detected since.  

 
Figure 19. Individual sharks’ south-western detection histories. Circle diameter indicates the number 

of detection days per month (dm-1):   = less than 10dm-1;      = 10-19 dm-1;        = 20-30 
dm-1;    = initial tag release date. Symbol shading indicates detection array: white = 
Hamelin Bay; light grey = Chatham Island; dark grey = Bald Island; black and white = 
Recherche Archipelago and black = SW VR4Gs (King George Sound, Smith’s Beach 
and Geographe Bay). Letters indicate detections arrays outside the South-West region: 
M=metropolitan; N= NRETA; SA= South Australia. NB detections by multiple receiver 
arrays are indicated by the most recent detection array symbol and detections by 
multiple receiver arrays in any month should not be discounted. 

 
An assessment of the inter-annual returns of white sharks to the south-western region was 
limited by only four tagged sharks being detected for periods of 12 months or more (Figure 
19). Three of these were externally-tagged in SA (SA093, SA125 and SA126) and one 
(WA026) was dual-tagged with internal and external tags off Cheynes Beach in WA in August 
2013. Each of these sharks appeared to use south-western waters very differently. One male 
SA-tagged shark (SA093), travelled from the Neptune Islands to Hamelin Bay twice, where 
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this individual was detected in August 2012 and August 2013. This shark’s previous arrivals 
at Bald Island on 3 August 2012 and 29 July 2013 were also almost exactly one year apart. 
The second male SA-tagged shark (SA125) apparently moved continuously between Hamelin 
Bay and Bald Island arrays (and unknown distances either side) for 16 months without 
showing particular preference for any specific locations within that 400km stretch of 
coastline.  The third male SA-tagged shark (SA126) was detected between Hamelin Bay and 
Chatham Island arrays in January and April 2014 and in the same area in December 2014, 
March and April 2015. The male WA-tagged shark (WA026) was detected by Bald and 
Chatham Island receivers in September 2013 and then not again until September 2014, when 
this individual was repeatedly detected between Hamelin Bay and Bald Island until April 
2015 (when receiver data were last collected). The only data consistent with regular 
movements between South and Western Australia was the similarity in arrivals and departures 
of SA093 in both 2012 and 2013 and the detection of WA026 after a 12 month hiatus in 
September 2014.  

In summary, the data collected from the expanded network of receivers around the South-
West of the WA coast, strongly suggest that white sharks rarely spend extended periods in 
particular locations of the region. Furthermore, the scale and frequency of detected 
movements within and outside SMN receiver arrays are consistent with white sharks being 
mostly transient and not resident at particular locations around the SW coast of Western 
Australia (Appendix 4). 
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4 Discussion  

4.1 White shark distribution and movement ecology 
Understanding the ecological factors influencing the frequency of white shark encounters and 
attacks in Western Australia has historically been hampered by an almost complete lack of 
reliable data to describe the species’ apparently sporadic occurrence around the State’s 
extensive coastline (Anon. 2004). When the Shark Monitoring Network (SMN) project was 
proposed, few reliable records of white sharks’ occurrence in Western Australian waters 
existed. These included four catch records from State-managed commercial fisheries, 31 
voluntary capture reports by commercial fishers, 11 observed captures during Department of 
Fisheries’ research programs (e.g. McAuley and Simpfendorfer, 2003), 27 confirmed or 
suspected bite incidents since 1803 (ASAF, 2015), two sightings from aerial surveillance 
programs and data from four electronically-tagged sharks (e.g. Bruce and Stevens, 2004; 
Bruce et al., 2006). Apart from the limited tag telemetry data, none of these records provided 
detailed information about sharks’ movements and few provided even basic biological 
information about sharks’ lengths and sexes. Thus, existing data were of little value in 
explaining how the relative probability of human encounters with this species changes with 
time and location around the Western Australian coast. In lieu of reliable scientific evidence 
to explain these rare and unpredictable interactions, there has been considerable speculation 
about the possible causes of white shark encounters and attacks around the State and many 
theories and opinions have instead gained popular acceptance (DoF, 2012).  

The SMN project was developed to collect reliable empirical data about when, where and 
potentially why white sharks may occur off different parts of the State’s lower West and 
South-West coastlines. This included potentially answering frequently asked questions, such 
as: whether the same sharks repeatedly visit particular metropolitan beaches, how long they 
remain in areas following sightings or incidents, how widespread pre-emptive safety 
measures need to be and how long these should remain in place after sightings.  

Since their implementation, the SMN and associated projects (OTN, DoF and AATAMS) 
have collected information on the movements of 64 individual white sharks over 588 separate 
days. Cumulatively, over 134,592km of movements have been recorded. More than one 
quarter of the 211 individual displacements between arrays (and other known locations, i.e. 
releases, recaptures and deaths) were over distances exceeding 1,000 km and many of those 
movements were completed within a few weeks or months. These results further support 
previous evidence that white sharks are generally highly mobile off the WA coast (Bruce and 
Stevens, 2004; Bruce et al., 2006) and, consistent with telemetry studies completed in other 
parts of the world, have shown that this species undertakes rapid long-distance movements, 
interspersed by periods of temporary ‘residence’ (e.g. Bonfil et al., 2005; Domier and Nasby-
Lucas, 2008; Bruce and Bradford, 2012; Duffy et al., 2012). This study is, however, one of 
the few to have tagged a significant number of sharks away from predictable aggregation 
sites, which might therefore provide new insights into the movement ecology and population 
structure of this species in southern and western Australian waters. 
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Pooled tag detections have revealed that while white sharks may be encountered off 
metropolitan Perth and the South-West coasts of WA at any time of the year. Tagged white 
sharks were most abundant in metropolitan waters between late winter and early summer and 
least abundant during late summer and autumn. The mean duration of white sharks’ 
metropolitan detection periods followed the same seasonal pattern, suggesting that individual 
water users’ encounter risk off the metropolitan coast is highest between September and 
December and lowest (but never zero) between February and May. Off the South and South-
West coasts, based on available detection data, the encounter risk appears to be more 
consistent throughout the year. This is in keeping with previous analyses that found a 
significant decline in the rate of attacks with increasing water temperature and a relatively 
higher incidence of white shark attacks off the metropolitan coast during winter and to late 
spring (DoF, 2012). For the south and south west regions, the detection patterns indicate that 
sharks were present during most of the year, which is consistent with previous analyses 
which found no seasonal pattern in attacks for these regions (DoF, 2012).  In addition to these 
differences in seasonal occurrence patterns, human encounter risks will also be affected by 
participation rates in aquatic activities, which for some (e.g. swimming) may increase during 
warmer water months.  

Despite these seasonal occurrence patterns, the direction and timing of individual white 
sharks’ movements were highly variable. Apart from the specific examples of concurrent 
movements to Ningaloo Reef and in some of those cases, back to Perth and the Neptune 
Islands, white sharks were observed travelling along the WA coast in both directions at most 
times of the year. The ecological reasons for the unusually coordinated or coincidental 
movements to North-western WA are uncertain but presumably relate to reproduction, 
foraging, intra-specific competition or predation-avoidance. When reporting a tagged 380cm 
TL female’s return migration between South Africa and North West Cape, Bonfil et al. (2005) 
suggested that this region might be an area of inter-breeding between widely separated 
African and Australian populations. However, like the South African-tagged shark, all of the 
white sharks detected at Ningaloo during the current study, were juveniles and sub-adults 
(2.0-3.5m estimated TL), thus reproductive migration seems an unlikely reason for these 
sharks to visit the region. As there are multiple relatively abundant sources of prey between 
Ningaloo Reef and the Neptune Islands, where most (n=8) of these sharks were tagged, 
foraging behaviour may provide the best explanation for these movements. 

While the data do not support the theory that white sharks follow the humpback whale 
(Megaptera novaeangliae) migration northwards along the WA coast during winter (June-
August) and southwards in spring (August-November; Jenner et al., 2001; Kent et al., 2012), 
they do provide evidence that white shark movements up the west coast will result in them 
encountering whales along much of their migration route. Another theory is that sharks are 
attracted to the increasing number and densities of long-nosed fur seal (Arctocephalus 
forsteri, also known as New Zealand fur seal) colonies off the South and lower West coasts of 
the State (Campbell et al., 2014). However, data from receivers in close proximity to the seal 
colony at Chatham Island and permanent haul-out site at the western end of Rottnest Island 
were noticeably lower than those of receivers further offshore from those locations. Detection 
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rates of white sharks by receivers within 2km of Chatham Island were 49% lower (10.2 
detections receiver-1) than the average detection rate of receivers further off Chatham Island 
(19.9 detections receiver-1). Detection rates by OTN receivers within 2km of the West End of 
Rottnest Island, where an expanding long-nosed fur seal colony has been blamed for 
perceived increases in shark activity in the metropolitan area and a fatal bite near the colony 
in October 2011, were 71% lower (4.7 detections receiver-1) than the average detection rate of 
OTN receivers located further offshore (24.6 detections receiver-1). Also, as the Neptune 
Islands (and South Australian waters, more generally), host some of the largest seal colonies 
in Australia (Shaughnessy et al., 1994) and Western Australian colonies are typically an order 
of magnitude smaller (Campbell et al., 2014), it seems unlikely that seal predation is a major 
driver of white sharks’ movements between South and Western Australia.   

Recorded movements of SA-tagged sharks into WA waters were relatively common and their 
visits were sometimes prolonged. By contrast, only two WA-tagged sharks have been 
detected in SA to date: a 2.7m (FL) female shark (WA017) was detected by AATAMS 
receivers in Gulf St. Vincent in February-March 2014 and an as yet unidentified WA-tagged 
shark was sighted at the Neptune Islands11 in June 2015. Despite the small number of 
acoustic receivers at the Neptune Islands, receivers have been in nearly-continuous operation 
around the Islands since 2008 (Bradford et al., 2011; Rogers et al., 2014). Given that identical 
tagging methods were employed in South and Western Australia and that and increasing 
number of sharks have been permanently-tagged with internal transmitters in WA over the 
last 3 years, it seems unlikely that the WA-tagged sharks frequently visit this specific 
aggregation site. Although there are several possible explanations for the paucity of WA-
tagged shark detections in SA (e.g. low levels of SA receiver coverage, tag shedding, 
mortality, etc.), previous studies have noted fine-scale segregation of sharks of different sexes 
and sizes in relatively small geographic areas (Anderson and Pyle, 2003; Robbins and Booth, 
2012; Kock et al., 2013). It is possible that more WA-tagged sharks did migrate to SA but not 
sufficiently near to the Neptune Island receivers. Expansion of acoustic receiver coverage in 
South Australia would be required to determine this more definitively. 

Noting the initial reliance on external tags and the duration of the project, there was only 
limited evidence that white sharks regularly returned to the same locations in WA. For 
metropolitan Perth, which had the highest level of monitoring, five white sharks (all tagged in 
the region during spring) were re-detected in different years. Two of these sharks (both 
female, WA020 and WA029) returned the following spring; another female (WA018) returned 
the following June and the fourth (male, WA028), returned in January after a very brief 
departure to the South coast. All but one of these sharks (WA029) remained in the 
metropolitan area for periods of over a month following their return. Only one shark had been 
re-detected after more than 2 years (WA003 was detected off Rottnest, 29 months after being 
tagged off the metropolitan coast) and none had been detected in more than 2 consecutive 
years15 by July 2015. Thus, while multi-year returns have been observed, further data are 
required to determine whether these individual sharks’ metropolitan-return behaviour might 

                                                 
15 Since compiling these data, one shark has been detected for the third consecutive year by metropolitan 
receivers.  
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be persistent. Off the south coast, two sharks (SA093 and WA017) were redetected in 
consecutive years by the Recherche Archipelago and Hamelin Bay receivers, respectively.  

Apart from three of the sharks mentioned above (WA018, WA020 and WA028) and three 
others that were detected by the metropolitan arrays over periods of 4 to 5 consecutive 
months (WA004, SA132 and WA027), tagged white sharks were generally only detected in 
the metropolitan region for few days at a time. Even those sharks that were present for longer 
periods, were absent from the array for multiple periods of days to weeks and it cannot be 
determined how extensively they may have travelled during these absences.  Relatively high 
numbers (i.e. abundance) of different sharks were detected by receivers around the northern 
end of Garden Island, Cockburn Sound and Gage Roads, with those receivers having higher 
detection frequencies compared to the receivers located off the northern metropolitan coast. 
However, conclusions about any white shark preference for southern metropolitan waters 
must be qualified by the higher number of receivers that are located further off the southern 
metropolitan coast than in the northern part of the array(s). Nearly twice as many sharks (9) 
were detected by receivers off the northern end of Garden Island than the maximum number 
detected at beachside locations (5 at Floreat and Scarborough, mean of 3.2 receiver-1). The 
detection rates of 68-74 white shark days recorded by some Garden Island receivers were 
nearly 10 times the mean rate of beachside (VR2W and VR4G) receivers (7.7d). Given that 
detections by the South-western receiver ‘curtains’ suggest that white sharks prefer deeper 
offshore shelf waters, at least while travelling, the uneven spatial distribution of metropolitan 
receivers might have biased the relative rate of detections observed between these two 
regions.  

Nevertheless, the high abundance of tagged-sharks detected by Cockburn Sound/Garden 
Island receivers (particularly those tagged in the metropolitan region during spring) did 
coincide with the seasonal formation of spawning aggregations of snapper (Chrysophrys 
auratus) close to these particular locations. Additionally, more than half (n=9) of the 16 
metropolitan-tagged white sharks were also caught and tagged (n=11) in this area during 
spring. The regular occurrence of these and other schools of large demersal teleosts 
(‘scalefish’) off the metropolitan coast provides at least a circumstantial explanation for the 
increase in tagged sharks’ abundance, prolonged detection periods and inter-annual 
metropolitan returns at this time of year. As seasonally-abundant spawning aggregations of 
demersal scalefish might therefore also attract sharks to other locations along the WA 
coastline (e.g. snapper in Warnbro Sound), these events may similarly be expected to result in 
increased encounter risks if people happen to be using those areas at the same time(s). 
However, data collected for two of the sharks most closely associated with the Cockburn 
Sound snapper schools (WA018 and WA020) also show that even when these predictable 
local prey sources are available, sharks do not feed on them exclusively. During their 
extended periods of detection in Cockburn Sound in October and November 2012, both of 
these sharks were concurrently detected for separate 3-5 day periods by VR4G receivers 
between Floreat and Scarborough and off Ocean Reef at the northern extent of the 
metropolitan arrays. Not only did the near real-time VR4G notifications alert safety agencies 
and beachgoers about the prolonged presence of these sharks at these locations, they also 
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enabled investigations of local ecological conditions at the time the sharks were there. In both 
cases large schools of unidentified baitfish were observed and at the second (Ocean Reef) 
event, larger predators including skipjack tuna (Katsuwonis pelamis); Australian sea lions 
(Neophoca cinerea); bottlenose dolphins (Tursiops aduncus) and various seabirds were also 
present. Once these transient prey events passed, WA018 returned to Cockburn Sound where 
this shark was detected for a month before departing to Ningaloo Reef where WA020 was 
also next detected.   

White sharks may also opportunistically take advantage of less predictable prey sources and 
may occur in relatively high numbers at different locations and times of year. Shortly after 
data were compiled for this report, six white sharks (2.1–3.9m FL) were caught around a 
highly unseasonal school of Australian salmon (Arrips truttaceus) at Mewstone Reef, 8km 
North of Garden Island during 3 (non-consecutive) days in August 2015. White sharks were 
also captured (for tagging) in relatively large numbers whilst scavenging humpback (M. 
novaeangliae) and sperm whale (Physeter macrocephalus) carcasses off the metropolitan 
(n=6), Albany (n=5) and Esperance (n=1) coasts. Observations of multiple sharks at most of 
these carcasses indicate that they may result in elevated shark encounter risks (depending on 
their proximity to water users). Monitoring of five sharks tagged at the site of a beached 
humpback carcass in Two Peoples Bay (25km East of Albany) between June and September 
2010, revealed that tagged sharks continued to visit this location for up to 17 days 
(mean=6.6d) after the carcass had come ashore. However, these visits were typically brief 
(mean of 7h per day) and declined in frequency and duration over time. Presumably, these 
visitation patterns reflect sharks’ diminishing interest in the scent from this carcass after 
repeated unsuccessful scavenging attempts. In recognition of the demonstrated association of 
white sharks with whale carcasses, the WA Government has implemented new policies 
regarding the management of dead whales and advising the public of potential associated 
shark hazards. 

Although the data collected through the Shark Monitoring Network and associated OTN, 
AATAMS and DoF demersal scalefish research projects have rapidly and substantially 
improved understanding of white sharks’ movement ecology in south-western Australian 
waters, it is not yet possible to explain or predict the specific patterns of individual shark 
movements.  Based on the numbers of sharks detected, their detection frequencies, locations 
and times of year, these data suggest that the abundance, distribution and movements of white 
sharks in WA waters varies from one year to another. These results have, nonetheless, 
identified periods and locations where white sharks are more or less likely to occur and have 
begun to identify the range of ecological factors that may influence the probability of 
encountering this species off the WA coast. More detailed analyses of these data in relation to 
specific environmental parameters (e.g. ocean temperatures, circulation patterns, etc.), may 
help to further explain the patterns observed in this study.   



54 Fisheries Research Report [Western Australia] No. 273, 2016 

4.2 Evaluation of safety benefits of near real-time tagged shark 
notifications  

A wide range of strategies are currently and have previously been employed around the world 
to mitigate the risks posed by sharks to human safety. These strategies can broadly be 
categorised as: control (generally large-mesh gillnet and drum-line fishing); deterrence (e.g. 
electric, visual, chemical); exclusion (barriers, shark re-location) and monitoring. Because, 
the objectives, target species, geographic location, scale and duration of these programs are 
entirely different, it is difficult to directly compare the effectiveness of specific programs. 
However, the concurrent collection of acoustic telemetry and visual surveillance data in 
Western Australia since 2009, allows for direct comparison of these strategies.   

Twenty satellite-linked Vemco VR4 Global (VR4G) receivers were gradually installed along 
the metropolitan coast (including offshore islands) between January 2009 and May 2010 and 
at key South-western locations between October 2013 and December 2014. Between the 
initial installation of three metropolitan receivers in 2009 and 1 July 2015, the SMN VR4G 
array has detected 3,139 tag transmissions from 73 different sharks on 372 different calendar 
days (500 shark days). These detections resulted in 2,748 notifications of identified and 
confirmed shark hazard events to public safety authorities (931 white, 1082 bronze whaler 
and 735 tiger shark notifications; Table 2). These detections and notifications were estimated 
to have represented 920 individual shark hazard events (see 2.4 for definition) identified by 
VR4G receivers. This number is very similar to the number of shark sightings by helicopter 
surveillance over the same period (n=961).  While this is slightly less than the 1,046 sighting 
reports compiled from WA Police SMS records, the latter may contain duplicates and a large 
proportion of unconfirmed and/or of unidentified species and sizes.   

Detections of known species and sizes of sharks provide a more certain basis for responding 
to potential hazards; plus, VR4G receivers operate 24 hours a day and 365 days a year. Thus, 
at monitored locations, VR4Gs provide the only means of detecting the presence of sharks 
during periods when aerial and shore-based surveillance programs are not operating. 
Similarly, VR4Gs operate during pre-dawn hours, when early morning swimmers and surfers 
may be in the water and when environmental conditions otherwise restrict sub-surface 
visibility, e.g. when the sea-breeze, storms and turbidity occur. A clear example of these 
benefits was during October 2012 when two tagged white sharks (WA018 and WA020) were 
detected 273 times over 5 days by the VR4G receiver at Ocean Reef. As these persistent 
detection sequences occurred in the days before the first spring weekend over which 
temperatures were forecasted to exceed 30⁰C, they resulted in considerable media attention. 
However, despite nearly continual observation of this location by up to three separate news 
media helicopters, no sightings of either shark were reported, even while sharks were within 
range of the receiver, which was clearly visible from the air.  

The standardised electronic data (tag and receiver serial numbers and time) transmitted by the 
VR4G system also provide beneficial options for rapidly notifying over one hundred safety 
officials and the public of verified shark hazard events in near to real-time. Because these 
data allow detections from less-hazardous species and sizes of sharks to be automatically 
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filtered-out by SMN data-management systems, unnecessary reporting of those sharks can be 
avoided. Due to morphological similarities and difficulties in accurately identifying 
individual shark species and sizes (even for experienced fishers and observers), it is 
unsurprising that the majority of sighting reports (aerial and other) are of unidentified species.  
Even though aerial surveillance and public reporting programs are able to detect untagged 
sharks in areas that are not monitored by VR4G receivers, their ability to do so is affected by 
numerous environmental, observer and shark behavioural factors (Nardi and McAuley, 2008; 
Robbins et al., 2011). For example, in New South Wales, fixed-wing and helicopter observers 
respectively detected 12.5% and 17.1% of experimental plywood shark analogues located 
within 250m of flight paths, approximately half those rates at 300m and these shark-shaped 
targets could not be seen at all when they were positioned more than 2.7m below the surface 
(Robbins et al., 2011).  Furthermore, there are multiple examples of reported shark sightings 
that were subsequently confirmed to be dolphins, pinnipeds (seals and sea lions), fish, 
innocuous shark species (particularly hammerheads) and rocks.  

Despite the benefits of acoustic telemetry monitoring it is impossible to tag every shark or 
even the majority of potentially dangerous sharks that may be present off the Western 
Australian coast at any given time. Second, due to receivers’ limited detection range; and the 
logistical constraints of maintaining this equipment in harsh nearshore environments, the 
geographic scale of near real-time acoustic monitoring is limited to individual beach 
locations. Therefore, individually, none of the surveillance methods currently employed in 
WA can reliably identify all shark hazards off the WA coast. Instead, as each method has 
particular strengths and weaknesses, the current mix of monitoring strategies that currently 
contribute to the identification of shark hazards off the Western Australian coast should be 
considered as complementary.  
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5 Conclusions 
The Shark Monitoring Network project has successfully achieved its dual research and public 
safety goals. It has significantly improved the level of understanding of the movements of 
white sharks bronze whalers and tiger sharks in Western Australian waters and developed a 
new standard for deep-water acoustic receiver management. It has also provided hundreds of 
near real-time notifications of verified shark hazard events to enable pre-emptive public 
safety responses. Additionally, social media and interactive web-mapping have provided 
members of the public with a more reliable basis for understanding the likelihood of white 
sharks’ presence off some of the State’s most popular beaches. These originally-unanticipated 
functions have also addressed long-standing community requests for access to the latest 
scientific information about sharks’ local behaviour and movements.  

The acoustic telemetry approaches evaluated in this study have clear limitations in identifying 
shark hazards, as do all other currently-available monitoring methods. The SMN VR4G 
receiver network has, however, realised detection rates that are at least equivalent to other 
surveillance methods employed in WA with the added benefits of 24h year-round operation 
and immediate verification of sharks’ species and sizes. Positive identification of shark 
hazards allows greater certainty in determining appropriate public safety responses and 
eliminates the risk of responding to false alarms. 

Data collected during this study have revealed patterns in the occurrence and movements of 
white sharks that can inform public safety authorities and Government decision-makers about 
how encounter risks vary over time and by location. Given the results show that white sharks 
exhibit rapid, extensive and generally uncoordinated movements around the Western 
Australian coast, sharks’ movement ecology remains a significant impediment to accurately 
predicting when, where and why people might encounter this species.  Although white sharks 
tend to be highly mobile and transient through waters that are usually too far offshore to pose 
a significant risk to most water users, at times, some may come close to shore for periods of a 
few hours to a few weeks and, in some cases, even for a few months. As these patterns are not 
consistent among years it is unlikely that a greater period of data collection will generate an 
overall predictive model. The continued use of tagged sharks as ‘proxies’ for determining 
wider risk levels may prove to be a valuable component of the WA Government’s overall 
shark hazard mitigation program.  
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7 Appendices 

APPENDIX 1.  Tagged bronze whaler and tiger shark detection 
statistics from combined (SMN, OTN and DoF 
demersal scalefish research) acoustic receiver 
arrays. 

 
Figure A1.1.  Bronze whaler sharks’ (A) detection frequency (shark days) and (B) abundance 

(number of sharks) at Metropolitan (SMN and OTN) receivers. 
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Figure A1.2.  Abundance of tagged bronze whaler sharks detected by metropolitan acoustic 

receiver arrays (A) by month, July 2012 – June 2015 (inclusive) and (B) pooled all 
years (left axis) and detection frequency (shark days, right axis).   

 
Figure A1.3.  Individual bronze whaler sharks’ metropolitan detection histories. Circle diameter 

indicates the number of  detection days per month (dm-1):   = less than 10dm-1;        
    = 10-19 dm-1;     = 20-30 dm-1;     = initial tag release date. 
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Figure A1.4.  Tiger sharks’ (A) detection frequency (shark days) and (B) abundance (number of 

sharks) at Metropolitan (SMN and OTN) receivers. 
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Figure A1.5.  Abundance of tagged tiger sharks detected by metropolitan acoustic receiver arrays 

(A) by month, July 2012 – June 2015 (inclusive) and (B) pooled all years (left axis) 
and detection frequency (shark days, right axis).   

 
Figure A1.6.  Individual metropolitan detection histories of tagged tiger sharks. Circle diameter 

indicates  the number of detection days per month (dm-1):    = less than 10dm-1;        
     = 10-19 dm-1;       = 20-30 dm-1;     = initial tag release date. 
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APPENDIX 2.  Notification frequencies and numbers of sharks 
detected by VR4G receivers 

 

 

Figure A2.1.  Relative frequencies of white shark notifications by VR4G receivers in (A) the 
metropolitan, (B) Albany and (C) Geographe Bay-Capes regions. Numerical labels in 
or beside receiver locations indicate receiver number for reference to Table 3. 
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Figure A2.2.  Number of white sharks detected by VR4G receivers in (A) the metropolitan, (B) 
Albany and (C) Geographe Bay-Capes regions. Numerical labels in or beside receiver 
locations indicate receiver number for reference to Table 3. 
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Figure A2.3.  Relative frequencies of bronze whaler shark notifications by VR4G receivers in (A) the 

metropolitan, (B) Albany and (C) Geographe Bay-Capes regions. Numerical labels in 
or beside receiver locations indicate receiver number for reference to Table 3. 
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Figure A2.4.  Number of bronze whaler sharks detected by VR4G receivers in (A) the metropolitan, 

(B) Albany and (C) Geographe Bay-Capes regions, since acoustic tagging of bronze 
whaler sharks commenced in 2012. Numerical labels in or beside receiver locations 
indicate receiver number for reference to Table 3. 
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Figure A2.5.  Relative frequencies of tiger shark notifications by VR4G receivers in (A) the 

metropolitan, (B) Albany and (C) Geographe Bay-Capes regions. Numerical labels in 
or beside receiver locations indicate receiver number for reference to Table 3. 



Fisheries Research Report [Western Australia] No. 273, 2016  67 

 
Figure A2.6.  Number of tiger sharks detected by VR4G receivers in (A) the metropolitan, (B) 

Albany and (C) Geographe Bay-Capes regions, since acoustic tagging of tiger sharks 
commenced in 2012. Numerical labels in or beside receiver locations indicate receiver 
number for reference to Table 3. 
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APPENDIX 3. Bronze whaler and tiger shark detections in south-
western regional arrays 

 

 

Figure A3.1.  Bronze whaler sharks’ detection frequency (no. detections) at the (A) Hamelin Bay; 
(B) Chatham Island and (C) Bald Island arrays and abundance (number of sharks) at 
(D) Hamelin Bay; (E) Chatham Island and (F) Bald Island arrays. Detection symbol 
values given in upper left hand panel are for (A) – (C) and No. sharks symbol values 
given in lower left hand panel are for (D) – (F). NB tagged shark deployments, deaths 
and SA detections are not included in this table. 
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Figure A3.2.  Tiger sharks’ detection frequency (no. detections) at the (A) Hamelin Bay; (B) 
Chatham Island and (C) Bald Island arrays and abundance (number of sharks) at (D) 
Hamelin Bay; (E) Chatham Island and (F) Bald Island arrays. Detection symbol values 
given in upper left hand panel are for (A) – (C) and No. sharks symbol values given in 
lower left hand panel are for (D) – (F). NB tagged shark deployments, deaths and SA 
detections are not included in this table. 
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APPENDIX 4.  Displacement vectors (n=211) of 51 white sharks. 
 

 
Movements shown are for shark IDs (from top left to bottom right panels): WA033, WA036, 
WA042, WA039, WA019, SA118, WA034, WA013, WA018, WA022, WA038, WA027 



Fisheries Research Report [Western Australia] No. 273, 2016  71 

 
 
Movements shown are for shark IDs (from top left to bottom right panels): SA088, WA015, 
WA040, WA028, WA017, SA093, WA026, SA034, SA042, SA007, SA128, SA000 
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Movements shown are for shark IDs (from top left to bottom right panels): SA049, SA054, 
SA055, SA057, SA062, SA064, SA071, SA087, SA099, SA084, SA078, SA081 
 



Fisheries Research Report [Western Australia] No. 273, 2016  73 

 
Movements shown are for shark IDs (from top left to bottom right panels): SA102, SA103, 
SA108, SA109, SA117, SA121, SA125, SA134, SA141, SA133, SA126, SA132 
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Movements shown are for shark IDs (from left to right panels): SA142, SA145, WA020 
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