State-wide survey of boat-based recreational fishing in Western Australia 2013/14

K.L. Ryan, N.G. Hall, E.K. Lai, C.B. Smallwood,

S.M. Taylor, B.S. Wise

Government of Western Australia Department of Fisheries

Fisheries Research Division
Western Australian Fisheries and Marine Research Laboratories
PO Box 20 NORTH BEACH, Western Australia 6920

Correct citation:

Ryan, K.L., Hall, N.G., Lai, E.K., Smallwood, C.B., Taylor, S.M., Wise, B.S. 2015. State-wide survey of boat-based recreational fishing in Western Australia 2013/14. Fisheries Research Report No. 268, Department of Fisheries, Western Australia. 208pp.

Enquiries:

WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920
Tel: +61 892030111
Email: library@fish.wa.gov.au
Website: www.fish.wa.gov.au
ABN: 55689794771

A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au

Department of Fisheries
3rd floor, The Atrium
168-170 St Georges Terrace
PERTH WA 6000
Telephone: (08) 94827333
Facsimile: (08) 94827389
Website: www.fish.wa.gov.au
ABN: 55689794771

Cover image: Entrance Point Boat Ramp, Broome by Claire Smallwood, 2010.
© Department of Fisheries, Western Australia. November 2015.
ISSN: 1035-4549 (Print) ISBN: 978-1-921845-99-4 (Print)
ISSN: 2202-5758 (Online) ISBN: 978-1-877098-00-0 (Online)

Table of Contents

Executive Summary 1
1 Introduction 5
1.1 Importance of recreational fishing in Western Australia 5
1.2 Need for recreational fishing information 5
1.3 Recreational fishing surveys in Australia 6
1.4 Recreational fishing surveys in Western Australia. 7
1.5 State-wide survey of boat-based recreational fishing (2013/14) 8
1.6 Survey Objectives 8
1.7 Report structure 9
2 Survey Design and Analysis 11
2.1 Survey Scope 11
2.1.1 Who was included in the survey? 11
2.1.2 What fishing activities were covered? 11
2.1.3 What species were covered? 12
2.1.4 Survey Area 12
2.1.5 Survey Duration 12
2.1.6 Survey Data Elements 15
2.2 Survey Components 15
2.2.1 Phone Surveys 15
2.2.2 Boat Ramp Surveys 22
2.2.3 Remote Camera Survey 23
2.3 Phone-Diary Survey Expansion, Weighting and Analysis 23
2.4 Uncertainty 27
3 Participation 28
3.1 Regional Development Commission Boundary 28
3.2 Gender and Age. 28
3.3 Bioregions Fished 32
3.4 Avidity 33
4 Fishing Effort 36
4.1 State-wide effort 37
4.2 North Coast 38
4.3 Gascoyne Coast 39
4.4 West Coast 40
4.5 South Coast 41
5 State-wide Estimates of Recreational Catch 42
5.1 Annual catch (total, kept and released numbers) 42
5.2 Release Rates 43
5.3 Reasons for Release 43
6 Estimates of Catch for Key Species 67
6.1 Inland 69
6.1.1 Silver Cobbler (Neoarius midgleyi) 69
6.2 Estuarine 70
6.2.1 Barramundi (Lates calcarifer) 70
6.2.2 Black Bream (Acanthopagrus butcheri) 71
6.2.3 Estuary Cobbler (Cnidoglanis macrocephalus) 72
6.2.4 Yellowtail Flathead (Platycephalus westraliae) 73
6.2.5 Southern Bluespotted Flathead (Platycephalus speculator) 74
6.3 Nearshore 75
6.3.1 Australian Herring (Arripis georgianus) 75
6.3.2 Western Australian Salmon (Arripis truttaceus) 76
6.3.3 Garfish (Hyporhamphus melanochir and Hemiramphus robustus) 77
6.3.4 Sea Mullet (Mugil cephalus) 78
6.3.5 Tailor (Pomatomus saltatrix) 79
6.3.6 Blue Threadfin (Eleutheronema tetradactylum) 80
6.3.7 King Threadfin (Polydactylus macrochir) 81
6.3.8 King George Whiting (Sillaginodes punctata) 82
6.3.9 School Whiting (Sillago bassensis, vittata and schomburgkii) 83
6.3.10 Western Trumpeter Whiting (Sillago burrus). 84
6.3.1 Mangrove Jack (Lutjanus argentimaculatus) 85
6.3.12 Silver Trevally (Pseudocaranx dentex and P. wrighti) 86
6.3.13 Western Butterfish (Pentapodus vitta). 87
6.3.14 Western Yellowfin Bream (Acanthopagrus morrisoni) 88
6.3.15 Western King Wrasse (Coris auricularis) 89
6.3.16 Brownspotted Wrasse (Notolabrus parilus) 90
6.4 Inshore Demersal 91
6.4.1 Baldchin Groper (Choerodon rubescens) 91
6.4.2 Bight Redfish (Centroberyx gerrardi) 92
6.4.3 Blue Morwong (Nemadactylus valenciennesi) 93
6.4.4 Bluespotted Emperor (Lethrinus punctulatus) 94
6.4.5 Brownstripe Snapper (Lutjanus vitta) 95
6.4.6 Goldband Snapper (Pristipomoides multidens). 96
6.4.7 Pink Snapper (Chrysophrys auratus) 97
6.4.8 Rankin Cod (Epinephelus multinotatus) 98
6.4.9 Red Emperor (Lutjanus sebae) 99
6.4.10 Spangled Emperor (Lethrinus nebulosus) 100
6.4.11 West Australian Dhufish (Glaucosoma hebraicum) 101
6.4.12 Barcheek Coral Trout (Plectropomus maculatus) 102
6.4.13 Common Coral Trout (Plectropomus leopardus) 103
6.4.14 Breaksea Cod (Epinephelides armatus) 104
6.4.15 Grass Emperor (Lethrinus laticaudis) 105
6.4.16 Redthroat Emperor (Lethrinus miniatus) 106
6.4.17 Stripey Snapper (Lutjanus carponotatus) 107
6.5 Offshore Demersal 108
6.5.1 Eightbar Grouper (Epinephelus octofasciatus) 108
6.5.2 Hapuku (Polyprion oxygeneios) 109
6.5.3 Ruby Snapper (Etelis carbunculus) 110
6.6 Pelagic 111
6.6.1 Spanish Mackerel (Scomberomorus commerson) 111
6.6.2 Samsonfish (Seriola hippos) 112
6.6.3 Grey Mackerel (Scomberomorus semifasciatus). 113
6.6.4 Blue Mackerel (Scomber australasicus) 114
6.6.5 Yellowtail Scad (Trachurus novaezelandiae) 115
6.6.6 Billfish 116
6.6.7 Southern Bluefin Tuna (Thunnus maccoyii) 117
6.7 Sharks 118
6.7.1 Whaler Sharks (Family Carcharhinidae) 118
6.7.2 Gummy Sharks (Mustelus antarcticus and M. stevensi) 119
6.7.3 Port Jackson Shark (Heterodontus portusjacksoni) 120
6.7.4 Wobbegong (Family Orectolobidae) 121
6.8 Crustaceans 122
6.8.1 Western Rock Lobster (Panulirus cygnus) 122
6.8.2 Mud Crab (Scylla olivacea and S. serrata) 123
6.8.3 Blue Swimmer Crab (Portunus armatus) 124
6.9 Molluses 125
6.9.1 Abalone (Haliotis spp.) 125
6.10 Cephalopods 126
6.10.1 Cuttlefish (Order Sepiidae) 126
6.10.2 Squid (Order Teuthoidea) 127
6.10.3 Octopus (Order Octopodidae) 128
7 Estimates of Catch by Bioregion 129
7.1 North Coast 129
7.2 Gascoyne Coast 129
7.3 West Coast 130
7.4 South Coast 130
8 Estimates of Catch by Zones within Bioregions 151
8.1 Kimberley 151
8.2 Pilbara 151
8.3 Ningaloo 151
8.4 Carnarvon/Shark Bay 152
8.5 Kalbarri 152
8.6 Mid West 153
8.7 Metropolitan 154
8.8 Southern 154
8.9 Albany 154
8.10 Esperance 154
9 Harvest Weights 164
9.1 Nearshore and Estuarine Resources 164
9.2 Demersal Resources 168
9.3 Pelagic Resources 171
9.4 Crab Resources 172
9.5 Summary 173
10 Summary and Future Research 174
10.1 Overview 174
10.2 Validation of Estimates from On-Site Surveys 175
10.3 Improving Accuracy and Precision of Estimates 176
11 Acknowledgements 178
12 References 179
13 Appendices 183
Appendix 1: State-wide and bioregion estimates of average weight of key species from Boat Ramp Surveys in 2013/14 183
Appendix 2: Summary of power boat launches and retrievals at 13 public boat ramps from Remote Camera Surveys in 2013/14. 186

Executive Summary

Based on the outcomes of an international workshop on recreational fishing survey methods in 2010, the Department of Fisheries developed an integrated survey involving several methods to provide a robust and cost-effective approach for obtaining annual estimates of recreational catch by boat-based fishers at both state-wide and bioregional levels. These recreational fishing surveys use the Recreational Fishing from Boat Licence (RFBL) as the basis for sampling and are the most comprehensive ever conducted in Western Australia. The integrated design of the survey allows for the validation of catch and effort estimates across the various methods. This report presents results from the survey conducted in 2013/14 and makes comparisons with the previous state-wide survey conducted from 1 March 2011 to 29 February 2012.

The integrated survey includes three complementary components: (i) off-site phone surveys (encompassing an initial Screening Survey, a 12-month Phone-Diary Survey, followed by postenumeration surveys (including Wash-Up/Attitudinal, Non Intending Fisher and Benchmark Surveys)); (ii) on-site Boat-Ramp surveys (including a state-wide Biological Survey); and (iii) a Remote Camera Survey. For this survey, the Phone-Diary, boat-ramp and Camera Surveys were all conducted in the 12-month period from 1 May 2013 to 30 April 2014. A total of 3,036 fishers completed the Phone-Diary Survey, with 242,953 fish kept or released, and 4,425 fishers were interviewed at boat-ramps, with 10,972 fish measured. Fishing activity reported by fishers during the Phone-Diary Survey included 14,013 fishing events across every day of the survey year and the majority of the state's coastline.

There were significant changes in recreational fishing rules between the two survey periods as a result of a state-wide review of recreational fishing. Key changes introduced on 1 February 2013 included: a mixed bag limit of 16 nearshore and estuarine fish across Western Australia (previously up to 30); a mixed bag limit of five demersal species outside the West Coast Bioregion (previously seven); a mixed bag limit of three large pelagic fish across Western Australia (previously two in the West Coast and South Coast Bioregions and four in the North Coast and Gascoyne Coast Bioregions; and no use of commercial couriers to transport unaccompanied fish (previously recreational fishers could transport up to the possession limit of 20 kg of fillets by courier).

The majority of the estimated state-wide boat-based fishing effort (measured in boat days) during 2013/14 took place during summer (33\%) and autumn (31\%) with lower levels taking place in winter (21%) and spring (15%). There were, however, marked differences in this pattern among bioregions with autumn and winter being the most active seasons in terms of fishing effort in the North Coast (72\%) and Gascoyne Coast (82\%), respectively. In the lower half of the State, summer and autumn were the most active seasons for fishing effort in the West Coast (72%) and South Coast (64%), respectively. At a state-wide level, the majority of the estimated boat-based recreational fishing effort (measured in boat days) during 2013/14 occurred in nearshore ($<20 \mathrm{~m}$ depth) (54%), followed by inshore demersal (26%) and estuarine (16%) habitats. The remainder of fishing effort was offshore demersal (2%) and pelagic (1%). Inland effort (freshwater) was minimal ($<1 \%$) as shore-based fishing activity
was not collected as part of this survey. The majority of the estimated boat-based fishing effort (boat days) was from line fishing (67%), followed by pots (27%), diving (4%) and nets (2\%), but there were differences among bioregions.

Boat-based recreational fishers caught a diverse range of species/taxa during the 12-month survey, including scalefish (195 species/taxa), elasmobranchs (20), crustaceans (nine) and molluscs (six). The estimated total recreational catch of 3.4 million individual aquatic animals included a wide variety of taxa. A similar proportion of the total catch was kept (approx. 1.5 million or 43.5%) and released (approx. 1.9 million or 56.5%). Species/taxa were released for a range of reasons including size or bag limits, catch and release fishing, or personal preference. Approximately 60% of the recreational catch comprised finfish (2.0 million) in comparison to invertebrates (1.4 million). A similar proportion of the catch of finfish (including sharks and rays) (56\%) and invertebrates (57\%) were released.

School Whiting (Sillago bassensis, S. vittata and S. schomburgkii) were the most commonly caught finfish species state-wide with an estimated total recreational catch of 352,115 (276,229 kept and 75,886 released), followed by Australian Herring (Arripis georgianus) with 173,408 (132,155 kept and 41,253 released), Pink Snapper (Chrysophrys auratus) with 148,782 (25,200 kept and 123,582 released), Black Bream (Acanthopagrus butcheri) with $125,629^{*}$ rounded (11,653 kept and 113,977 released), King George Whiting (Sillaginodes punctata) with 102,080* (74,329 kept and 27,750 released), Silver Trevally (Pseudocaranx dentex) with 62,267 (34,948 kept and 27,319 released), Western King Wrasse (Coris auricularis) with $60,159^{*}$ (9,075 kept and 51,083 released), West Australian Dhufish (Glaucosoma hebraicum) with 59,911* (18,907 kept and 41,003 released), Grass Emperor (Lethrinus laticaudis) with 57,814 (21,060 kept and 36,754 released), and Spangled Emperor (Lethrinus nebulosus) with 40,178 (12,364 kept and 27,814 released). The estimated recreational catch for inland, estuarine and nearshore species provided in this report, particularly those harvested with high proportions of shore-based effort, will be underestimated.

High release rates were observed for many of these species, including Black Bream (91\%), Western King Wrasse (85\%), Pink Snapper (83\%), Spangled Emperor (69\%), West Australian Dhufish (68%) and Grass Emperor (64%). Release rates were lower for Silver Trevally (44%), King George Whiting (27\%), Australian Herring (24\%) and School Whiting (22\%). Black Bream releases were attributed to catch and release fishing (47% of the released catch by number) and under-size (37\%), while Western King Wrasse were attributed to other reasons, i.e. unwanted (51%) and too many (31%). The majority of Pink Snapper releases were attributed to under-size (78\%), Spangled Emperor to under-size (65%) and too small (13%), West Australian Dhufish to under-size (71\%) and over-limit (16\%), and Grass Emperor to under-size (75\%). The majority of Silver Trevally releases were attributed to too many (42%) or under-size (32%), King George Whiting to under-size (77%) or too small (16%), Australian Herring to too small (28%), undersize (23%) or too many (23%), and School Whiting to too small (56%) or under-size (28%).

Blue Swimmer Crab (Portunus armatus) was the most commonly caught invertebrate species (and most commonly caught of all species) state-wide with an estimated total recreational catch of 901,458 (285,202 kept and 616,256 released), followed by Western Rock Lobster (Panulirus cygnus) with 341,277 (201,486 kept and 139,791 released), Squid (Order

Teuthoidea) with 78,857 (73,197 kept and 5,660 released), and Mud Crab (Scylla olivacea and S. serrata) with 24,768 ($11,172 \mathrm{kept}$ and 13,596 released). The recreational catch for Western Rock Lobster determined by this survey will be an underestimate of the total recreational catch because harvesting this species requires a Rock Lobster licence and the majority of rock lobster fishers do not hold a RFBL. High release rates were observed for Blue Swimmer Crab (68%) and Mud Crab (55\%) compared with Western Rock Lobster (41%) and Squid (7\%). The majority of Blue Swimmer Crab releases were attributed to under-size (80%) or other (i.e. female or berried) (14%), Mud Crab to under-size (68%) or too small (13%), Squid to too small (64%) or too many (20%), and Western Rock Lobster to under-size (53%) or other (i.e. female or berried) (32%).

The overall estimated level of effort decreased from 439,029 boat days in 2011-12 to 383,107 in 2013/14, and the overall estimated number of hours fished decreased from $1,400,150$ hours in 2011-12 to 1,209,263 in 2013/14. This can be attributed to a decline in effort during March to April 2014 compared with March to April 2012, particularly for line fishing. The catch of some individual species differed between years while others remained constant. Blue swimmer crab was the most commonly caught species by boat-based fishers in both surveys. While the estimated total recreational catch of blue swimmer crab state-wide was consistent between the two surveys; the kept number of crabs decreased from 424,474 (by number) in 2011-12 to 285,202 in 2013/14, but those released increased from 446,341 to 616,256 with release rates increasing from 51 to 68%. The ability to compare catches over time will provide invaluable information on the trends in recreational fishing and provide an indication of the effectiveness of management arrangements. Overall the recreational sector is meeting its current catch targets for demersal species in the West Coast Bioregion. The estimated kept catches for indicator species for the West Coast Demersal Scalefish Resource remained steady with estimated recreational harvests for West Australian Dhufish of $74 \mathrm{t}(95 \%$ confidence intervals from 63-85) and 81 t (70-93), Pink Snapper 33 t (28-38) and 30 t (25-36), and Baldchin Groper $29 \mathrm{t}(23-34)$ to $20 \mathrm{t}(17-24)$, in 2011/12 and 2013/14 respectively.

Although the RFBL was introduced in March 2010, there is no licence covering shore-based recreational fishing. As a result, there are no contemporary estimates of the total boat- and shore-based catch. Future research will investigate approaches to assess shore-based fishing activity. The Department of Fisheries recognises that the survey needs to be flexible enough to accommodate changes in recreational fishing patterns and has therefore developed a collaborative research agreement with Edith Cowan University to investigate some of these issues and methods for improving the accuracy and precision of catch estimates. Additionally, the Department of Fisheries will be working collaboratively with Recfishwest to identify whether additional information might also be collected that could contribute to a better understanding of recreational fishing in Western Australia.

1 Introduction

1.1 Importance of recreational fishing in Western Australia

Recreational fishing is a popular activity in Western Australia, providing significant economic benefits to the State's population. The estimated number of recreational fishers increased from 315,000 in 1989/90 (Lindner and McLeod 1991) to 711,000 in 2014/15 (Department of Fisheries 2014). The participation rate of Western Australian residents is generally above the national average, with an estimated 26.6% of the population (aged 15 years or older) fishing in 1989/90 and 28.5\% (aged 5 years or older) fishing in 2000/01 (Lindner and McLeod 1991, Henry and Lyle 2003). The annual Community Survey of participation rate for recreational fishing in Western Australia has been estimated as 29.6% in 2013/14 and has remained constant for the last five years (Department of Fisheries 2015). The expenditure attributable to recreational fishing in Western Australia has been estimated at $\$ 55-130$ million in $1989 / 90$ and $\$ 338$ million in 2000/01, with an average fisher expenditure of $\$ 415$ and $\$ 706$ pa, respectively (Lindner and McLeod 1991, Henry and Lyle 2003).

Recreational fishers often have important catch-related motives such as fishing to 'obtain a feed' or 'for fresh seafood'. However, there are also significant social benefits from recreational fishing. In 2000/01, the majority of recreational fishers in Western Australia (68%) cited non-catch related motives (e.g. to relax and unwind, to be outdoors, for solitude, or to be with family and friends) as their primary motive for fishing (Henry and Lyle 2003). While most recreational fishers only catch a relatively small number of individuals, collectively the recreational catch can be substantial. In 2000/01, the estimated total recreational harvest in Western Australia included over 10.4 million finfish (by number), 2.3 million crabs, 0.9 million prawns, 0.4 million lobster, and 0.2 million cephalopods by boatand shore-based fishers (Henry and Lyle 2003). In 2011/12, the estimated total catch from boat-based recreational fishers included 2.35 million finfish (by number) and 1.36 million invertebrates (crabs, prawns, lobster, and cephalopods).

1.2 Need for recreational fishing information

An understanding of the level of recreational fishing catch and effort is used to inform a number of fisheries management processes. These include stock assessments, resource allocation between commercial and recreational sectors, resource management (development, implementation and review), and industry development. Effective management of exploited fish stocks requires that suitable estimates of the catch taken by all sectors are available; therefore a high priority has been placed on the collection of data over the past decade for the key recreational fishing sectors in Western Australia (Wise and Fletcher 2013).

Obtaining suitable recreational data in Western Australia is challenging because of the State's large coastline $(20,781 \mathrm{~km})$ and rapid regional development, which is changing the distribution and intensity of recreational fishing activity. In 2013/14, approximately one third of the Western Australian population participated in recreational fishing, with the majority of effort (62.3%) in the West Coast bioregion, centred around the capital city (Perth) and several of the State's large regional centres (Bunbury, Busselton and Geraldton). Recreational fishing
effort in marine waters was lower in the South Coast (19.9\%), Gascoyne Coast (5.5\%) and North Coast bioregions (7.5\%) (Department of Fisheries 2014).

Estimating the total catch taken by recreational fishers can be logistically difficult and is often relatively costly. These difficulties are especially apparent where there is no licence available to use as a sampling frame to easily identify participants. Until recently, in Western Australia recreational fishers only needed a licence to fish for rock lobster, abalone and marron and to participate in freshwater angling and netting. Although the Recreational Fishing from Boat Licence (RFBL) was introduced in March 2010, there is still no licence required for shore-based recreational fishing. As a result, there are no contemporary estimates of the total boat- and shore-based catch. Importantly, in 2000/01, 57% of fishing effort and 54% of the recreational harvest was attributable to shore-based fishers (Henry and Lyle 2003). It is likely that shore-based recreational fishing continues to represent more than 50% of the total recreational effort and harvest.

Recreational fishing licence fees raised $\$ 7$ million in 2013/14 (Department of Fisheries 2014). Funds generated by these licences are invested in a number of initiatives of direct benefit to recreational fishers in Western Australia including contributing funding to recreational fishing surveys. These surveys are providing the necessary harvest estimates and socio-economic information to inform management, policy and research. These surveys also assist the implementation of Integrated Fisheries Management (IFM), which is designed to ensure sustainable fish resources are best shared between competing fishing sectors (Department of Fisheries 2010). To date, explicit resource allocations have been developed for: Western Rock Lobster (5% recreational, 95% commercial); metropolitan Roes’ Abalone (40 t recreational, 36t commercial); and the West Coast Demersal Scalefish Fishery (36% recreational, 64% commercial). The proposed new Fisheries Act will require that all new resource management plans have explicit sectoral allocations (Department of Fisheries 2010).

Long-term monitoring of recreational fishing information will provide a greater understanding of the temporal variability and trends in catch and effort and is essential for the assessment of stocks, resource allocation and management setting within the broad context of Ecologically Sustainable Development and Ecosystem Based Fisheries Management (Department of Fisheries 2012, Fletcher and Santoro 2014).

1.3 Recreational fishing surveys in Australia

The spatial resolution of monitoring recreational fishing needs to be matched to the spatial scale at which fisheries are managed. For many jurisdictions, this requires off-site methods, which are most appropriate for recreational fisheries that cover large geographical areas, with numerous access points to the fishery and many recreational fishing participants (Pollock et al. 1994). The sampling frame used to randomly select recreational fishers for an off-site survey can range from a general population list (e.g. White Pages telephone directories) or specific lists (e.g. list of licensed fishers).

An important consideration for recreational fishing survey design is determining the most appropriate method of contacting fishers (Malvestuto 1996). White Pages sampling requires excess sampling of non-fishing households to locate fishing households, whereas licence
frames have a higher probability of contacting fishers. Additionally, the Electronic White Pages directory is not readily available, and fishing households with unlisted (silent or mobile) numbers or without a telephone are out-of-scope for the survey. Furthermore, the proportion of listed and unlisted residents among the population is unknown. Similarly, the effectiveness of licence databases is determined by exemptions, data availability and noncompliance (Ryan et al. 2009, Hartill et al. 2012).

The National Recreational and Indigenous Fishing Survey (NRFS) provided state-wide estimates of boat- and shore-based recreational fishing across Australia from 1 May 2000 to 30 April 2001 (Henry and Lyle 2003). This survey used telephone interviews of fishers who were randomly selected from White Pages telephone directories. This methodology has been employed in state-wide repeat surveys in: South Australia from 1 November 2007 to 31 October 2008 (Jones 2009) and 1 December 2013 to 30 November 2014 (Conron et al. in prep); Tasmania from 1 December 2007 to 30 November 2008 (Lyle et al. 2009) and 1 November 2012 to 31 October 2013 (Lyle et al. 2014); New South Wales from 1 June 2013 to 31 May 2014 (Murphy et al. in prep); Northern Territory from 1 April 2009 to 31 March 2010 (West et al. 2012); and Queensland from 1 October 2010 to 30 September 2011 (Taylor et al. 2012) and 1 November 2013 to 31 October 2014 (Webley et al. in prep).

Licence databases can also be used as sampling frames for off-site surveys. This approach has been routinely used to estimate the total recreational catch for many specialised, low participation, licensed fisheries (e.g. abalone, rock lobster and scallops) in Australia (e.g. Melville-Smith and Anderton 2000, Currie et al. 2006, de Lestang et al. 2012, Lyle and Tracey 2010, Ryan et al. 2009, Tracey and Lyle 2008). The advantages of sampling from a licence database include: reduced costs for the initial screening survey, high response rates (reducing non-response bias), and the ability to use an optimal survey design where avid fishers were oversampled, which can effectively increase the number of fishing events in the sample and improve precision (Ryan et al. 2009).

1.4 Recreational fishing surveys in Western Australia

This report presents results from a 12-month state-wide survey conducted from 1 May 2013 to 30 April 2014 and makes comparisons with the previous state-wide survey conducted from 1 March 2011 to 29 February 2012. Prior to these surveys, large scale surveys of recreational boat-based fishing consisted of the Western Australian component of the National Recreational and Indigenous Fishing Survey (Henry and Lyle 2003), and boat-ramp surveys at a bioregion level. These include 12-month surveys in the West Coast Bioregion in 1996-97 and 2005-06 (Sumner and Williamson 1999, Sumner et al. 2008); Gascoyne Coast Bioregion in 1998-99 (Sumner et al. 2002) and 2007-08 (Marriott et al. 2012); North Coast Bioregion in 1999-00 (Williamson et al. 2006); and South Coast Bioregion in 2002-03 (Smallwood and Sumner 2007). The introduction of the Recreational Fishing from Boat Licence (RFBL) provided a suitable sampling frame for a comprehensive state-wide survey (both spatially and temporally) to estimate the boat-based recreational catch for all of Western Australia.

To ensure the most appropriate survey and sampling design based on this licence sampling frame was developed, a workshop was held in 2010 to coincide with the introduction of the RFBL with invited technical survey experts, fishery managers and key recreational
stakeholders from most jurisdictions in Australia and New Zealand. The workshop concluded that an integrated system that obtained data from several survey methods, utilising the RFBL as the basis for sampling recreational fishers, would provide the most robust approach for obtaining annual estimates of recreational catch by boat-based fishers at both state-wide and bioregion levels (Wise and Fletcher 2013).

1.5 State-wide survey of boat-based recreational fishing (2013/14)

This integrated survey includes three complementary components: (i) off-site Phone Surveys using the RFBL as a sampling frame, with an initial Screening Survey to recruit respondents for a 12 month longitudinal Phone-Diary Survey, followed by post-enumeration surveys to detect differences among licence holders (Wash-Up/Attitudinal, Non Intending Fisher and Benchmark Surveys); (ii) on-site Boat Ramp Surveys (including a state-wide Biological Survey) to provide biological information; and (iii) a Remote Camera Survey using video cameras mounted at key boat ramps to monitor 24/7 launches and retrievals.

The integrated approach using the RFBL tests the applicability of licence sampling frames to estimate recreational fishing activity for generalised, high participation fisheries; provides estimates at spatial scales appropriate for management; and has several survey components to consider bias. The integrated survey was designed in the second half of 2010, with data collection commencing in December 2010 to pilot test the survey design and questionnaires, and to train interviewers. The first survey was conducted for the 12 month period between 1 March 2011 and 29 February 2012.

The main period of data collection for the current survey occurred for a 12 month period between 1 May 2013 and 30 April 2014, with follow-up post-enumeration surveys conducted in May through to July 2014. The survey period was adjusted toward commencing the PhoneDiary Survey during a period of low fishing activity. This transition will be finalised with the next survey where the phone-diary period commences in September. Validation and analyses of data generated by these surveys commenced in August 2014 with catch estimates generated by this survey presented in this report.

The integrated survey provides state-wide estimates of annual recreational catches along with catch estimates for each bioregion in Western Australia; complete coverage temporally, spatially and for all boat-based recreational fishing methods (including line, pot, net and diving); and estimates of catches from all motorised vessels used in boat-based recreational fishing.

1.6 Survey Objectives

The overall objective of this survey was to generate annual estimates of the total recreational catch and effort (both kept and released) by boat-based recreational fishers at state-wide and bioregion levels. These estimates will complement data obtained routinely from the commercial sector. Furthermore, the implementation of regular, reliable and cost-effective surveys will provide data that will allow more realistic and rigorous assessments of recreational fisheries. Additional objectives include: estimating recreational fishing effort,
reasons for releasing any catch (e.g. size or bag limits, catch and release fishing, or personal preference) and attititudes and awareness.

1.7 Report structure

This report provides state-wide and bioregional catch estimates (by numbers) of each of the main species captured by boat-based recreational fishing, for the recent state-wide survey from 1 May 2013 to 30 April 2014 with comparisons to the previous state-wide survey from 1 March 2011 to 29 February 2012.

Each of the chapters cover specific details or outputs of the surveys, including:
Chapter 2 (Survey Design and Analysis) outlines the survey design and scope for the Phone, Boat Ramp and Camera Surveys. Methods used for the expansion, weighting and analysis of survey data are discussed, along with measures of uncertainty associated with survey estimates.

Chapter 3 (Participation) presents estimates of the total number of RFBL holders that fished between 1 May 2012 to 30 April 2013 (Screening Survey) and 1 May 2013 to 30 April 2014 (Benchmark Survey). Participation estimates have been summarised by age, gender, bioregion fished and avidity.

Chapter 4 (Fishing Effort) presents estimates of the total number of separate days of boatbased fishing from the 12 month Phone-Diary Survey. Fishing effort has been summarised state-wide and for each bioregion by habitat, fishing method, season and month.

Chapter 5 (State-wide Recreational Catch) presents information on recreational catches attributable to boat-based fishing from the 12 month Phone-Diary Survey including estimates of annual catches (total, kept and released numbers), proportions released and release rates for all species.

Chapter 6 (Estimates of Catch for Key Species) summarises estimates of total recreational catches by bioregion, habitat, fishing method and season for key species caught by recreational fishers, including indicator species within the Resource Assessment Framework.

Chapter 7 (Bioregion Fisheries) provides an overview of the species composition of recreational catches in each bioregion with estimates of annual catches (total, kept and released numbers) and proportions released in each bioregion.
Chapter 8 (Small-scale estimates) provides an overview of the species composition of recreational catches for zones within each bioregion with estimates of annual catches (total, kept and released numbers) and proportions released in each zone.

Chapter 9 (Harvest Weights) provides an overview of estimated annual catches (kept by numbers), average weight and estimated harvest (by weight) for the most commonly caught demersal and nearshore species/species groupings (by number) in each bioregion.

Data collected from the integrated state-wide surveys are extensive, and while this report summarises key findings, further analyses and refinement of analysis methods are anticipated to continue over the next 3-5 years. Additional reports will compare recreational catch levels with previous surveys that may have potential management implications, and investigate in
more detail the statistical and sampling elements of this survey and whether further improvements can be made to increase robustness of the estimates.

2 Survey Design and Analysis

2.1 Survey Scope

The Department of Fisheries have conducted two state-wide surveys using the Recreational Fishing from Boat Licence (RFBL) as a sampling frame to contact boat-based recreational fishers. There have been no changes to the scope and survey design apart from a change in the survey period, 1 May 2013 to 30 April 2014 compared with 1 March 2011 to 29 February 2012.

The integrated survey includes three complementary components: (i) off-site Phone Surveys (encompassing an initial Screening Survey, 12 month Phone-Diary Survey, followed by postenumeration Wash-Up/Attitudinal, Non Intending Fisher and Benchmark Surveys); (ii) onsite Boat Ramp Surveys (including a state-wide Biological Survey); and (iii) a Remote Camera Survey. Planning for the integrated State-Wide Recreational Fishing from a Boat Survey required consideration of inherent differences between off-site (e.g. telephone) and on-site (e.g. face-to-face) sampling to ensure consistency (where possible) in the information collected from each survey. Output specifications for the Phone, Boat and Remote Camera Surveys are listed in Table 1 to identify what was considered in-scope for each survey.

2.1.1 Who was included in the survey?

Persons in scope included recreational fishers that held a RFBL, which is required to undertake any general fishing activity from a motorised vessel anywhere in Western Australia. Recreational fishing from a motorised vessel can occur without a RFBL where fishers are covered by a species specific licence (e.g. rock lobster); however, boat-based fishers are required to have a minimum of one RFBL holder on board, and adhere to boat limits according to the number of RFBL holders on board. This survey only includes RFBL holders, and generally, the number of fishers equals the number of RFBL holders. In the Phone Surveys, RFBL holders were defined as fishers that held a RFBL in the 12 month period prior to the survey component, with the additional criterion for the Phone-Diary Survey of an intention to fish from a boat in marine water in the coming 12 months. Commercial fishers were considered in scope if they held a RFBL, but any commercial catches by these fishers were not included. Indigenous fishing was not considered in scope of this survey.

A minimum age criterion of 5 years was applied to all surveys. In the Phone Surveys, parents were a proxy for children aged $5-13$ years and parent permission was required for children aged 14-17 years. No further proxies were allowed, with the exception of nominated individuals within a household where there was language difficulty or illness. No substitution of respondents occurred during the Phone Surveys.

2.1.2 What fishing activities were covered?

Activities in scope were all boat-based recreational fishing methods, including line fishing, diving, netting, potting and spear fishing, as undertaken from a motorised vessel as per recreational fishing rules. Survey participants in the Phone-Diary Survey reported the effort and catch for all fishers on the boat, which were standardised by the number of RFBL holders
on each boat. Charter boat fishing was not included in the Boat Ramp Surveys as this activity is reported through mandatory Tour Operator Returns (Charter Logbooks). However, RFBL holders in the Phone-Diary Survey that were fishing from charter boats reported their individual effort and catch, which was excluded from analysis. Unreported illegal (noncompliant) recreational fishing activity was not included in the survey. The proportion of RFBL holders that fished from the shore was assessed in the Screening and Benchmark Surveys, but shore-based fishing activity was not included in the Phone-Diary Survey.

2.1.3 What species were covered?

Species in scope included any aquatic (animal) species caught by boat-based fishing. This includes both finfish (e.g. scalefish, sharks and rays) and invertebrates (e.g. abalone, cephalopods, crabs, lobsters and prawns). The majority of catches are reported to individual species, but there are some instances where species have been reported in taxonomic groups (e.g. School Whiting includes Southern School Whiting, Western School Whiting and Yellowfin Whiting, King Snapper includes Pristipomoides spp., Whaler Sharks includes Bronze Whaler and Dusky Sharks). Aggregating species at higher-level reporting groups is particularly relevant for species where misidentification can occur, despite attempts to assist fishers in identifying fish. Where species or taxa groups are represented by few records, catches are reported in broad taxonomic categories (e.g. 'Other scalefish'). Species taxonomy follows the Codes for Australian Aquatic Biota (Rees et al. 2012, www.marine.csiro.au/caab/). Consistent with the management of many of the multi-species fisheries in Western Australia and Ecosysten Based Fisheries Management, the results were in some instances also reported at the species suite level.

2.1.4 Survey Area

The geographic scope was fishing activity in Western Australia only. Consistent with the Department of Fisheries bioregional approach to management, the spatial strata for boatbased fishing activity used the four marine bioregions off Western Australia (Figure 1). The Phone Surveys provided state-wide coverage, while the Biological and Camera Surveys provided state-wide coverage, as accessible from the boat ramps in the survey design. Based on Ecosystem Based Fisheries Management policy, each of the bioregions was divided into broad ecological depth based habitats (Department of Fisheries 2014, Fletcher and Santoro 2014). These were pelagic (surface waters across all depths), offshore demersal (greater than 250 m), inshore demersal ($20-250 \mathrm{~m}$), nearshore (to 20 m deep), estuarine (saltwater and 'brackish' to river mouth), and freshwater (river, stream, dams) (Figure 2).

2.1.5 Survey Duration

The 12 month period from 1 May 2013 to 30 April 2014 applied to the Phone-Diary, Boat Ramp and Camera Surveys. The Phone Surveys included an initial Screening Survey conducted prior to the Phone-Diary Survey, and Post-Enumeration Surveys conducted during three months following the Phone-Diary Survey.

Table 1. Output Specifications for each survey component.

Specification	Item	Phone Surveys			Boat Ramp Surveys	Camera Survey
		Screening	Phone-Diary	Benchmark	Biological	
Persons in scope	Residency status	All, including Western Australian residents and interstate visitors			All	n/a
	Age	<5 years excluded			All	n/a
	Sampling frame	RFBL holders May 2012 to Apr 2013	RFBL holders May 2012 to Apr 2013 with 'intention to fish' in WA	RFBL holders May 2013 to Apr 2014	Spatio-temporal frame	
Activities	Sectors	Recreational fishing only (traditional/indigenous fishing excluded)				
	Platform	Boat- and shore-based	Boat-based fishing only	Boat- and shore-based	Boat-based fishing only	
	Boat type	All, including private, hire and charter*			Private and hire fishing (charter excluded)	All
	Methods	All methods including line fishing, diving, netting, potting and spearing				
Species	Species	All aquatic (animal) species				n/a
	Catch	Kept and released			Kept	n/a
Geographic scope	Residency status	Western Australian residents, and interstate visitors				
	Fishing activity	Bioregion, and marine vs freshwater	10×10 nautical mile grids statewide	Bioregion, and marine vs freshwater	10x10 nautical mile grids state-wide (as per boat ramps)	
	Access points for boat fishing	n/a	All, including boat ramps (public and private), moorings and marinas	n/a	Key public boat ramps state-wide	
Temporal scope	Annual coverage	12 months prior to Screening (recall basis)	12 months after Screening (longitudinal survey)	12 months matching the Phone-Diary period (recall basis)	12 months matching the Phone-Diary period	
	Day hours	All			Daylight hours	All
	Survey dates	$\begin{aligned} & \text { Feb to Apr } \\ & 2013 \end{aligned}$	$\begin{aligned} & 1 \text { May } 2013 \\ & \text { to } 30 \text { Apr } \\ & 2014 \end{aligned}$	May to Jul 2014	1 May 2013 to 30 Apr 2014	

[^0]

Figure 1. Map of Western Australian coastline showing major marine bioregions.

Figure 2. Major habitat groups for Western Australian fisheries (Department of Fisheries 2012).

2.1.6 Survey Data Elements

A key difference between off-site and on-site sampling is whether fishing activity is recorded on an event or trip basis. For the Phone-Diary Survey, fishing information was collected on an 'event' basis, where separate events were recorded for changes in location, habitat, target species and/or fishing method. For example, line fishing and diving during a single boat trip would be recorded as separate fishing events. Fishing activity in the Boat Ramp Surveys was recorded on a 'trip' or day basis. Where possible, data elements were standardised between surveys, in terms of question wording and responses (see Ryan et al. 2013). Reference tables for data elements (such as boat ramp, species and fishing method) were also standardised among survey components.

2.2 Survey Components

2.2.1 Phone Surveys

Survey Overview

The Phone Surveys were the main component of the integrated survey. This off-site survey was based on the telephone/diary methodology, which has been developed and proven to provide cost-effective data over large spatial scales (i.e. state-wide and bioregion). Detailed descriptions of the design philosophy and methodology are provided in Lyle et al. (2002) and Henry and Lyle (2003). Key features of this methodology include: (i) tested survey instruments (e.g. Diary Card) to minimise recall bias; and (ii) frequent telephone contact by trained interviewers to collect data at consistent standards to reduce potential bias, explain difficult concepts, counter resistance and ensure confidentiality. The combination of the Diary Card and structured interviews is designed to minimise respondent burden, increase response rates and ensure data quality.

Unlike previous surveys of this kind in Australia, interviews were conducted by ComputerAssisted Telephone Interview (CATI). This allows a cost effective and flexible means of recording questionnaire data as it is entered directly into survey databases during interviews. It also provides an effective system for ensuring data quality as work stations are networked with a supervisor. Electronic survey data is contained within secure computer networks with appropriate management systems. Interviewers were allocated fishers from a variety of Regional Development Commission Boundaries to reduce the potential for interviewer bias between strata. Where possible and practical, the same interviewer maintained repeat contacts with the same diarist. When required, interviewer notes were made available for alternative interviewers on subsequent follow-up calls.

The primary objective of the Phone Surveys were to estimate recreational fishing effort (hours and days fished) and catch (numbers by species, both harvested and released) for a full 12 month period for boat-based recreational fishing at state-wide and bioregion levels. It was anticipated that highest precision would be achieved for key species at annual and state-wide levels, however, estimates with lower precision may be available at finer scale temporal (monthly) and spatial (zone within bioregions) levels.

The Phone Surveys involved a multi-phase survey design (Figure 3), which included: an initial Screening Survey to recruit fishers to the Phone-Diary Survey; a longitudinal PhoneDiary Survey to provide detailed catch and effort information over a 12-month period; and Post-Enumeration Surveys (i.e. Wash Up/Attitudinal, Non-Intending Fisher and Benchmark Surveys). These separate Post-Enumeration Surveys were conducted concurrently at the end of the 12 month Phone-Diary Survey to determine and adjust for exceptions outside the distribution of behaviours covered by the Phone-Diary Survey, particularly new licence holders and non-respondents, and to enquire about opinions of RFBL holders for various fishing-related matters.

Screening Survey

The Screening Survey (Figure 3) aims to collect profiling information (i.e. avidity, previous and intended fishing activity) for a random sample of people that purchased a RFBL and identify RFBL holders that intended to fish from a boat in Western Australia during 2013/14 and were eligible for the Phone-Diary Survey. The Screening Survey was conducted by telephone interview during February to April 2013. The sampling frame for the Screening Survey was obtained from a database of fishers who purchased a RFBL between May 2012 and April 2013 (Figure 4).

Phone-Diary Survey

The Phone-Diary Survey (Figure 3) was conducted from 1 May 2013 to 30 April 2014. The aim of the Phone-Diary Survey was to quantify recreational fishing effort (hours and days fished) and catch (numbers by species, both harvested and released) for a full 12 month period. Other information was also obtained in terms of public ramp usage, fishing method, fishing location, target species and reasons for release. The Phone-Diary Survey was confined to recreational boat fishing in Western Australia, using all fishing methods (such as line fishing, diving, nets, traps and spearfishing). Fishing activity was classified in terms of bioregion, habitat and fishing location as defined by unique location name, latitude and longitude co-ordinates, or 10 by 10 nautical mile grid blocks (Department of Fisheries 2011).

Participants received a Diary Kit containing a Welcome Letter, species identification guides (with clear colour images of common species), Fishing Location Guide and Diary Card. The Diary Card was similar in format to that used previously in other surveys and is designed to be a 'memory jogger' rather than a traditional fishing logbook. Participants were encouraged to use the Diary Card to record key fishing data that could easily be forgotten (e.g. start and finish times, number of fish kept and released) and were contacted regularly by survey interviewers, who were responsible for collecting this information. Participants also received a brief Diary Explanation Interview with the survey interviewer after receiving the Diary Kit.

Species Identification Guides (Department of Fisheries 2015) were developed to help diary participants identify common species, and enhance consistent and accurate species identification. Interviewers were trained in species identification by Research Scientists from the Department of Fisheries, and were provided with relevant taxonomic references (Hutchins and Swainston 1999, Jones and Morgan 2002, Allen 2009, Rome and Newman 2010).

Fishing information was collected by monthly telephone interviews, even for those fishers who indicated that they were unlikely to fish in the subsequent month. More regular telephone interviews were used for the more avid fishers to minimise the potential for recall bias to influence their fishing information. It should be noted that during the PhoneDiary Survey, some participants did not actually fish, despite intending to during the Screening Survey. These fishers 'dropped-out' of the fishery, but this was in the range of expected behaviours for the survey.

Wash-Up/Attitudinal Surveys

The Wash-Up/Attitudinal Survey was conducted with each diarist during May to July 2014 to confirm completion of the survey, assess opinions and attitudes for a range of fisheriesrelated issues, and collect boat-profiling information. Other questions were included to assess diarists' perceptions as to whether they fished "more, less or about the same" amount of time in the 12 month diary period, compared with the prior 12 months. Different WashUp/Attitudinal Surveys were used for participants that fished, or did not fish, during the Phone-Diary Survey (Figure 3). This attitudinal information will be published separately.

Non Intending Fisher Survey

The Non-Intending Fisher Survey (Figure 3) was conducted during May to July 2014 to record the incidence of fishing by RFBL holders sampled in the Screening Survey that were not intending to fish in the next 12 months. These respondents were not eligible for the Phone-Diary Survey, but it was important to identify and account for 'unexpected fishing' that may have occurred during the period. This 'call-back' survey determined the impact of unexpected 'drop-ins' to the fishery.

Benchmark Survey

The Benchmark Survey (Figure 3) was conducted during May to July 2014 to identify the impact of additional 'drop-ins' to the fishery, such as RFBL holders who purchased a new licence in 2013/14 after the initial screening sample was drawn. This survey was essentially a repeat of the Screening Survey, with aims to collect profiling information (i.e. avidity, previous and intended fishing activity) for a random sample of people that purchased a RFBL during the same time period as the Phone-Diary Survey. Therefore, the sampling frame for the Benchmark Survey was obtained from a database of fishers who purchased a RFBL between May 2013 and April 2014 (Figure 5), but excluding RFBL holders that had been selected for the Screening Survey. Most importantly, the Benchmark Survey provided the necessary information for licence holders from the current RFBL population for calibration and expansion of results from the Phone-Diary Survey.

Survey Documentation

The Phone Survey methodology utilises survey instruments, including questionnaires and interviewer manuals, to facilitate the collection/recording of survey data. These were produced following extensive design and testing (Survey Development Working Group 2000). Highly structured questionnaires, with due consideration to question wording, instructions to interviewers and pre-coded answer categories were included in accordance
with a range of standardised interviewing conventions. An equivalent approach was employed for all Phone Survey components in the present study, including thorough training and monitoring of interviewers, and development of a comprehensive interviewer manual.

Figure 3. Survey Components for state-wide Phone Surveys of boat-based recreational fishing in Western Australia 2013/14.

Figure 4. Number of RFBL holders within Regional Development Commission Boundaries from May 2012 to April 2013.

Figure 5. Number of RFBL holders within Regional Development Commission Boundaries from May 2013 to April 2014.

Response Profiles

A summary of the response profiles relating to the Screening, Phone-Diary and Benchmark Surveys is given in Table 3. The majority (67%) of sample loss in the Screening Survey was from disconnected telephone numbers (2.9% of the gross sample) and mobile never on (1.8% of gross sample). Sample loss also occurred where the respondent was not known at the number (0.1% of the gross sample), the respondent was known but no new contact details were available (0.1%), the respondent was away for the survey period (0.7%), fax/modem numbers (0.1%), language difficulties (0.5%), or respondent incapacitated or deceased (0.9%).

The initial Screening Survey conducted prior to the Phone-Diary Survey was based on a sample of 4,880 RFBL holders, of which 96.8% were fully responding (i.e. completed all required interview questions) (Table 3). The 145 non-responding RFBL holders were either non-contacts (3.1% of the net sample) or refusals (0.8% of the net sample). Similarly, 96.7% of RFBL holders fully responded from a sample of 5,398 for the Benchmark Survey at the end of the Phone-Diary Survey. The 167 non-responding RFBL holders were non-contacts (3.7% of the net sample) or refusals (2.3% of the net sample).

The majority of non-response in the Screening and Benchmark Surveys was from noncontacts, despite at least 20 effective calls to each respondent, over a range of day times and days of the week, during the survey period. Refusal rates were low for both surveys, and could be attributable to the use of experienced interviewers and the fact that relevance of the subject matter strongly correlates with response propensity (i.e. an 'interest' in fishing).

There were 3.378 RFBL holders identified as eligible for Phone-Diary Survey (i.e. having an intention to fish from a boat in Western Australia during May 2013 to April 2014). This represented 77% of the fully responding group from the Screening Survey. Of the eligible RFBL holders, $3,304(97.8 \%)$ agreed to participate in the Phone-Diary Survey. Subsequently, 3,036 participants completed the Phone-Diary Survey, representing 92.8% completion rate among uptake, or 90.8% among eligible (Table 3). The 268 participants that failed to complete the Phone-Diary Survey were mainly from lost contacts (through relocation or disconnected numbers) with some refusals.

The majority (58%) of sample loss in the Benchmark Survey was from disconnected telephone numbers (2.1% of the gross sample) and mobile never on (1.8% of gross sample). Sample loss also occurred where the respondent was not known at the number (0.7% of the gross sample), the respondent was known but no new contact details were available (0.6%), or the respondent was away for the survey period (0.8%), fax/modem numbers ($<0.1 \%$), language difficulties (0.1%), or respondent incapacitated or deceased (0.4%).

Response rates were relatively consistent across all sampling strata. The response rates achieved in all components of this study were very high, which provides confidence in overall data quality and minimises the impact of non-response bias.

2.2.2 Boat Ramp Surveys

In 2013/14, state-wide on-site Biological Surveys were completed at key boat ramps from June 2013 to April 2014 to obtain length and weight information that would allow estimates of catch by numbers from the Phone-Diary Survey to be converted to catch by weight. This enables direct comparison of recreational harvest estimates to commercial fishery information, which is routinely recorded as weights. During the Biological Survey, information was collected from 9,600 boat-based recreational fishers, with $>10,000$ fish and other aquatic organisms measured.

The target population included boat-based recreational fishers who launched and retrieved from the 32 boat ramps where staff interviewed fishers. The Biological Survey in 2013/14 was based on a targeted design informed by data collected during the Boat Ramp and Remote Camera Surveys in 2011/12 (Ryan et al. 2013). By targeting key boat ramps at peak times of fishing activity (i.e. season, day type and time of day) the surveys aimed to maximise the collection of biological information. The primary sampling unit was sample day and the secondary sampling unit was fishing party, which could include both RFBL holders and non-licensed fishers (unlicensed fishers are permitted to fish if at least one person on board has a RFBL, provided the total catch of the fishing party is within the bag limit for the RFBL holder, and the boat limit when two or more RFBL holders are on board).

Spatial stratification for the Biological Survey included marine bioregions, regions and zones, within which 32 boat ramps were sampled, including: 9 ramps in the North Coast (4 in the Kimberley region and 5 ramps in the Pilbara region); 4 ramps in the Gascoyne Coast (all in the Ningaloo region); 16 ramps in the West Coast (4 ramps in the North zone, 8 in the Metro zone, 4 ramps in the South zone); and 4 ramps in the South Coast (2 ramps in the Albany region and 2 ramps in the Esperance region).

The temporal stratification of the Biological Survey varied for each bioregion, depending on factors that are known to influence boating activity Table 2). In the West Coast bioregion, the aim was to collect the same number of fish measurements as the previous 2011/12 Biological Survey and, as a result, 1-2 surveys per week were scheduled at each ramp. In all other bioregions, it was aimed to maximise the number of fish measured and surveys were completed up to 5 days per week. In all bioregions, surveys were of approximately 4 hours duration and were confined to daylight hours only.

Prior to the commencement of the surveys in each bioregion, interviewers were provided with training in interview techniques, survey instruments and species identification as well as documentation relating to interviewer guidelines, forms and questionnaires.

Summaries of the state-wide and bioregion estimates of average weight of species during the Boat Ramp Surveys in 2013-14 included the number of weight measurements recorded, average weight (measured in grams where >10 measurements were obtained) and standard error, are given in Appendix 1. Average weight was calculated from data collected using electronic scales recording measurement of whole weight. Fish that were gilled and gutted were not included in this analysis.

Table 2. Temporal stratification in each bioregion and zone.

Bioregion	Zone	Season	Key factor/s determining shift time
North Coast	Kimberley	Mid-June to September	High tide
	Pilbara		High tide
Gascoyne Coast	Ningaloo		Time of day
West Coast	North	Mid-January to April	Time of day
	Metropolitan		Day type and time of day
	Southern		Time of day
South Coast	Albany		Time of day
	Esperance		Time of day

2.2.3 Remote Camera Survey

The Remote Camera Survey monitors recreational boating activity via video cameras mounted at key boat ramps. This will assist in determing levels of boat-based activity between surveys and with the validation of estimates of effort from the Phone-Diary Survey. Information was gathered on the number of launches and retrievals by boat type at 5 minute intervals over 24 -hour periods throughout the same time period as the Phone-Diary Survey. The exact locations of remote video cameras was determined by the available infrastructure at each boat ramp and the logistics of transmitting the information to the Department of Fisheries (Blight and Smallwood 2015). The boat ramps selected for the Phone-Diary comparison were: Broome (Entrance Point) and Dampier in the North Coast; Denham and Monkey Mia in the Gascoyne Coast; Mindarie, Ocean Reef, Hillarys, Leeuwin, Woodman Point and Point Peron in the West Coast; and Albany and Esperance in the South Coast.

Although video cameras are expected to operate continously, outages can occur as a result of technological failures and extreme weather (e.g. power loss and cyclones). Methods have been established to accommodate short-term data loss using an extrapolation procedure to impute the temporal distribution of activity for missing time periods (see Wise and Fletcher 2013). Extended periods of data loss can also occur; e.g. data for the camera at Bandy Creek (Esperance) were not recorded from May to October 2013 while the building where the camera is attached was undergoing renovation. The total activity reported for Bandy Creek, therefore, only represents values for available monthly data over the survey period (i.e. 6 months) rather than estimates of total activity over the full 12 month period. A summary of data loss at each ramp is included in Appendix 2.

Estimates provided in this report are the best that are currently available, but may be revised as a result of refinement of the methods used for analyses. Summaries of the total power boat launches and retrievals during 2013/14, including: the location of the boat ramp; total annual launches and retrievals; total launches and retrievals by month; and hourly launches and retrievals by month are given in Appendix 2.

2.3 Phone-Diary Survey Expansion, Weighting and Analysis

The Phone Surveys design incorporated stratified random sampling with samples divided into homogenous units to reduce sampling variance (Cochran 1977, Pollock et al. 1994, Lohr

2010, Särndal et al. 2003). These spatial strata related to Regional Development Commission Boundaries in Western Australia. The number of samples within each stratum were selected proportionally to the size of the stratum. A single residential stratum applied to interstate RFBL holders ($<2 \%$ of all RFBL holders). Overseas RFBL holders ($<0.02 \%$ of all RFBL holders) were excluded from the Phone Surveys.

Exclusions from the sampling frame occurred before sample selection where currency of address information was invalid or fishers were identified as having multiple licences. All sampling was conducted without replacement using PROC SURVEYSELECT in SAS (SAS 2004).

Data from Phone Surveys that use the White Pages as a sampling frame can be expanded to the total population using profiles from the Australian Bureau of Statistics, based on household structure, age and gender (Jones 2009, Lyle et al. 2009, Taylor et al. 2012, West et al. 2012). However, a different approach is required for surveys that use licence sampling frames, including the RFBL. Analysis of the RFBL database (2012-13 compared with 2013/14) indicates that approximately 25% RFBL holders do not renew their licence (i.e. 'drop-out'), while approximately 25% RFBL holders take up a new licence (i.e. 'drop-in'), each year. The Phone-Diary Survey did not progressively sample and recruit new entrants to the RFBL population during the survey period.

The Benchmark and Non-Intending Fisher Surveys were designed to assist in matching Phone-Diary participants (sampled from the 2012-13 RFBL) to the RFBL population that held a licence during the phone-diary period (2013/14). Calculation of weighting factors requires counter-parting Phone-Logbook participants (based on actual days fished) with Benchmark Survey participants (based on recalled days fished). This process accounts for behavioural differences that result from the dynamic nature of the RFBL population. Counter-parting was based on recall and actual effort collected during the Phone-Diary Survey to account for a likely overestimate of recalled effort in the Benchmark survey. The sample weight (or expansion factor) for a given subsample was determined by the inverse of the fraction it represented in the population, according to the following equation, where $\alpha_{h i}=$ weight for RFBL holder i in stratum $h, N_{h}=$ total number of RFBL holders in stratum $h, n_{h}=$ number of RFBL holders sampled in stratum h.

$$
a_{h i}=\frac{N_{h}}{n_{h}}
$$

The total catch of species in each stratum over the phone-diary period was calculated by multiplying the weighted catch for all participants in each stratum by the number of RFBL holders in each stratum for the relevant RFBL population, as determined by the Benchmark Survey. This approach accounts for: fishers that unexpectedly 'drop-out' from the PhoneDiary Survey (i.e. participants that intended to fish, but did not); fishers that unexpectedly 'drop-in' during the phone-diary period (i.e. respondents in the Screening Survey that did not intend to fish during the phone-diary period, but actually did); and additional 'drop-in' fishers (i.e. fishers who were not eligible for sample selection for the Screening Survey, but purchased a RFBL during the phone-diary period).

Raw data collected from diarists have been initially expanded by the number of RFBL holders in the residential stratum divided by the number of RFBL holders sampled in residential stratum. Final estimates will include adjustment of these weighting factors to account for avidity bias and non-intending fishing. Parameter estimates in this report are based on expanded data, scaled-up to represent the appropriate stratum population. Estimates were determined for participation (by number of RFBL holders), effort (boat days and hours fished) and catch (kept, released and total numbers by species). Estimates of average weight were obtained from Boat Ramp Surveys or Tour Operator Returns. Phone Survey data has been stored in an ACCESS database with analysis of survey estimates using the survey package (Lumley 2004, 2010) in the statistical computing language R (R Development Core Team 2008). Detailed descriptions of the survey and recsurvey packages are given in Lumley (2010) and Lyle et al. (2010) respectively.

Table 3. Sample size and response profile for Screening, Phone-Diary and Benchmark Surveys by stratum.

SCREENING SURVEY	Total RFBL Holders	Initial sample	$\begin{array}{r} \text { Sample } \\ \text { loss } \end{array}$	Net sample	Non- response	$\begin{array}{r} \text { Full } \\ \text { response } \end{array}$	Response rate
Kimberley	3,521	250	21	229	10	219	95.63\%
Pilbara	6,586	250	12	238	8	230	96.64\%
Gascoyne	2,290	250	26	224	13	211	94.20\%
Mid West	7,074	250	20	230	4	226	98.26\%
Wheat Belt	5,026	250	15	235	10	225	95.74\%
Metro	65,337	2,000	144	1,856	62	1,794	96.66\%
Peel	11,900	380	22	358	10	348	97.21\%
South West	17,108	500	31	469	14	455	97.01\%
Great Sth'n	4,812	250	18	232	6	226	97.41\%
Gold fields	2,320	250	24	226	6	220	97.35\%
Interstate	2,836	250	11	239	2	237	99.16\%
TOTAL	128,810	4,880	344	4,536	145	4,391	96.80\%
PHONEDIARY SURVEY	Full response at screening	Eligible for the Diary Survey	Diary Uptake	Diary Survey Completed	Uptake rate among eligible (\%)	Completion rate among uptake (\%)	Completion rate among eligible (\%)
Kimberley	219	173	167	153	96.53\%	91.62\%	88.44\%
Pilbara	230	176	175	162	99.43\%	92.57\%	92.05\%
Gascoyne	211	170	165	153	97.06\%	92.73\%	90.00\%
Mid West	226	173	169	157	97.69\%	92.90\%	90.75\%
Wheatbelt	225	170	166	160	97.65\%	96.39\%	94.12\%
Metro	1,794	1,470	1,436	1,326	97.69\%	92.34\%	90.20\%
Peel	348	270	263	241	97.41\%	91.63\%	89.26\%
South West	455	369	366	337	99.19\%	92.08\%	91.33\%
Great Sth'n	226	167	164	161	98.20\%	98.17\%	96.41\%
Goldfields	220	161	156	144	96.89\%	92.31\%	89.44\%
Interstate	237	79	77	42	97.47\%	54.55\%	53.16\%
TOTAL	4,391	3,378	3,304	3,036	97.81\%	92.80\%	90.76\%

BENCHMARK SURVEY	Total RFBL Holders	Initial sample	Sample loss	Net sample	Non- response	Full response	Response rate
Kimberley	3,521	280	21	259	21	238	91.89%
Pilbara	6,850	280	24	256	13	243	94.92%
Gascoyne	2,274	280	31	249	10	239	95.98%
Mid West	7,356	290	30	260	9	251	96.54%
Wheatbelt	5,651	280	15	265	5	260	98.11%
Metro	66,784	2,150	124	2,025	56	1,970	97.28%
Peel	13,149	424	27	397	19	378	95.21%
South West	17,835	574	40	534	18	516	96.63%
Great Sth'n	5,281	280	11	269	5	264	98.14%
Goldfields	2,347	280	13	267	8	259	97.00%
Interstate	3,126	280	21	259	3	256	98.84%
TOTAL	$\mathbf{1 3 4 , 1 7 4}$	$\mathbf{5 , 3 9 8}$	$\mathbf{3 5 7}$	$\mathbf{5 , 0 4 0}$	$\mathbf{1 6 7}$	$\mathbf{4 , 8 7 4}$	$\mathbf{9 6 . 7 1 \%}$

2.4 Uncertainty

The integrated surveys provide validated catch estimates in a cost effective manner, however, they are still surveys, and as such, cannot be expected to provide the level of precision that would be available from a total census. As such, it is important to determine the level of uncertainty associated with these survey estimates. Two measures of uncertainty have been used in this report:
i. The Standard Error indicates the difference between the estimate (obtained from a sample) and the true value (of the population). The Standard Error of the estimate is calculated from the standard deviation of the sample divided by the sample size.
ii. The Relative Standard Error indicates the uncertainty expressed as a percentage of the estimate, and allows comparisons between estimates because it accounts for differences in magnitude of the estimates. The Relative Standard Error of the estimate is calculated from the standard error of the sample divided by the estimate.
iii. Confidence Intervals represent the range in which the population value is likely to occur as determined by the estimate and associated standard error. The 95% confidence intervals are equal to the estimate plus or minus 1.96 multiplied by the standard error. This indicates the chance of the population value occurring within approximately two standard errors of the estimate.

Interpretation of survey estimates requires consideration of both the magnitude of the Relative Standard Error and the number of participants that contributed to the estimate. Where required, estimates in tables have been highlighted to identify Relative Standard Error greater than 40% and sample sizes with fewer than 30 fishers (Jones 2009, Taylor et al. 2012, West et al. 2012, Ryan et al. 2013, Lyle et al. 2014). For estimates of catch, the sample size refers to the number of fishers reporting a catch of that species. These cautions indicate that estimates may not be precise or representative.

It should be noted that the precision achieved for any estimate is dependent on the sample size. Consequently, low precision occurs for species caught rarely or infrequently by the majority of recreational fishers, or when disaggregating data to small spatial and temporal scales. The ability to improve precision in these situations depends on the ability to increase the sample size. Therefore, there is a recognised trade-off between survey costs and precision which necessitates balancing the needs for desired precision with the available funding before commencing surveys. For the state-wide survey of boat-based recreational fishing, the desired outcome was to achieve precise estimates for indicator species at state-wide and bioregional levels. It was acknowledged that precise estimates for less common species, or any species at small spatial scales, might not always be achieved for the given sample size.

3 Participation

This section presents results from the Screening and Benchmark Surveys. These cross sectional, recall surveys were based on respondents that held a Recreational Fishing from Boat Licence (RFBL) between 1 May 2012 to 30 April 2013 (Screening Survey) and 1 May 2013 to 30 April 2014 (Benchmark Survey). These results are highly comparable to those from the previous state-wide survey conducted in 2011/12 (Ryan et al. 2013); there have been minimal changes in fisher profiles. All estimates include uncertainty and all tables provide associated standard errors, although these are not routinely cited in report text. The tables also provide an indication of whether the estimates are considered to be robust (i.e. sample size >30 and relative standard error is <0.40).

3.1 Regional Development Commission Boundary

From the population of 128,810 recreational fishers that held a RFBL in 2012-13, an estimated 104,823 (81%) RFBL holders fished at least once, and an estimated 23,987 (19\%) RFBL holders did not fish in the 12 months prior to May 2013. The population of 134,174 recreational fishers that held a RFBL in 2013/14 included an estimated 98,038 (73\%) RFBL holders that fished at least once, and an estimated 36,101 (27\%) RFBL holders did not fish in the 12 months prior to May 2014.

Despite the decrease in RFBL holders that fished from 2012-13 to 2013/14, the proportions of RFBL holders that fished from each Regional Development Commission Boundary were similar for the 12 months prior to March 2011, March 2012, May 2013 and May 2014. The majority of RFBL holders resided in the Perth Metropolitan Regional Development Commission Boundary (50.9% in 2012-13 and 49.7% in $2013 / 14$). The next highest proportion was observed by residents in the South West (13.6% in 2012-13 and 13.5% in $2013 / 14)$ and Peel $(9.4 \%$ in 2012-13 and 9.2% in 2013/14) Regional Development Commission Boundary (Figure 6).

Smaller proportions of RFBL holders were observed in rural stratum: Pilbara (5.3\% in 201213 and 5.8% in 2013/14), Mid West (5.4% in 2012-13 and 5.6% in 2013/14), Great Southern (3.5% in 2012-13 and 4.0% in 2013/14), Wheatbelt (3.6% in 2012-13 and 3.9% in 2013/14), Kimberley (2.7% in 2012-13 and 2.8% in 2013/14), Gascoyne (1.9% in both 2012-13 and 2013/14), and Goldfields-Esperance (1.7% in both $2012-13$ and 2013/14); and Interstate (2.1% in both 2012-13 and 1.6% in 2013/14) (Figure 6). However, comparisons of these estimates with general population estimates are likely to reveal the proportions of RFBL holders in each rural RCB actually represent high participation rates among the general population.

3.2 Gender and Age

Males accounted for the majority of RFBL holders that fished at least once in the 12 months prior to May 2013 (85.6% of all RFBL holders in 2012-13) and the 12 months prior to May $2014(85.0 \%)$. Females accounted for 14.4% of RFBL holders in 2012-13 and 15.0% in 2013/14.

In both surveys, highest numbers of RFBL holders that fished were the: 45 to 59 year age group (32.1% in $2012-13$ and 32.4% in $2013 / 14$) and the 30 to 44 year age group (28.8% in 2012-13 and 27.9% in 2013/14). The 15 to 29 year age group accounted for 14.2% in 201213 and 14.0% in $2013 / 14$. The 60 to 74 year age group accounted for 18.6% of all RFBL holders that fished in 2012-13 and 19.2% in 2013/14. The lowest numbers of RFBL holders that fished were the: 5 to 14 year age group $(4.2 \%$ in $2012-13$ and 4.2% in 2013/14) and 75 year or older group (2.0% in 2012-13 and 2.3% in 2013/14).

Similar trends were observed in the numbers of female and male RFBL holders that fished at least once in Western Australia for the 12 months prior to March 2011, March 2012, May 2013 and May 2014 by age group (Figure 7).

Figure 6. Estimated number of RFBL holders aged five years and older who fished recreationally in Western Australia in the 12 months prior to March 2011 (from Screening Survey 2011/12), March 2012 (from Benchmark Survey 2011/12), May 2013 (from Screening Survey 2013/14) and May 2014 (from Benchmark Survey 2013/14) by Regional Development Commission Boundary.

Figure 7. Estimated number of RFBL holders aged five years and older who fished recreationally in Western Australia in the 12 months prior to March 2011 (from Screening Survey 2011/12), March 2012 (from Benchmark Survey 2011/12), May 2013 (from Screening Survey 2013/14) and May 2014 (from Benchmark Survey 2013/14) by age group and gender.

3.3 Bioregions Fished

Recreational fishers that held a RFBL were most likely to fish in the marine bioregion closest to their home residence. Residents from the Kimberley and Pilbara were most likely to fish in the North Coast (Figure 8). Residents from the Gascoyne were most likely to fish in the Gascoyne Coast. Residents from the Mid West, Wheatbelt, Perth Metropolitan, Peel and South West were most likely to fish in the West Coast. Residents from the Great Southern and Goldfields-Esperance were most likely to fish in the South Coast. Interstate residents fished in all marine bioregions, but more than half of their fishing was in the North and Gascoyne Coasts. Despite the fact that most fishers tend to fish locally, many travel throughout the state. For example, residents from the Mid West, Metro and Peel fished in the South Coast bioregion, and residents from the Kimberley, Pilbara and Gascoyne fished in the West Coast bioregion.

Figure 8. Percentage of RFBL holders aged five years or older that fished in each bioregion in the 12 months prior to March 2011 (above left; from Screening Survey 2011/12) and March 2012 (below left; from Benchmark Survey 2011/12), May 2013 (above right; from Screening Survey 2013/14) and May 2014 (below right; from Benchmark Survey 2013/14) by Regional Development Commission Boundary.

3.4 Avidity

The number of days fished (by recall) in the 12 months prior to each survey is a measure of the fishing avidity. On average, RFBL holders were equally likely to recall fishing 15 days or more (35 to 37%) or 5 to 14 days (36 to 38%). Lower proportions of RFBL holders (25 to 29%) recall fishing less than 5 days during each 12 month period. Similar trends were observed in the number of days fished (by recall) in the 12 months prior to March 2011, March 2012, May 2013 and May 2014 by bioregion and home residence of the RFBL holder.

Figure 9. Percentage of recalled days fished (in avidity classes) by RFBL holders aged five years or older in the 12 months prior to March 2011 (above left; from Screening Survey 2011/12) and March 2012 (below left; from Benchmark Survey 2011/12), May 2013 (above right; from Screening Survey 2013/14) and May 2014 (below right; from Benchmark Survey 2013/14) by Regional Development Commission Boundary.

Residents from the Kimberley, Pilbara and Gascoyne were most likely (approximately 50% or higher) to fish 15 days or more (Figure 9). Residents from the Mid West, Wheatbelt, Perth

Metropolitan, Peel, South West, Great Southern and Goldfields-Esperance were most likely (approximately $34-40 \%$) to fish 5 to 14 days. Interstate residents were most likely to fish 5 to 14 days in the 12 months prior to March 2011 and May 2013 and less than 5 days in the 12 months prior to March 2012 and May 2014.

RFBL holders that fished in the North Coast were most likely to fish 15 days or more in 2010-11 (44\%), 2011/12 (40\%), 2012-13 (44\%) and 2013/14 (42\%) (Figure 10). RFBL holders that fished in the Gascoyne Coast were most likely to fish 5 to 14 days in 2010-11 (43\%), 2011/12 (39\%), 2012-13 (41\%) and 2013/14 (43\%). RFBL holders that fished in the West Coast were most likely to fish 5 to 14 days in 2010-11 (38\%), 2011/12 (37\%), 2012-13 (38\%) and 2013/14 (35\%). RFBL holders that fished in the South Coast were most likely to fish 15 days or more in 2010-11 (43\%) and 2012-13 (44\%) and 5 to 14 days in 2011/12 (40\%) and 2013/14 (38\%).

Figure 10. Percentage of days fished (in avidity classes) by RFBL holders aged five years or older in the 12 months prior to March 2011 (above left; from Screening Survey 2011/12) and March 2012 (below left; from Benchmark Survey 2011/12), May 2013 (above right; from Screening Survey 2013/14) and May 2014 (below right; from Benchmark Survey 2013/14) by bioregion fished.

4 Fishing Effort

This section presents estimates of fishing effort from the Phone-Diary Survey. The 12 month longitudinal survey was based on participants that held a RFBL between 1 May 2012 and 30 April 2013, and were likely to fish from a boat in saltwater between 1 May 2013 and 30 April 2014 (Phone-Diary Survey). Fishing effort has been summarised by habitat, fishing method and month, state-wide (Figure 11) and for each bioregion: North Coast (Figure 12), Gascoyne Coast (Figure 13), West Coast (Figure 14) and South Coast (Figure 15). Estimates from the previous Phone-Diary Survey from March 2011 to February 2012 have been included in each figure.

Estimated measures of effort include: boat days (separate days in which fishing occurred on a 'boat party' basis, regardless of the number of fishers or RFBL holders on board); the number of fishing events, which accounts for multiple events during a boat day (i.e. events where fishing method or location changed during the boat day); and hours fished (from start to end of fishing excluding break time).

There was an estimated 383,107 boat days during the period 1 May 2013 to 30 April 2014, with 401,730 separate fishing events (Table 4). Fishers can undertake more than one fishing event per day, with an average of 1.05 events per fisher day state-wide. The estimated total time spent boatbased recreational fishing in Western Australia during 2013/14 was 1,209,263 hours, with approximately two thirds of the state-wide estimated total effort (in boat days, fishing events and hours fished) reported from the West Coast bioregion. The distribution of fishing effort reported in boat days, fishing events and hours fished was broadly consistent between survey years and bioregions.

All estimates include uncertainty and all tables and figures provide associated standard errors, although these are not routinely cited in report text. The tables also provide an indication of whether the estimates are considered to be robust (i.e. sample size >30 and relative standard error is $<0.40 \%$).

Table 4. Annual fishing effort, expressed as boat days, fishing events and hours fished, for boat-based recreational fishers in Western Australia during 2011/12 and 2013/14 (se = standard error).

Bioregion	Boat Days	se	Fishing Events	se	Hours Fished	se
$\mathbf{2 0 1 1 / 1 2}$						
North Coast	47,721	3,778	51,175	4,306	187,112	14,105
Gascoyne Coast	58,123	3,672	61,616	3,895	253,930	17,245
West Coast	293,112	10,688	317,543	11,972	820,693	31,111
South Coast	40,073	3,354	41,897	3,556	136,771	12,505
State-wide Total	$\mathbf{4 3 9 , 0 2 9}$	$\mathbf{1 1 , 1 6 0}$	$\mathbf{4 7 2 , 2 3 2}$	$\mathbf{1 2 , 5 2 1}$	$\mathbf{1 , 4 0 0 , 1 5 0}$	$\mathbf{4 1 , 7 0 0}$
2013/14						
North Coast	45,604	3,603	47,836	3,757	188,744	15,536
Gascoyne Coast	53,832	3,603	56,334	3,849	211,967	15,671
West Coast	249,719	10,563	267,664	11,561	716,722	31,145
South Coast	28,277	2,323	29,831	2,497	91,640	7,447
State-wide Total	$\mathbf{3 8 3 , 1 0 7}$	$\mathbf{1 2 , 3 8 5}$	$\mathbf{4 0 1 , 7 3 0}$	$\mathbf{1 3 , 1 9 7}$	$\mathbf{1 , 2 0 9 , 2 6 3}$	$\mathbf{4 0 , 2 7 9}$

4.1 State-wide effort

At a state-wide level, the majority of boat-based recreational fishing effort (boat days) during 1 May 2013 to 30 April 2014 occurred in nearshore habitat (54\%), followed by inshore demersal (26%) and estuary (16%), with lower proportions of fishing effort in offshore demersal (2%), pelagic (2%) and freshwater ($<1 \%$) habitats (Figure 11a). The majority of boat-based recreational fishing effort occurred in the West Coast (66\%) (Figure 11b). The remainder of fishing effort was relatively equal among the North Coast (12\%), Gascoyne Coast (14%) and South Coast (8%). The majority of boat-based fishing effort was attributed to line fishing (67%) and pots (27%), with lower proportions of fishing effort from nets (2%), diving (4%) and other ($<1 \%$) (Figure 11c). The majority of boat-based fishing effort occurred during summer (33\%) and autumn (31\%). Fishing effort was highest in January 2014 (13\%) and lowest in September 2013 (3\%) (Figure 11d). State-wide fishing effort by habitat and method was consistent between surveys. State-wide fishing effort by month was also consistent between surveys, except for February to April, which were higher in 2011/12 compared with 2013/14.

Figure 11. Boat-based recreational fishing effort (boat days x 1000) in Western Australia during 2011/12 (grey bars) and 2013/14 (white bars); a) effort by habitat; b) map of the proportion (\%, 13-14 only) of the effort by fishing bioregion; c) effort by fishing method; and d) effort by month.

4.2 North Coast

The majority of boat-based fishing effort (boat days) during 1 May 2013 to 30 April 2014 in the North Coast occurred in nearshore habitat (57\%), followed by inshore demersal (24\%) and estuary (13%), with lower proportions of fishing effort in offshore demersal (2%), pelagic (2%) and freshwater (2%) habitats (Figure 12a). The majority of boat-based fishing effort was attributed to line fishing (83\%), with lower proportions of fishing effort from pots (13%), diving (3%), nets (1%) and other ($<1 \%$) (Figure 12b). The majority of boat-based fishing effort occurred during autumn (30\%) and winter (42\%). In 2013/14, fishing effort was highest in July 2013 (18\%) and lowest in January 2014 (3\%) (Figure 12c). The distribution of fishing effort in the North Coast by habitat, method and month was consistent between surveys.

Figure 12. Boat-based recreational fishing effort (boat days x 1000) in the North Coast during 2011/12 (grey bars) and 2013/14 (white bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

4.3 Gascoyne Coast

The majority of boat-based fishing effort (boat days) during 1 May 2013 to 30 April 2014 in the Gascoyne Coast occurred in nearshore (52%) and inshore demersal (41%) habitat, with lower proportions of fishing effort in offshore demersal (4\%), pelagic (2\%), estuary (1\%) and freshwater ($<1 \%$) habitats (Figure 13a). The majority of boat-based fishing effort was attributed to line fishing (95%), with lower proportions of fishing effort from pots (2%), diving (2%), nets (1%) and other ($<1 \%$) (Figure 13b). The majority of boat-based fishing effort occurred during autumn (43\%) and winter (39\%). In 2013/14, fishing effort was highest in April 2014 (20\%) and lowest in February 2014 ($<1 \%$) (Figure 13c). The distribution of fishing effort in the Gascoyne Coast by habitat, method and month was consistent between surveys.

Figure 13. Boat-based recreational fishing effort (boat days x 1000) in the Gascoyne Coast during 2011/12 (grey bars) and 2013/14 (white bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

4.4 West Coast

The majority of boat-based fishing effort (boat days) during 1 May 2013 to 30 April 2014 in the West Coast occurred in nearshore habitat (57\%), followed by inshore demersal (23\%) and estuary (17%), with lower proportions of fishing effort in offshore demersal (2%), pelagic $(<1 \%)$ and freshwater ($<1 \%$) habitats (Figure 14a). The majority of boat-based fishing effort was attributed to line fishing (56%) and pots (37%), with lower proportions of fishing effort from diving (5%), nets (2%) and other ($<1 \%$) (Figure 14b). The majority of boat-based fishing effort occurred during summer (42\%) and autumn (29\%). In 2013/14, fishing effort was highest in January 2014 (17\%) and lowest in September 2013 (2\%) (Figure 14c). The distribution of fishing effort in the West Coast by habitat, method and month was generally consistent between surveys, except effort by line fishing and effort in February to April, which were higher in 2011/12 compared with 2013/14.

Figure 14. Boat-based recreational fishing effort (boat days $\times 1000$) in the West Coast during 2011/12 (grey bars) and 2013/14 (white bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

4.5 South Coast

The majority of boat-based fishing effort (boat days) during 1 May 2013 to 30 April 2014 in the South Coast occurred in nearshore habitat (54\%), followed by inshore demersal (24\%) and estuary (17%), with lower proportions of fishing effort in offshore demersal (2%), pelagic (1%) and freshwater (2%) habitats (Figure 15a). The majority of boat-based fishing effort was attributed to line fishing (92%), with lower proportions of fishing effort from pots (6%), diving (1%), nets (1%) and other ($<1 \%$) (Figure 15b). The majority of boat-based fishing effort occurred during summer (37\%) and autumn (27\%). In 2013/14, fishing effort was highest in January 2014 (15\%) and lowest in September 2013 (3\% each) (Figure 15c). The distribution of fishing effort in the South Coast by habitat, method and month was generally consistent between surveys, except effort by line fishing and effort in February to April were higher in 2011/12 compared with 2013/14, and this difference in fishing effort extended across inshore demersal, nearshore and estuary habitats.

Figure 15. Boat-based recreational fishing effort (boat days $\times 1000$) in the South Coast during 2011/12 (grey bars) and 2013/14 (white bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

5 State-wide Estimates of Recreational Catch

This section presents estimates of recreational catch (kept, released and total in numbers) from the Phone-Diary Survey. This 12 month longitudinal survey was based on respondents that held a Recreational Fishing from Boat Licence (RFBL) between 1 May 2012 and 30 April 2013, and were likely to fish from a boat in saltwater between 1 May 2013 and 30 April 2014 (Phone-Diary Survey). All estimates include uncertainty and all tables and figures provide associated standard errors, although these are not routinely cited in report text. The tables also provide an indication of whether the estimates are considered to be robust (i.e. sample size >30 and relative standard error is <0.40).

Raw data collected from diarists have been expanded to population estimates based on the total number of RFBL holders divided by the number of RFBL holders sampled for each residential stratum. Final estimates will include adjustment of these weighting factors to account for avidity bias and non-intending fishing (see section on Future Research). The estimates (and errors) in the following section may be revised on this basis. Additionally, the shore-based recreational catch has not been assessed in this report. Shore-based fishers and boat-based fishers that intended to fish only in freshwater were out of scope for the PhoneDiary Survey. The catch estimates for inland, estuarine and nearshore species provided in this report, particularly those harvested with high proportions of shore-based effort, will be underestimated. Additionally, catch estimates for Western Rock Lobster, which can be harvested by fishers with only a Rock Lobster licence, will also be underestimated.

5.1 Annual catch (total, kept and released numbers)

The estimated annual catch (total, kept and released numbers) and proportion released during 2013/14 by RFBL holders aged five years or older is given in Table 5. Boat-based recreational fishers caught a diverse range of species/taxa during the 12 -month survey, including scalefish (195 species/taxa), elasmobranchs (20), crustaceans (nine) and molluscs (six). A total of 3.4 million individual species/taxa were caught. A similar proportion of the catch was either kept (approx. 1.5 million or 43.5%) or released (approx. 1.9 million or 56.5%). Approximately 70% of the recreational catch comprised finfish (2.0 million) in comparison to invertebrates (1.4 million). A similar proportion of finfish (56\%) and invertebrates (57%) were released.

School Whiting (Sillago bassensis, S. vittata and S. schomburgkii) was the most commonly caught finfish species state-wide with (352,115, or 17% of the finfish catch), followed by Australian Herring (Arripis georgianus) (173,408 or 9\%), Pink Snapper (Chrysophrys auratus) $(148,782$ or 7%), Black Bream (Acanthopagrus butcheri) $(125,629$ or $6 \%)$, King George Whiting (Sillaginodes punctata) (102,080 or 5\%), Silver Trevally (Pseudocaranx dentex) (62,267 or 3%), Western King Wrasse (Coris auricularis) (60,159 or 3%), West Australian Dhufish (Glaucosoma hebraicum) (59,911 or 3\%), Grass Emperor (Lethrinus nebulosus) (57,814 or 3\%) and Spangled Emperor (Lethrinus laticaudis) (40,178 or 2\%). High release rates were observed for many of these species, including Pink Snapper (83\%), Black Bream (91\%), Silver Trevally (44\%), Western King Wrasse (85\%), West Australian

Dhufish (68\%), Grass Emperor (64\%) and Spangled Emperor (69\%). Release rates were lower for School Whiting (22\%), Australian Herring (24\%) and King George Whiting (27\%).

Blue Swimmer Crab (Portunus armatus) was the most commonly caught invertebrate species (901,458 kept or released state-wide by number, or 66% of the invertebrate catch), followed by Western Rock Lobster (Panulirus cygnus) (341,277 or 25%), Squid (Order Teuthoidea) (78,857 or 6\%) and Mud Crab (Scylla olivacea and S serrata) (24,768 or 2\%). High release rates were observed for Blue Swimmer Crab (68\%), Western Rock Lobster (41\%) and Mud Crab (55\%) compared with Squid (7\%).

5.2 Release Rates

A summary of release rates for species released by fishers during 2013/14 by RFBL holders aged five years or older is given Table 6. Lowest release rates were observed for Hapuku (0\%), Prawn (0\%), Abalone (3\%), Yelloweye Mullet (4\%), Squid (5\%), Wahoo (6\%), Robust Garfish (7\%), Western Blue Groper (7\%), Goldband Snapper (10\%), Tropical Lobster (10\%), Robinson's Seabream (13\%), Sand Bass (13\%), Sea Mullet (14\%), Australian Herring (15\%), Blue Morwong (15\%), Harlequin Fish (17\%) and Southern Garfish (18\%). Highest release rates were observed for Rainbow Runner (90\%), Blue-Eye Trevalla (94\%), Western Sooty Grunter (95\%), Billfish (96\%), Longtom (96\%), Eeltail Catfishes (98\%), Western Shovelnose Ray (99\%), Western Striped Grunter (100\%), Sawshark (100\%) and Port Jackson Shark (100%). High release rates were also observed for poisonous species including Blowfish (98%), Silver Toadfish (91%) and Weeping Toadfish (100%), and protected species including Greynurse Shark (100\%), Humphead Maori Wrasse (97\%), Potato Rockcod (77\%) and Queensland Grouper (95%).

5.3 Reasons for Release

A summary of the proportions for common reasons for release during 2013/14 is given Table 7. The most common reasons for release were: Too Small (personal preference), Undersize (below legal limit), Too Many (personal preference), Over Limit (Above legal bag limit), Catch Release (sport fishing) and Other, which includes protected females and species.
"Too Small" includes catches that are too small in terms of personal preference, not related to regulations. This reason for release occurred in proportions of 35% or more for Squid, Chinaman Rockcod, Harlequin Fish, Northern Sand Flathead, Snook, Bight Redfish, Crimson Snapper, School Whiting, Port Jackson Shark and Southern Garfish,.
"Under Size" includes catches below the legal size limit. This reason for release occurred in proportions of 50% or more for Western Rock Lobster, Blue Swimmer Crab, Mud Crab, Black Bream, Pink Snapper, Tarwhine, Western Yellowfin Bream, Breaksea Cod, Yellowspotted Rockcod, Barcheek Coral Trout, Common Coral Trout, Yellowedge Coronation Trout, Grass Emperor, Redthroat Emperor, Robinson's Seabream, Spangled Emperor, Northern Sand Flathead, Southern Bluespotted Flathead, Yellowtail Flathead, Mulloway, School Mackerel, Northern Pearl Perch, West Australian Dhufish, Striped Seapike, Bight Redfish, Goldband Snapper, Golden Snapper, Moses' Snapper, Red Emperor, Stripey Snapper, Painted Sweetlips, Tailor, Blue Threadfin, Baldchin Groper, Blackspot Tuskfish, Blue Tuskfish and King George Whiting.
"Too Many" includes catches the fisher did not want/need anymore/any, had enough, not wanted, not targeted, no preference. This reason for release occurred in proportions of 35% or more for Cuttlefish, Octopus, Bronze Whaler, Dusky Whaler, Gummy Sharks, Port Jackson Shark, Wobbegong, Western Shovelnose Ray, Barramundi, Western Butterfish, Giant Sea Catfish, Cobia, Rankin Cod, Yellowspotted Rockcod, Bluespotted Goatfish, Leatherjacket, Shark Mackerel, Spanish Mackerel, Spotted Mackerel, Northern Pearl Perch, Snook, Striped Seapike, Swallowtail, Sergeant Baker, Golden Snapper, Chinamanfish, Banded Sweep, Sea Sweep, Painted Sweetlips, Samsonfish, Giant Trevally, Golden Trevally, Silver Trevally, Southern Bluefin Tuna, Brownspotted Wrasse, Foxfish, Western King Wrasse and Morid Cod.
"Over Limit" includes catches above the legal bag limit. This reason for release did not occur in proportions greater than 20%. "Over Limit" catches occurred in proportions of $10-20 \%$ for Western Rock Lobster, Gummy Sharks, Common Coral Trout, Yellowedge Coronation Trout, Robinson's Seabream, Blue Morwong, West Australian Dhufish, Striped Seapike, Australian Herring, Western Australian Salmon, Goldband Snapper, Crimson Snapper, Mackerel Tuna and Baldchin Groper.
"Catch Release" fishing includes sport fishing, where fish are not tagged before release. This reason for release occurred in proportions of 35% or more for Billfish, Black Bream, Yellowedge Coronation Trout, Blue Threadfin and Southern Bluefin Tuna.
"Other" reasons for release included greater than legal limit, too big, too few (not enough for a meal/dinner/all of us), tag \& release, conservation (other than legally protected species), sick (fish has signs of disease), damaged, deformed (not sick or damaged), dangerous, female (berried, eggs, setose, tar spot), poor eating quality (don't taste good, not nice to eat, slimy, hard to clean, many bones, too much effort to cook, perceived or known), species unknown (not sure about species, eating quality or taste), poisonous (flesh or spines), did not have tag to keep (e.g. Pink Snapper), protected species (e.g. sawfish), or mistake (caught but got away, nothing to store fish in). This reason for release occurred in proportions of 35% or more for Western Rock Lobster, Bronze Whaler, Dusky Whaler, Gummy Sharks, Port Jackson Shark, Wobbegong, Western Shovelnose Ray, Billfish, Western Butterfish, Giant Sea Catfish, Bluespotted Goatfish, Western Striped Grunter, Leatherjacket, Queenfish, Sergeant Baker, Banded Sweep, Sea Sweep, Samsonfish, Yellowtail Kingfish, Mackerel Tuna, Brownspotted Wrasse, Southern Maori Wrasse, Western King Wrasse, Bluebarred Parrotfish, Silver Toadfish, Weeping Toadfish.

Table 5. Estimated annual catch (total, kept and released numbers) and proportion released during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Abalone	Roe's Abalone	Haliotis roei	1,934	1,022	0	0	1,934	1,022	0\%
	Greenlip Abalone	Haliotis laevigata	703	361	0	0	703	361	0\%
	Brownlip Abalone	Haliotis rubra conicopora	1,356	860	0	0	1,356	860	0\%
Cephalopod	Cuttlefish	Sepia spp	1,477	230	571	130	2,048	267	28\%
	Octopus	Octopus spp	2,767	947	259	79	3,026	976	9\%
	Squid	Order Teuthoidea	73,197	7,162	5,660	2,480	78,857	7,904	7\%
Lobster	Western Rock Lobster	Panulirus cygnus	201,486	20,269	139,791	14,805	341,277	31,941	41\%
	Southern Rock Lobster	Jasus edwardsii	8,067	5,353	2,000	957	10,067	5,673	20\%
	Painted Rock Lobster	Panulirus versicolor	441	191	297	122	738	263	40\%
	Ornate Rock Lobster	Panulirus ornatus	184	52	24	11	208	61	11\%
Crab	Blue Swimmer Crab	Portunus armatus	285,202	19,039	616,256	53,032	901,458	69,286	68\%
	Sand Crab	Ovalipes spp	22	20	721	453	743	454	97\%
	Mud Crab	Scylla olivacea \& S serrata	11,172	1,516	13,596	2,343	24,768	3,553	55\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	0	0	735	285	735	285	100\%
	Bronze Whaler	Carcharhinus brachyurus	657	110	6,577	2,562	7,234	2,582	91\%
	Dusky Whaler	Carcharhinus obscurus	211	74	1,892	396	2,104	445	90\%
	Lemon Shark	Negaprion acutidens	17	15	349	214	366	214	95\%
	Sandbar Shark	Carcharhinus plumbeus	43	38	275	81	318	90	86\%
	Tiger Shark	Galeocerdo cuvier	11	10	670	220	681	220	98\%
	Whitetip Reef Shark	Triaenodon obesus	69	24	1,124	217	1,193	224	94\%
	Greynurse Shark PROTECTED	Carcharias taurus	11	10	546	256	557	257	98\%
	Gummy Sharks	Mustelus antarcticus \& M stevensi	834	131	856	279	1,690	322	51\%
	Hammerhead Shark	Family Sphyrnidae	50	24	454	115	504	117	90\%
	Port Jackson Shark	Heterodontus portusjacksoni	17	15	4,212	2,103	4,229	2,104	100\%
	Sawshark	Family Pristiophoridae	0	0	19	15	19	15	100\%
	School Shark	Galeorhinus galeus	8	8	0	0	8	8	0\%
	Whiskery Shark	Furgaleus macki	223	79	90	40	313	91	29\%
	Wobbegong	Family Orectolobidae	78	34	787	171	865	182	91\%
	Other Whaler	Carcharhinidae - undifferentiated	333	105	3,779	520	4,112	546	92\%

क	Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
		Other Shark	Sharks - undifferentiated	66	34	789	246	854	248	92\%
	Rays	Sawfishes PROTECTED	Pristidae - undifferentiated	7	5	368	184	375	184	98\%
		Western Shovelnose Ray	Aptychotrema vincentiana	34	30	942	160	976	168	97\%
		Other Rays Skates	Rays - undifferentiated	71	37	3,466	572	3,538	573	98\%
	Barracouta	Barracouta	Thyrsites atun	659	567	593	170	1,253	592	47\%
	Barramundi	Barramundi	Lates calcarifer	1,676	376	17,978	6,968	19,654	7,301	91\%
	Bass Groper	Bass Groper	Polyprion americanus	38	24	0	0	38	24	0\%
	Billfish	Black Marlin	Makaira indica	6	3	973	278	979	278	99\%
		Blue Marlin	Makaira nigricans	5	2	3,882	3,245	3,887	3,245	100\%
		Sailfish	Istiophorus platypterus	18	12	1,934	536	1,953	536	99\%
		Striped Marlin	Tetrapturus audax	0	0	5	3	5	3	100\%
	Bonito	Bonito	Sarda spp	1,513	349	1,119	396	2,632	555	43\%
$\stackrel{n}{2}$		Oriental Bonito	Sarda orientalis	1,170	287	1,069	522	2,239	617	48\%
$\stackrel{9}{8} .$	Bream	Black Bream	Acanthopagrus butcheri	11,653	2,224	113,977	26,782	125,629	27,365	91\%
8		Frypan Bream	Argyrops spinifer	137	59	86	38	222	71	39\%
\%		Northwest Black Bream	Acanthopagrus palmaris	720	248	2,938	865	3,658	1,054	80\%
$\stackrel{\sim}{0}$		Pink Snapper	Chrysophrys auratus	25,200	1,610	123,582	12,918	148,782	13,569	83\%
\bigcirc		Tarwhine	Rhabdosargus sarba	1,978	524	10,908	2,707	12,885	2,814	85\%
$\overline{0}$		Western Yellowfin Bream	Acanthopagrus morrisoni	1,089	288	3,778	717	4,867	810	78\%
0		Other Bream	Sparidae - undifferentiated	282	131	786	381	1,069	405	74\%
\bigcirc	Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	69	36	7	5	76	38	10\%
F		Western Butterfish	Pentapodus vitta	6,209	1,642	19,800	2,847	26,009	3,454	76\%
\sum_{0}	Butterfish	Other Butterfish	Stromateidae - undifferentiated	10	7	2,003	864	2,013	864	100\%
$\stackrel{0}{0}$	Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	20	9	4,397	1,224	4,416	1,224	100\%
$\stackrel{3}{\square}$		Estuary Cobbler	Cnidoglanis macrocephalus	73	33	42	20	115	39	37\%
\geq		Giant Sea Catfish	Arius thalassinus	151	59	5,498	865	5,650	872	97\%
$\stackrel{ }{ }$		Silver Cobbler	Neoarius midgleyi	371	221	1,191	371	1,563	531	76\%
\%	Cobia	Cobia	Rachycentron canadum	905	136	547	129	1,452	212	38\%
\cdots	Cod	Barramundi Cod	Cromileptes altivelis	79	27	575	381	655	392	88\%
Z		Blackspotted Rockcod	Epinephelus malabaricus	3,081	545	11,826	1,800	14,907	2,056	79\%
$\stackrel{\sim}{\circ}$		Blacktip Rockcod	Epinephelus fasciatus	92	40	1,196	688	1,288	690	93\%
-		Breaksea Cod	Epinephelides armatus	16,449	1,124	14,218	1,421	30,667	2,261	46\%
N		Chinaman Rockcod	Epinephelus rivulatus	6,197	1,565	14,988	2,066	21,185	3,269	71\%
\bigcirc		Duskytail Grouper	Epinephelus bleekeri	25	17	0	0	25	17	0\%
u		Eightbar Grouper	Hyporthodus octofasciatus	195	56	19	11	213	57	9\%

T	Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
$\stackrel{\rightharpoonup}{0}$		Frostback Rockcod	Epinephelus bilobatus	434	186	1,743	1,166	2,177	1,325	80\%
$\stackrel{\square}{0}$		Goldspotted Rockcod	Epinephelus coioides	4,096	754	9,643	1,211	13,739	1,648	70\%
0		Harlequin Fish	Othos dentex	1,600	174	890	538	2,490	569	36\%
8		Potato Rockcod PROTECTED	Epinephelus tukula	6	6	136	53	142	53	96\%
$\begin{aligned} & \ddot{\#} \\ & \stackrel{3}{0} \end{aligned}$		Queensland Grouper PROTECTED	Epinephelus lanceolatus	39	30	81	40	120	51	67\%
0		Rankin Cod	Epinephelus multinotatus	4,173	494	2,838	366	7,010	741	40\%
8		Tomato Rockcod	Cephalopholis sonnerati	519	177	592	286	1,110	395	53\%
		Temperate Rockcods	Epinephelidae - undifferentiated	25	16	636	194	662	197	96\%
\sum		Yellowspotted Rockcod	Epinephelus areolatus	915	408	2,449	778	3,363	997	73\%
\bigcirc	Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	4,111	452	4,747	616	8,858	873	54\%
$\stackrel{\rightharpoonup}{0}$		Common Coral Trout	Plectropomus leopardus	1,371	261	2,053	470	3,424	649	60\%
$=$		Yellowedge Coronation Trout	Variola louti	509	138	330	101	839	171	39\%
\xrightarrow{B}	Emperor	Bluespotted Emperor	Lethrinus punctulatus	1,233	357	4,737	1,266	5,970	1,520	79\%
\%		Grass Emperor	Lethrinus laticaudis	21,060	3,348	36,754	4,200	57,814	6,538	64\%
$\stackrel{\sim}{0}$.		Longnose Emperor	Lethrinus olivaceus	199	71	510	222	710	240	72\%
		Redspot Emperor	Lethrinus lentjan	98	55	392	271	490	291	80\%
3		Redthroat Emperor	Lethrinus miniatus	6,055	845	18,321	2,412	24,376	2,831	75\%
\checkmark		Robinsons' Seabream	Gymnocranius grandoculis	1,495	454	395	150	1,890	524	21\%
∞		Spangled Emperor	Lethrinus nebulosus	12,364	1,426	27,814	5,269	40,178	6,243	69\%
		Yellowtail Emperor	Lethrinus atkinsoni	240	90	165	86	404	145	41\%
\bigcirc		Other Emperor	Lethrinidae - undifferentiated	178	67	340	256	518	283	66\%
	Flathead	Northern Sand Flathead	Platycephalus endrachtensis	437	114	547	198	984	251	56\%
		Southern Bluespotted Flathead	Platycephalus speculator	2,585	351	18,940	3,121	21,525	3,217	88\%
		Yellowtail Flathead	Platycephalus westraliae	1,555	338	10,396	2,223	11,952	2,361	87\%
		Other Flathead	Platycephalidae - undifferentiated	616	147	3,597	995	4,213	1,030	85\%
	Flounder	Largetooth Flounder	Pseudorhombus arsius	80	39	9	8	89	40	10\%
		Smalltooth Flounder	Pseudorhombus jenynsii	480	105	305	111	785	153	39\%
		Flounder Sole Flatish	Bothidae \& Pleuronectidae spp	127	45	108	48	235	72	46\%
	Garfish	Three-by-two Garfish	Hemiramphus robustus	3,043	980	23	12	3,066	980	1\%
		Southern Garfish	Hyporhamphus melanochir	2,809	745	1,005	301	3,814	866	26\%
		Other Garfish	Hemiramphidae - undifferentiated	181	108	34	30	214	112	16\%
	Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	705	158	2,712	564	3,417	658	79\%
\pm	Grunter	Sea Trumpeter	Pelsartia humeralis	1,164	763	10,688	1,949	11,852	2,094	90\%
		Western Striped Grunter	Pelates octolineatus	215	183	15,384	2,827	15,599	2,834	99\%

∞	Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
		Western Sooty Grunter	Hephaestus jenkinsi	767	609	2,716	1,318	3,483	1,742	78\%
	Grunter Bream	Grunter Bream	Haemulidae - undifferentiated	32	18	1,568	943	1,600	945	98\%
	Gurnard	Gurnard	Neosebastidae - undifferentiated	153	52	3,369	519	3,522	537	96\%
	Hapuku	Hapuku	Polyprion oxygeneios	120	65	34	22	154	69	22\%
	Javelinfish	Barred Javelin	Pomadasys kaakan	79	44	350	138	430	145	82\%
		Blotched Javelin	Pomadasys maculatus	12	6	76	36	88	37	86\%
	Jewfish	Black Jewfish	Protonibea diacanthus	562	131	860	227	1,423	309	60\%
		Mulloway	Argyrosomus japonicus	1,620	608	2,084	668	3,704	1,087	56\%
	Leatherjacket	Horseshoe Leatherjacket	Meuschenia hippocrepis	179	50	1,256	303	1,435	312	88\%
		Sixspine Leatherjacket	Meuschenia freycineti	110	40	1,344	407	1,454	415	92\%
		Leatherjacket	Monacanthidae - undifferentiated	835	186	6,155	1,479	6,991	1,507	88\%
$\frac{\pi}{2}$	Lizardfish Grinners	Lizardfish Grinners	Bathysauridae, Synodontidae undifferentiated	178	152	1,671	551	1,849	572	90\%
9	Longtom	Longtom	Belonidae - undifferentiated	79	37	517	160	596	165	87\%
8	Mackerel	Blue Mackerel	Scomber australasicus	557	180	1,441	474	1,998	596	72\%
\%		Grey Mackerel	Scomberomorus semifasciatus	222	63	169	81	392	111	43\%
\bigcirc		School Mackerel	Scomberomorus queenslandicus	2,906	798	5,354	2,851	8,260	3,583	65\%
$\stackrel{3}{0}$		Shark Mackerel	Grammatorcynus bicarinatus	304	68	909	214	1,213	241	75\%
-		Spanish Mackerel	Scomberomorus commerson	9,067	853	8,360	1,343	17,428	1,870	48\%
0		Spotted Mackerel	Scomberomorus munroi	499	134	415	127	914	215	45\%
\bigcirc		Wahoo	Acanthocybium solandri	162	43	182	122	344	141	53\%
\cdots		Other Mackerels and Tunas	Scombridae - undifferentiated	356	108	653	193	1,009	241	65\%
\sum	Mahi Mahi	Mahi Mahi	Coryphaena spp	637	193	402	134	1,039	302	39\%
$\stackrel{0}{2}$	Morwong	Blue Morwong	Nemadactylus valenciennesi	3,906	365	1,500	290	5,406	533	28\%
$\stackrel{0}{\square}$		Dusky Morwong	Dactylophora nigricans	51	25	110	44	161	51	68\%
>		Other Morwong	Cheilodactylidae - undifferentiated	16	9	42	32	58	34	73\%
5	Mullet	Bluetail Mullet	Valamugil buchanani	646	280	211	168	857	380	25\%
\%		Diamondscale Mullet	Liza vaigiensis	156	109	0	0	156	109	0\%
へ.		Greenback Mullet	Liza subviridis	207	152	20	14	227	166	9\%
Z		Sea Mullet	Mugil cephalus	15,512	5,514	40	25	15,552	5,514	0\%
\bigcirc		Yelloweye Mullet	Aldrichetta forsteri	2,814	1,299	706	412	3,520	1,381	20\%
N		Other Mullet	Mugilidae - undifferentiated	833	274	414	283	1,247	393	33\%
∞	Pearl Perch	Northern Pearl Perch	Glaucosoma buergeri	641	162	388	110	1,029	216	38\%
\bigcirc		West Australian Dhufish	Glaucosoma hebraicum	18,907	1,335	41,003	5,239	59,911	5,975	68\%
u	Pike	Great Barracuda	Sphyraena barracuda	120	44	396	112	517	131	77\%
		Snook	Sphyraena novaehollandiae	5,065	1,329	2,014	488	7,078	1,644	28\%

$\stackrel{T}{\square}$	Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
$\stackrel{\rightharpoonup}{0}$		Striped Seapike	Sphyraena obtusata	5,630	3,097	3,388	1,734	9,018	3,597	38\%
$\stackrel{\square}{0}$		Other Pike	Sphyraenidae - undifferentiated	160	53	35	30	194	61	18\%
0	Queenfish	Queenfish	Scomberoides spp	581	166	1,553	348	2,134	388	73\%
8	Redfish	Bight Redfish	Centroberyx gerrardi	9,891	1,009	5,011	599	14,902	1,427	34\%
$\stackrel{1}{0}$		Swallowtail	Centroberyx lineatus	1,749	330	1,935	310	3,684	494	53\%
\bigcirc		Yelloweye Redfish	Centroberyx australis	17	15	0	0	17	15	0\%
7	Salmon Herring	Australian Herring	Arripis georgianus	132,155	11,812	41,253	5,548	173,408	15,113	24\%
8		Western Australian Salmon	Arripis truttaceus	2,317	368	4,192	1,053	6,509	1,208	64\%
$\stackrel{\square}{+}$	Sand Bass	Sand Bass	Psammoperca waigiensis	130	81	80	36	210	96	38\%
ξ	Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	1,591	327	6,859	859	8,450	995	81\%
8	Snappers King	Goldband Snapper	Pristipomoides multidens	3,499	742	672	212	4,171	826	16\%
$\stackrel{\rightharpoonup}{0}$		Rosy Snapper	Pristipomoides filamentosus	629	224	360	141	989	328	36\%
		Sharptooth Snapper	Pristipomoides typus	65	32	48	28	113	43	42\%
\pm	Snappers Tropical	Brownstripe Snapper	Lutjanus vitta	17	15	110	55	127	57	87\%
$\stackrel{1}{0}$		Crimson Snapper	Lutjanus erythropterus	1,646	394	1,689	448	3,335	732	51\%
$\stackrel{\square}{0}$		Darktail Snapper	Lutjanus lemniscatus	216	78	63	29	279	97	23\%
		Flame Snapper	Etelis coruscens	17	15	0	0	17	15	0\%
?		Golden Snapper	Lutjanus johnii	1,384	257	3,678	848	5,062	1,028	73\%
N		Mangrove Jack	Lutjanus argentimaculatus	4,361	679	7,114	1,314	11,476	1,802	62\%
∞		Maori Snapper	Lutjanus rivulatus	40	32	7	5	47	33	16\%
N		Moses' Snapper	Lutjanus russellii	1,114	199	3,091	605	4,205	738	74\%
$\stackrel{\rightharpoonup}{u}$		Red Emperor	Lutjanus sebae	5,290	902	4,253	610	9,544	1,332	45\%
		Ruby Snapper	Etelis carbunculus	1,141	596	62	42	1,203	603	5\%
		Saddletail Snapper	Lutjanus malabaricus	1,294	253	1,647	452	2,941	596	56\%
		Stripey Snapper	Lutjanus carponotatus	7,437	1,535	26,464	3,435	33,901	4,685	78\%
		Fusiliers	Caesionidae, Lutjanidae, Symphysanodontidae - undifferentiated	99	32	553	287	652	289	85\%
		Chinamanfish	Symphorus nematophorus	828	209	861	229	1,690	337	51\%
	Sweep	Banded Sweep	Scorpis georgiana	734	265	919	268	1,653	386	56\%
		Sea Sweep	Scorpis aequipinnis	2,270	364	2,473	391	4,743	590	52\%
	Sweetlips	Painted Sweetlips	Diagramma labiosum	3,083	905	2,972	880	6,055	1,525	49\%
	Tailor	Tailor	Pomatomus saltatrix	8,370	1,410	8,666	1,870	17,036	2,602	51\%
	Threadfin	Blue Threadfin	Eleutheronema tetradactylum	2,006	416	1,010	278	3,015	604	33\%
		King Threadfin	Polydactylus macrochir	401	98	690	350	1,091	402	63\%
B	Trevalla	Blue-Eye Trevalla	Hyperoglyphe antarctica	76	49	216	117	293	127	74\%
	Trevally	Amberjack	Seriola dumerili	269	89	227	96	495	152	46\%

no	Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
		Samsonfish	Seriola hippos	2,737	366	7,966	995	10,704	1,181	74\%
		Yellowtail Kingfish	Seriola lalandi	1,144	211	1,786	1,013	2,930	1,142	61\%
		Giant Trevally	Caranx ignobilis	688	165	3,553	870	4,241	984	84\%
		Golden Trevally	Gnathanodon speciosus	1,994	442	5,367	1,063	7,361	1,246	73\%
		Bludger Trevally	Carangoides gymnostethus	206	87	234	165	440	188	53\%
		Silver Trevally	Pseudocaranx dentex	34,948	3,465	27,319	3,346	62,267	5,693	44\%
		Rainbow Runner	Elagatis bipinnulata	6	4	38	24	44	24	86\%
		Common Dart	Trachinotus botla	23	16	64	33	88	37	73\%
		Yellowtail Scad	Trachurus novaezelandiae	915	278	1,919	539	2,835	610	68\%
		Turrum	Carangoides fulvoguttatus	221	64	910	430	1,131	477	80\%
		Other Trevally	Carangidae - undifferentiated	1,786	433	2,081	362	3,867	587	54\%
	Tripletail	Tripletail	Lobotes surinamensis	90	39	52	38	142	73	36\%
$\frac{\vec{\omega}}{\stackrel{\rightharpoonup}{\theta}}$	Trumpeter	Trumpeter	Latridopsis spp	51	46	6,020	2,312	6,071	2,313	99\%
$\stackrel{\theta}{0} .$	Tuna	Dogtooth Tuna	Gymnosarda unicolor	61	24	74	61	135	65	55\%
8		Mackerel Tuna	Euthynnus affinis	1,526	450	1,271	356	2,796	614	45\%
\%		Longtail Tuna	Thunnus orientalis	509	107	924	219	1,433	263	64\%
\%		Skipjack Tuna	Katsuwonus pelamis	386	122	531	199	918	259	58\%
$\stackrel{\sim}{3}$		Southern Bluefin Tuna	Thunnus maccoyii	460	82	203	90	663	126	31\%
${ }_{0}^{7}$		Yellowfin Tuna	Thunnus albacares	1,151	269	770	211	1,921	383	40\%
8	Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	11,968	1,010	14,243	4,412	26,211	4,686	54\%
O		Blackspot Tuskfish	Choerodon schoenleinii	3,615	666	10,216	2,038	13,830	2,346	74\%
F		Blue Tuskfish	Choerodon cyanodus	1,975	475	9,413	2,911	11,388	3,049	83\%
\sum		Bluespotted Tuskfish	Choerodon cauteroma	173	78	341	130	514	164	66\%
$\stackrel{0}{0}$		Brownspotted Wrasse	Notolabrus parilus	2,616	514	22,736	2,193	25,352	2,358	90\%
E		Foxfish	Bodianus frenchii	1,437	200	1,267	338	2,705	440	47\%
\geq		Goldspot Pigfish	Bodianus perditio	162	59	148	75	310	106	48\%
$\stackrel{5}{5}$		Humphead Maori Wrasse	Cheilinus undulatus	16	13	434	365	450	365	96\%
0		Purple Tuskfish	Choerodon cephalotes	215	95	463	246	678	284	68\%
\cdots		Southern Maori Wrasse	Ophthalmolepis lineolatus	599	209	6,710	1,867	7,310	1,900	92\%
Z		Western Blue Groper	Achoerodus gouldii	346	101	383	196	729	221	52\%
\bigcirc		Western King Wrasse	Coris auricularis	9,075	2,062	51,083	4,785	60,159	5,639	85\%
$\begin{aligned} & \text { N } \\ & \hline \end{aligned}$		Other Tuskfish	Choerodon spp	59	45	88	79	147	90	60\%
		Other Wrasse	Labridae - undifferentiated	600	220	5,503	1,220	6,103	1,253	90\%
\bigcirc		Bluebarred Parrotfish	Scarus ghobban spp complex	3,324	2,797	5,424	2,443	8,747	5,196	62\%
u		Other Parrotfish	Scaridae - undifferentiated	503	196	1,371	342	1,874	478	73\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Whiting	Goldenline Whiting	Sillago analis	323	141	271	91	594	177	46\%
	King George Whiting	Sillaginodes punctata	74,329	10,422	27,750	4,561	102,080	14,333	27\%
	School Whiting	Sillago bassensis, vittata \& schomburgkii	276,229	29,734	75,886	9,091	352,115	36,923	22\%
	Western Trumpeter Whiting	Sillago burrus	264	142	9,823	1,788	10,087	1,833	97\%
	Other Whiting	Sillaginidae - undifferentiated	1,405	609	591	263	1,996	751	30\%
Western Blue Devil	Western Blue Devil	Paraplesiops sinclairi	57	18	353	86	410	88	86\%
Small Baitfish	Small Baitfish	NO CODE	290	173	125	83	415	191	30\%
	Australian Sardine	Sardinops sagax	98	66	45	41	143	83	32\%
	Other Herring	Clupeidae - undifferentiated	2,143	993	361	131	2,504	1,059	14\%
Finfish Other	Archerfishes	Toxotidae - undifferentiated	0	0	34	30	34	30	100\%
	Bighead Gurnard Perch	Neosebastes pandus	147	51	1,421	310	1,568	324	91\%
	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	203	155	22,630	3,631	22,833	3,641	99\%
	Silver Toadfish	Lagocephalus sceleratus	95	60	6,531	1,840	6,626	1,842	99\%
	Weeping Toadfish	Torquigener pleurogramma	522	479	9,435	2,940	9,957	2,979	95\%
	Boarfish	Pentacerotidae - undifferentiated	23	12	0	0	23	12	0\%
	Boxfish	Ostraciidae - undifferentiated	17	15	0	0	17	15	0\%
	Morid Cod	Moridae - undifferentiated	341	97	1,068	263	1,409	282	76\%
	Conger Eel	Conger spp	0	0	85	63	85	63	100\%
	Eel	Anguilliformes \& Synbranchiformes	34	30	270	84	304	89	89\%
	Moonfish Batfish	Lampridae - undifferentiated	31	19	242	134	273	135	89\%
	Salmon	Salmonidae - undifferentiated	290	78	248	91	538	126	46\%
	Silver Drummer	Kyphosus spp Complex	45	32	36	15	82	36	44\%
	Oxeye Herring	Megalopidae - undifferentiated	0	0	30	22	30	22	100\%

Table 6. Summary of release rates for selected species during 2013/14 by RFBL holders aged five years or older.

0 to 19\%	20-39\%	40-59\%	60-79\%	80-89\%	90-100\%
Abalone	Southern Rock Lobster	Yellowfin Tuna	Common Coral Trout	Redspot Emperor	Dusky Whaler
Bass Groper	Yelloweye Mullet	Painted Rock Lobster	Black Jewfish	Frostback Rockcod	Hammerhead Shark
Duskytail Grouper	Robinson's Seabream	Rankin Cod	Yellowtail Kingfish	Northwest Black Bream	Sea Trumpeter
Diamondscale Mullet	School Whiting	Yellowtail Emperor	Mangrove Jack	Turrum	Lizardfish Grinners
Yelloweye Redfish	Hapuku	Western Rock Lobster	Bluebarred Parrotfish	Sergeant Baker	Black Bream
Flame Snapper	Darktail Snapper	Sharptooth Snapper	King Threadfin	Barred Javelin	Bronze Whaler
Sea Mullet	Australian Herring	Bonito	Grass Emperor	Blue Tuskfish	Wobbegong
Three-by-two Garfish	Bluetail Mullet	Grey Mackerel	Western Australian Salmon	Pink Snapper	Barramundi
Ruby Snapper	Southern Garfish	Silver Trevally	Northern Bluefin Tuna	Giant Trevally	Southern Maori Wrasse
Squid	King George Whiting	Silver Drummer	School Mackerel	Tarwhine	Sixspine Leatherjacket
Octopus	Blue Morwong	Red Emperor	Bluespotted Tuskfish	Western King Wrasse	Blacktip Rockcod
Greenback Mullet	Cuttlefish	Spotted Mackerel	Queensland Grouper	Rainbow Runner	Whitetip Reef Shark
Eightbar Grouper	Snook	Mackerel Tuna	Yellowtail Scad	Western Blue Devil	Weeping Toadfish
Rosy Threadfin Bream	Whiskery Shark	Goldenline Whiting	Dusky Morwong	Blotched Javelin	Lemon Shark
Largetooth Flounder	Southern Bluefin Tuna	Amberjack	Purple Tuskfish	Sandbar Shark	Gurnard
Ornate Rock Lobster	Australian Sardine	Breaksea Cod	Blue Swimmer Crab	Brownstripe Snapper	Potato Rockcod
Maori Snapper	Blue Threadfin	Foxfish	West Australian Dhufish	Longtom	Humphead Maori Wrasse
Goldband Snapper	Bight Redfish	Barracouta	Spangled Emperor	Yellowtail Flathead	Western Shovelnose Ray
	Harlequin Fish	Oriental Bonito	Goldspotted Rockcod	Horseshoe Leatherjacket	Giant Sea Catfish
	Rosy Snapper	Goldspot Pigfish	Chinaman Rockcod	Barramundi Cod	Western Trumpeter Whiting
	Tripletail	Spanish Mackerel	Longnose Emperor	Southern Bluespotted Flathead	Greynurse Shark
	Estuary Cobbler	Painted Sweetlips	Blue Mackerel	Leatherjacket	Grunter Bream
	Striped Seapike	Crimson Snapper	Golden Snapper	Brownspotted Wrasse	Sawfishes
	Cobia	Gummy Sharks	Queenfish		Tiger Shark
	Northern Pearl Perch	Tailor	Yellowspotted Rockcod		Silver Toadfish
	Sand Bass	Chinamanfish	Golden Trevally		Western Striped Grunter
	Frypan Bream	Sea Sweep	Common Dart		Sailfish

Mahi Mahi	Western Blue Groper	Moses' Snapper
Smalltooth Flounder	Swallowtail	Blackspot Tuskfish
Yellowedge Coronation Trout	Wahoo	Blue-Eye Trevalla
	Bludger Trevally	Samsonfish
	Tomato Rockcod	Shark Mackerel
	Barcheek Coral Trout	Redthroat Emperor
	Baldchin Groper	Western Butterfish
	Dogtooth Tuna	Silver Cobbler
	Mud Crab	Great Barracuda
	Banded Sweep	Western Yellowfin Bream
	Northern Sand Flathead	Western Sooty Grunter
	Saddletail Snapper	Stripey Snapper
	Mulloway	Blackspotted Rockcod
	Skipjack Tuna	Bluespotted Emperor
		Bluespotted Goatfish

Black Marlin
Port Jackson Shark
Blue Marlin
Blacktip reef shark
Sawshark
Striped Marlin
Eeltail Catfishes

Table 7. Proportion released during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
Cephalopod	Cuttlefish	Sepia spp	21\%	12\%	31\%	0\%	16\%	20\%
	Octopus	Octopus spp	24\%	8\%	37\%	0\%	0\%	31\%
	Squid	Order Teuthoidea	64\%	12\%	20\%	0\%	0\%	4\%
Lobster	Western Rock Lobster	Panulirus cygnus	2\%	53\%	2\%	10\%	0\%	32\%
	Southern Rock Lobster	Jasus edwardsii	8\%	58\%	0\%	4\%	0\%	30\%
	Painted Rock Lobster	Panulirus versicolor	9\%	79\%	0\%	11\%	0\%	0\%
	Ornate Rock Lobster	Panulirus ornatus	40\%	0\%	0\%	0\%	0\%	60\%
Crab	Blue Swimmer Crab	Portunus armatus	3\%	80\%	0\%	3\%	0\%	14\%
	Sand Crab	Ovalipes spp	37\%	0\%	63\%	0\%	0\%	0\%
	Mud Crab	Scylla olivacea \& S serrata	13\%	68\%	6\%	2\%	0\%	11\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	0\%	0\%	17\%	0\%	21\%	62\%
	Bronze Whaler	Carcharhinus brachyurus	0\%	40\%	18\%	0\%	5\%	37\%
	Dusky Whaler	Carcharhinus obscurus	0\%	0\%	51\%	0\%	5\%	44\%
	Lemon Shark	Negaprion acutidens	0\%	2\%	3\%	0\%	16\%	79\%
	Sandbar Shark	Carcharhinus plumbeus	0\%	10\%	67\%	0\%	0\%	23\%
	Tiger Shark	Galeocerdo cuvier	0\%	2\%	16\%	0\%	13\%	69\%
	Whitetip Reef Shark	Triaenodon obesus	12\%	3\%	36\%	0\%	5\%	44\%
	Greynurse Shark PROTECTED	Carcharias taurus	0\%	19\%	37\%	0\%	0\%	44\%
	Gummy Sharks	Mustelus antarcticus \& M stevensi	7\%	8\%	48\%	0\%	0\%	38\%
	Hammerhead Shark	Family Sphyrnidae	4\%	0\%	45\%	0\%	0\%	51\%
	Port Jackson Shark	Heterodontus portusjacksoni	0\%	53\%	15\%	0\%	2\%	29\%
	Sawshark	Family Pristiophoridae	0\%	0\%	0\%	0\%	0\%	100\%
	Whiskery Shark	Furgaleus macki	0\%	0\%	44\%	0\%	0\%	56\%
	Wobbegong	Family Orectolobidae	2\%	2\%	37\%	0\%	0\%	59\%
	Other Whaler	Carcharhinidae - undifferentiated	7\%	0\%	46\%	4\%	4\%	39\%
	Other Shark	Sharks - undifferentiated	7\%	0\%	38\%	0\%	2\%	53\%
Rays	Sawfishes PROTECTED	Pristidae - undifferentiated	0\%	0\%	0\%	0\%	33\%	67\%
	Western Shovelnose Ray	Aptychotrema vincentiana	1\%	0\%	45\%	0\%	1\%	53\%
	Other Rays Skates	Rays - undifferentiated	0\%	0\%	36\%	0\%	2\%	62\%
Barracouta	Barracouta	Thyrsites atun	5\%	7\%	61\%	0\%	9\%	18\%

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
Barramundi	Barramundi	Lates calcarifer	6\%	14\%	59\%	1\%	14\%	6\%
Billfish	Black Marlin	Makaira indica	1\%	1\%	8\%	2\%	52\%	36\%
	Blue Marlin	Makaira nigricans	0\%	0\%	0\%	0\%	90\%	10\%
	Sailfish	Istiophorus platypterus	0\%	1\%	7\%	0\%	81\%	11\%
	Striped Marlin	Tetrapturus audax	0\%	0\%	0\%	0\%	100\%	0\%
Bonito	Bonito	Sarda spp	0\%	3\%	14\%	17\%	40\%	26\%
	Oriental Bonito	Sarda orientalis	59\%	0\%	20\%	1\%	21\%	0\%
Bream	Black Bream	Acanthopagrus butcheri	9\%	37\%	4\%	0\%	47\%	4\%
	Frypan Bream	Argyrops spinifer	26\%	26\%	8\%	0\%	0\%	39\%
	Northwest Black Bream	Acanthopagrus palmaris	2\%	41\%	31\%	1\%	18\%	7\%
	Pink Snapper	Chrysophrys auratus	5\%	78\%	4\%	4\%	1\%	8\%
	Tarwhine	Rhabdosargus sarba	5\%	59\%	13\%	0\%	7\%	16\%
	Western Yellowfin Bream	Acanthopagrus morrisoni	20\%	58\%	10\%	0\%	9\%	3\%
	Other Bream	Sparidae - undifferentiated	1\%	81\%	16\%	0\%	0\%	1\%
Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	0\%	100\%	0\%	0\%	0\%	0\%
	Western Butterfish	Pentapodus vitta	5\%	7\%	38\%	1\%	8\%	41\%
Butterfish	Other Butterfish	Stromateidae - undifferentiated	33\%	1\%	19\%	0\%	0\%	47\%
Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	4\%	4\%	49\%	2\%	7\%	33\%
	Estuary Cobbler	Cnidoglanis macrocephalus	20\%	0\%	27\%	0\%	0\%	53\%
	Giant Sea Catfish	Arius thalassinus	3\%	10\%	40\%	0\%	13\%	35\%
	Silver Cobbler	Neoarius midgleyi	9\%	24\%	41\%	0\%	5\%	22\%
Cobia	Cobia	Rachycentron canadum	19\%	34\%	16\%	0\%	1\%	30\%
Cod	Barramundi Cod	Cromileptes altivelis	39\%	49\%	7\%	0\%	3\%	2\%
	Blackspotted Rockcod	Epinephelus malabaricus	7\%	35\%	32\%	0\%	10\%	16\%
	Blacktip Rockcod	Epinephelus fasciatus	14\%	65\%	2\%	4\%	0\%	14\%
	Breaksea Cod	Epinephelides armatus	11\%	59\%	14\%	7\%	3\%	6\%
	Chinaman Rockcod	Epinephelus rivulatus	17\%	37\%	20\%	1\%	9\%	16\%
	Eightbar Grouper	Hyporthodus octofasciatus	0\%	100\%	0\%	0\%	0\%	0\%
	Frostback Rockcod	Epinephelus bilobatus	11\%	71\%	16\%	0\%	1\%	0\%
	Goldspotted Rockcod	Epinephelus coioides	11\%	38\%	25\%	3\%	7\%	16\%
	Harlequin Fish	Othos dentex	69\%	6\%	14\%	0\%	1\%	10\%
	Potato Rockcod PROTECTED	Epinephelus tukula	0\%	38\%	18\%	0\%	0\%	44\%
	Queensland Grouper PROTECTED	Epinephelus lanceolatus	0\%	0\%	9\%	0\%	15\%	76\%
	Rankin Cod	Epinephelus multinotatus	22\%	41\%	18\%	1\%	5\%	12\%
	Tomato Rockcod	Cephalopholis sonnerati	11\%	66\%	6\%	0\%	0\%	17\%

ur	Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
		Temperate Rockcods	Epinephelidae - undifferentiated	0\%	14\%	34\%	0\%	0\%	53\%
		Yellowspotted Rockcod	Epinephelus areolatus	14\%	68\%	16\%	0\%	0\%	2\%
	Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	8\%	62\%	12\%	2\%	5\%	11\%
		Common Coral Trout	Plectropomus leopardus	6\%	67\%	4\%	19\%	0\%	3\%
		Yellowedge Coronation Trout	Variola louti	17\%	55\%	15\%	0\%	13\%	0\%
	Emperor	Bluespotted Emperor	Lethrinus punctulatus	32\%	47\%	10\%	6\%	2\%	3\%
		Grass Emperor	Lethrinus laticaudis	13\%	75\%	7\%	1\%	2\%	1\%
		Longnose Emperor	Lethrinus olivaceus	0\%	66\%	34\%	0\%	0\%	0\%
		Redspot Emperor	Lethrinus lentjan	48\%	41\%	11\%	0\%	0\%	0\%
		Redthroat Emperor	Lethrinus miniatus	8\%	52\%	26\%	7\%	3\%	4\%
		Robinsons' Seabream	Gymnocranius grandoculis	4\%	20\%	29\%	16\%	0\%	31\%
		Spangled Emperor	Lethrinus nebulosus	13\%	65\%	10\%	5\%	4\%	3\%
		Yellowtail Emperor	Lethrinus atkinsoni	0\%	37\%	63\%	0\%	0\%	0\%
		Other Emperor	Lethrinidae - undifferentiated	0\%	90\%	0\%	0\%	0\%	10\%
	Flathead	Northern Sand Flathead	Platycephalus endrachtensis	47\%	25\%	15\%	0\%	0\%	12\%
		Southern Bluespotted Flathead	Platycephalus speculator	30\%	50\%	10\%	1\%	3\%	7\%
		Yellowtail Flathead	Platycephalus westraliae	30\%	48\%	3\%	0\%	17\%	2\%
		Other Flathead	Platycephalidae - undifferentiated	33\%	56\%	6\%	0\%	1\%	5\%
$\begin{aligned} & 20 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Flounder	Largetooth Flounder	Pseudorhombus arsius	0\%	0\%	0\%	0\%	0\%	100\%
		Smalltooth Flounder	Pseudorhombus jenynsii	27\%	6\%	11\%	0\%	39\%	17\%
		Flounder Sole Flatish	Bothidae \& Pleuronectidae spp	0\%	86\%	0\%	0\%	14\%	0\%
	Garfish	Three-by-two Garfish	Hemiramphus robustus	0\%	0\%	61\%	0\%	0\%	39\%
		Southern Garfish	Hyporhamphus melanochir	19\%	30\%	20\%	0\%	0\%	31\%
		Other Garfish	Hemiramphidae - undifferentiated	0\%	0\%	0\%	0\%	0\%	100\%
	Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	17\%	8\%	24\%	0\%	1\%	50\%
	Grunter	Sea Trumpeter	Pelsartia humeralis	1\%	1\%	25\%	0\%	0\%	73\%
		Western Striped Grunter	Pelates octolineatus	1\%	2\%	3\%	0\%	16\%	79\%
		Western Sooty Grunter	Hephaestus jenkinsi	2\%	4\%	8\%	0\%	0\%	85\%
$\underset{0}{7}$	Grunter Bream	Grunter Bream	Haemulidae - undifferentiated	65\%	12\%	15\%	0\%	5\%	2\%
	Gurnard	Gurnard	Neosebastidae - undifferentiated	2\%	2\%	27\%	0\%	1\%	68\%
$\begin{aligned} & \text { N } \\ & \infty \end{aligned}$	Hapuku	Hapuku	Polyprion oxygeneios	0\%	0\%	0\%	0\%	0\%	100\%
	Javelinfish	Barred Javelin	Pomadasys kaakan	7\%	75\%	15\%	0\%	0\%	3\%
$\stackrel{N}{O}$		Blotched Javelin	Pomadasys maculatus	26\%	0\%	15\%	0\%	0\%	59\%
	Jewfish	Black Jewfish	Protonibea diacanthus	7\%	20\%	56\%	3\%	7\%	7\%
		Mulloway	Argyrosomus japonicus	4\%	75\%	17\%	0\%	4\%	0\%

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
Leatherjacket	Horseshoe Leatherjacket	Meuschenia hippocrepis	28\%	10\%	35\%	0\%	8\%	18\%
	Sixspine Leatherjacket	Meuschenia freycineti	9\%	20\%	22\%	0\%	0\%	50\%
	Leatherjacket	Monacanthidae - undifferentiated	12\%	25\%	14\%	0\%	12\%	37\%
Lizardfish Grinners	Lizardfish Grinners	Bathysauridae, Synodontidae undifferentiated	3\%	1\%	44\%	0\%	4\%	49\%
Longtom	Longtom	Belonidae - undifferentiated	0\%	29\%	35\%	0\%	23\%	14\%
Mackerel	Blue Mackerel	Scomber australasicus	16\%	5\%	78\%	0\%	0\%	1\%
	Grey Mackerel	Scomberomorus semifasciatus	0\%	22\%	33\%	0\%	45\%	0\%
	School Mackerel	Scomberomorus queenslandicus	4\%	60\%	24\%	6\%	4\%	3\%
	Shark Mackerel	Grammatorcynus bicarinatus	8\%	29\%	43\%	0\%	7\%	12\%
	Spanish Mackerel	Scomberomorus commerson	8\%	29\%	38\%	2\%	14\%	9\%
	Spotted Mackerel	Scomberomorus munroi	0\%	45\%	9\%	8\%	9\%	28\%
	Wahoo	Acanthocybium solandri	0\%	0\%	27\%	0\%	73\%	0\%
	Other Mackerels and Tunas	Scombridae - undifferentiated	4\%	16\%	25\%	0\%	22\%	33\%
Mahi Mahi	Mahi Mahi	Coryphaena spp	11\%	37\%	21\%	14\%	13\%	4\%
Morwong	Blue Morwong	Nemadactylus valenciennesi	9\%	42\%	24\%	12\%	0\%	13\%
	Dusky Morwong	Dactylophora nigricans	0\%	0\%	26\%	0\%	0\%	74\%
	Other Morwong	Cheilodactylidae - undifferentiated	0\%	0\%	17\%	0\%	0\%	83\%
Mullet	Bluetail Mullet	Valamugil buchanani	0\%	0\%	100\%	0\%	0\%	0\%
	Greenback Mullet	Liza subviridis	0\%	100\%	0\%	0\%	0\%	0\%
	Sea Mullet	Mugil cephalus	0\%	0\%	57\%	0\%	43\%	0\%
	Yelloweye Mullet	Aldrichetta forsteri	7\%	65\%	8\%	0\%	12\%	7\%
	Other Mullet	Mugilidae - undifferentiated	13\%	17\%	71\%	0\%	0\%	0\%
Pearl Perch	Northern Pearl Perch	Glaucosoma buergeri	22\%	57\%	10\%	0\%	2\%	10\%
	West Australian Dhufish	Glaucosoma hebraicum	5\%	71\%	5\%	16\%	0\%	2\%
Pike	Great Barracuda	Sphyraena barracuda	0\%	29\%	33\%	0\%	2\%	37\%
	Snook	Sphyraena novaehollandiae	19\%	14\%	36\%	0\%	3\%	28\%
	Striped Seapike	Sphyraena obtusata	7\%	64\%	15\%	10\%	0\%	5\%
	Other Pike	Sphyraenidae - undifferentiated	0\%	0\%	100\%	0\%	0\%	0\%
Queenfish	Queenfish	Scomberoides spp	4\%	17\%	9\%	0\%	25\%	45\%
Redfish	Bight Redfish	Centroberyx gerrardi	37\%	48\%	8\%	2\%	2\%	2\%
	Swallowtail	Centroberyx lineatus	22\%	16\%	42\%	2\%	1\%	17\%
Salmon Herring	Australian Herring	Arripis georgianus	28\%	23\%	23\%	14\%	7\%	6\%
	Western Australian Salmon	Arripis truttaceus	6\%	28\%	24\%	6\%	25\%	11\%
Sand Bass	Sand Bass	Psammoperca waigiensis	0\%	0\%	100\%	0\%	0\%	0\%

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	2\%	2\%	24\%	0\%	9\%	63\%
Snappers King	Goldband Snapper	Pristipomoides multidens	7\%	50\%	8\%	10\%	21\%	5\%
	Rosy Snapper	Pristipomoides filamentosus	20\%	42\%	16\%	15\%	8\%	0\%
	Sharptooth Snapper	Pristipomoides typus	0\%	100\%	0\%	0\%	0\%	0\%
Snappers Tropical	Brownstripe Snapper	Lutjanus vitta	0\%	18\%	51\%	0\%	0\%	31\%
	Crimson Snapper	Lutjanus erythropterus	15\%	45\%	8\%	20\%	8\%	3\%
	Darktail Snapper	Lutjanus lemniscatus	45\%	55\%	0\%	0\%	0\%	0\%
	Golden Snapper	Lutjanus johnii	13\%	38\%	44\%	0\%	5\%	0\%
	Mangrove Jack	Lutjanus argentimaculatus	10\%	42\%	18\%	5\%	22\%	4\%
	Maori Snapper	Lutjanus rivulatus	0\%	0\%	0\%	0\%	100\%	0\%
	Moses' Snapper	Lutjanus russellii	11\%	66\%	14\%	0\%	8\%	1\%
	Red Emperor	Lutjanus sebae	17\%	65\%	12\%	3\%	2\%	0\%
	Ruby Snapper	Etelis carbunculus	0\%	100\%	0\%	0\%	0\%	0\%
	Saddletail Snapper	Lutjanus malabaricus	1\%	48\%	32\%	9\%	4\%	7\%
	Stripey Snapper	Lutjanus carponotatus	15\%	53\%	23\%	2\%	1\%	6\%
	Fusiliers	Caesionidae, Lutjanidae, Symphysanodontidae - undifferentiated	3\%	18\%	62\%	0\%	4\%	13\%
	Chinamanfish	Symphorus nematophorus	19\%	18\%	36\%	0\%	2\%	26\%
Sweep	Banded Sweep	Scorpis georgiana	0\%	34\%	38\%	0\%	0\%	28\%
	Sea Sweep	Scorpis aequipinnis	9\%	7\%	34\%	0\%	10\%	40\%
Sweetlips	Painted Sweetlips	Diagramma labiosum	7\%	64\%	10\%	0\%	1\%	17\%
Tailor	Tailor	Pomatomus saltatrix	16\%	48\%	7\%	4\%	25\%	0\%
Threadfin	Blue Threadfin	Eleutheronema tetradactylum	6\%	36\%	8\%	4\%	39\%	7\%
	King Threadfin	Polydactylus macrochir	8\%	5\%	9\%	2\%	74\%	2\%
Trevalla	Blue-Eye Trevalla	Hyperoglyphe antarctica	0\%	48\%	0\%	0\%	52\%	0\%
Trevally	Amberjack	Seriola dumerili	7\%	4\%	68\%	3\%	6\%	11\%
	Samsonfish	Seriola hippos	2\%	13\%	35\%	0\%	13\%	37\%
	Yellowtail Kingfish	Seriola lalandi	0\%	18\%	33\%	2\%	0\%	47\%
	Giant Trevally	Caranx ignobilis	6\%	14\%	38\%	0\%	20\%	21\%
	Golden Trevally	Gnathanodon speciosus	6\%	32\%	30\%	0\%	18\%	13\%
	Bludger Trevally	Carangoides gymnostethus	7\%	0\%	15\%	0\%	0\%	77\%
	Silver Trevally	Pseudocaranx dentex	8\%	32\%	42\%	6\%	7\%	5\%
	Rainbow Runner	Elagatis bipinnulata	75\%	0\%	0\%	0\%	0\%	25\%
	Common Dart	Trachinotus botla	30\%	0\%	18\%	0\%	0\%	53\%
	Yellowtail Scad	Trachurus novaezelandiae	18\%	28\%	12\%	5\%	4\%	35\%

$\frac{T}{n}$	Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
$\stackrel{\rightharpoonup}{\square}$		Turrum	Carangoides fulvoguttatus	11\%	57\%	8\%	5\%	0\%	19\%
0		Other Trevally	Carangidae - undifferentiated	17\%	32\%	36\%	0\%	5\%	9\%
0	Tripletail	Tripletail	Lobotes surinamensis	0\%	86\%	14\%	0\%	0\%	0\%
\%	Trumpeter	Trumpeter	Latridopsis spp	0\%	0\%	2\%	0\%	3\%	95\%
$\stackrel{\rightharpoonup}{3}$	Tuna	Dogtooth Tuna	Gymnosarda unicolor	6\%	0\%	0\%	0\%	94\%	0\%
\%		Mackerel Tuna	Euthynnus affinis	0\%	6\%	20\%	19\%	32\%	22\%
8		Longtail Tuna	Thunnus orientalis	1\%	38\%	29\%	1\%	28\%	2\%
$\stackrel{\bigcirc}{3}$		Skipjack Tuna	Katsuwonus pelamis	0\%	3\%	35\%	0\%	2\%	60\%
2		Southern Bluefin Tuna	Thunnus maccoyii	0\%	0\%	51\%	0\%	49\%	0\%
\sum		Yellowfin Tuna	Thunnus albacares	1\%	22\%	54\%	6\%	6\%	11\%
$\stackrel{\sim}{0}$	Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	4\%	83\%	2\%	8\%	2\%	0\%
$\stackrel{3}{5}$		Blackspot Tuskfish	Choerodon schoenleinii	21\%	71\%	3\%	2\%	0\%	3\%
\xrightarrow{D}		Blue Tuskfish	Choerodon cyanodus	8\%	87\%	2\%	1\%	1\%	0\%
\%		Bluespotted Tuskfish	Choerodon cauteroma	61\%	13\%	27\%	0\%	0\%	0\%
2.		Brownspotted Wrasse	Notolabrus parilus	7\%	9\%	20\%	0\%	9\%	55\%
D		Foxfish	Bodianus frenchii	11\%	31\%	36\%	6\%	3\%	12\%
$\underset{0}{Z}$		Goldspot Pigfish	Bodianus perditio	21\%	0\%	33\%	0\%	0\%	46\%
$\begin{aligned} & 0 \\ & N \end{aligned}$		Humphead Maori Wrasse	Cheilinus undulatus	0\%	94\%	2\%	0\%	5\%	0\%
o		Purple Tuskfish	Choerodon cephalotes	2\%	91\%	6\%	0\%	0\%	0\%
N		Southern Maori Wrasse	Ophthalmolepis lineolatus	4\%	30\%	16\%	0\%	9\%	41\%
\bigcirc		Western Blue Groper	Achoerodus gouldii	41\%	51\%	7\%	0\%	0\%	2\%
\cdots		Western King Wrasse	Coris auricularis	8\%	5\%	31\%	0\%	6\%	51\%
		Other Tuskfish	Choerodon spp	0\%	100\%	0\%	0\%	0\%	0\%
		Other Wrasse	Labridae - undifferentiated	3\%	11\%	23\%	0\%	16\%	47\%
		Bluebarred Parrotfish	Scarus ghobban spp complex	3\%	32\%	20\%	6\%	7\%	32\%
		Other Parrotfish	Scaridae - undifferentiated	11\%	29\%	15\%	0\%	0\%	44\%
	Whiting	Goldenline Whiting	Sillago analis	59\%	20\%	21\%	0\%	0\%	0\%
		King George Whiting	Sillaginodes punctata	16\%	77\%	2\%	2\%	3\%	0\%
		School Whiting	Sillago bassensis, vittata \& schomburgkii	56\%	28\%	9\%	1\%	4\%	1\%
		Western Trumpeter Whiting	Sillago burrus	1\%	5\%	17\%	0\%	9\%	69\%
		Other Whiting	Sillaginidae - undifferentiated	4\%	30\%	63\%	0\%	0\%	3\%
	Western Blue Devil	Western Blue Devil	Paraplesiops sinclairi	3\%	14\%	28\%	0\%	1\%	55\%
	Small Baitfish	Small Baitfish	NO CODE	70\%	0\%	30\%	0\%	0\%	0\%
\cdots		Australian Sardine	Sardinops sagax	0\%	0\%	100\%	0\%	0\%	0\%
6		Other Herring	Clupeidae - undifferentiated	31\%	16\%	29\%	0\%	24\%	0\%

8	Reporting Group Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
	Finfish Other Archerfishes	Toxotidae - undifferentiated	0\%	0\%	0\%	0\%	100\%	0\%
	Bighead Gurnard Perch	Neosebastes pandus	8\%	1\%	38\%	1\%	7\%	45\%
	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	7\%	0\%	4\%	0\%	6\%	83\%
	Silver Toadfish	Lagocephalus sceleratus	4\%	0\%	4\%	0\%	1\%	91\%
	Weeping Toadfish	Torquigener pleurogramma	0\%	0\%	3\%	0\%	0\%	96\%
	Morid Cod	Moridae - undifferentiated	1\%	34\%	35\%	0\%	0\%	30\%
	Conger Eel	Conger spp	0\%	0\%	20\%	0\%	0\%	80\%
	Eel	Anguilliformes \& Synbranchiformes	0\%	0\%	64\%	0\%	0\%	36\%
	Moonfish Batfish	Lampridae - undifferentiated	0\%	0\%	50\%	0\%	0\%	50\%
	Salmon	Salmonidae - undifferentiated	30\%	33\%	9\%	0\%	23\%	6\%
	Silver Drummer	Kyphosus spp Complex	0\%	0\%	0\%	0\%	0\%	100\%
	Oxeye Herring	Megalopidae - undifferentiated	0\%	0\%	0\%	0\%	100\%	0\%
	Cephalopod Cuttlefish	Sepia spp	21\%	12\%	31\%	0\%	16\%	20\%
	Octopus	Octopus spp	24\%	8\%	37\%	0\%	0\%	31\%
0	Squid	Order Teuthoidea	64\%	12\%	20\%	0\%	0\%	4\%
\%	Lobster Western Rock Lobster	Panulirus cygnus	2\%	53\%	2\%	10\%	0\%	32\%
$\stackrel{\sim}{0}$	Southern Rock Lobster	Jasus edwardsii	8\%	58\%	0\%	4\%	0\%	30\%
$\stackrel{\square}{\sim}$	Painted Rock Lobster	Panulirus versicolor	9\%	79\%	0\%	11\%	0\%	0\%
$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Ornate Rock Lobster	Panulirus ornatus	40\%	0\%	0\%	0\%	0\%	60\%
	Crab Blue Swimmer Crab	Portunus armatus	3\%	80\%	0\%	3\%	0\%	14\%
	Sand Crab	Ovalipes spp	37\%	0\%	63\%	0\%	0\%	0\%
\sum	Mud Crab	Scylla olivacea \& S serrata	13\%	68\%	6\%	2\%	0\%	11\%
$\stackrel{8}{2}$	Sharks Blacktip Reef Shark	Carcharhinus melanopterus	0\%	0\%	17\%	0\%	21\%	62\%
$\stackrel{\square}{3}$	Bronze Whaler	Carcharhinus brachyurus	0\%	40\%	18\%	0\%	5\%	37\%
$\begin{aligned} & \text { D } \\ & \text { こ } \\ & \overrightarrow{0} \\ & \text { N. } \end{aligned}$	Dusky Whaler	Carcharhinus obscurus	0\%	0\%	51\%	0\%	5\%	44\%
	Lemon Shark	Negaprion acutidens	0\%	2\%	3\%	0\%	16\%	79\%
	Sandbar Shark	Carcharhinus plumbeus	0\%	10\%	67\%	0\%	0\%	23\%
	Tiger Shark	Galeocerdo cuvier	0\%	2\%	16\%	0\%	13\%	69\%
$\underset{0}{Z}$	Whitetip Reef Shark	Triaenodon obesus	12\%	3\%	36\%	0\%	5\%	44\%
	Greynurse Shark PROTECTED	Carcharias taurus	0\%	19\%	37\%	0\%	0\%	44\%
$\begin{aligned} & \text { N } \\ & \text { ó } \end{aligned}$	Gummy Sharks	Mustelus antarcticus \& M stevensi	7\%	8\%	48\%	0\%	0\%	38\%
	Hammerhead Shark	Family Sphyrnidae	4\%	0\%	45\%	0\%	0\%	51\%
$\begin{aligned} & \text { N } \\ & \text { U } \end{aligned}$	Port Jackson Shark	Heterodontus portusjacksoni	0\%	53\%	15\%	0\%	2\%	29\%
	Sawshark	Family Pristiophoridae	0\%	0\%	0\%	0\%	0\%	100\%
	Whiskery Shark	Furgaleus macki	0\%	0\%	44\%	0\%	0\%	56\%

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
	Wobbegong	Family Orectolobidae	2\%	2\%	37\%	0\%	0\%	59\%
	Other Whaler	Carcharhinidae - undifferentiated	7\%	0\%	46\%	4\%	4\%	39\%
	Other Shark	Sharks - undifferentiated	7\%	0\%	38\%	0\%	2\%	53\%
Rays	Sawfishes PROTECTED	Pristidae - undifferentiated	0\%	0\%	0\%	0\%	33\%	67\%
	Western Shovelnose Ray	Aptychotrema vincentiana	1\%	0\%	45\%	0\%	1\%	53\%
	Other Rays Skates	Rays - undifferentiated	0\%	0\%	36\%	0\%	2\%	62\%
Barracouta	Barracouta	Thyrsites atun	5\%	7\%	61\%	0\%	9\%	18\%
Barramundi	Barramundi	Lates calcarifer	6\%	14\%	59\%	1\%	14\%	6\%
Billfish	Black Marlin	Makaira indica	1\%	1\%	8\%	2\%	52\%	36\%
	Blue Marlin	Makaira nigricans	0\%	0\%	0\%	0\%	90\%	10\%
	Sailfish	Istiophorus platypterus	0\%	1\%	7\%	0\%	81\%	11\%
	Striped Marlin	Tetrapturus audax	0\%	0\%	0\%	0\%	100\%	0\%
Bonito	Bonito	Sarda spp	0\%	3\%	14\%	17\%	40\%	26\%
	Oriental Bonito	Sarda orientalis	59\%	0\%	20\%	1\%	21\%	0\%
Bream	Black Bream	Acanthopagrus butcheri	9\%	37\%	4\%	0\%	47\%	4\%
	Frypan Bream	Argyrops spinifer	26\%	26\%	8\%	0\%	0\%	39\%
	Northwest Black Bream	Acanthopagrus palmaris	2\%	41\%	31\%	1\%	18\%	7\%
	Pink Snapper	Chrysophrys auratus	5\%	78\%	4\%	4\%	1\%	8\%
	Tarwhine	Rhabdosargus sarba	5\%	59\%	13\%	0\%	7\%	16\%
	Western Yellowfin Bream	Acanthopagrus morrisoni	20\%	58\%	10\%	0\%	9\%	3\%
	Other Bream	Sparidae - undifferentiated	1\%	81\%	16\%	0\%	0\%	1\%
Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	0\%	100\%	0\%	0\%	0\%	0\%
	Western Butterfish	Pentapodus vitta	5\%	7\%	38\%	1\%	8\%	41\%
Butterfish	Other Butterfish	Stromateidae - undifferentiated	33\%	1\%	19\%	0\%	0\%	47\%
Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	4\%	4\%	49\%	2\%	7\%	33\%
	Estuary Cobbler	Cnidoglanis macrocephalus	20\%	0\%	27\%	0\%	0\%	53\%
	Giant Sea Catfish	Arius thalassinus	3\%	10\%	40\%	0\%	13\%	35\%
	Silver Cobbler	Neoarius midgleyi	9\%	24\%	41\%	0\%	5\%	22\%
Cobia	Cobia	Rachycentron canadum	19\%	34\%	16\%	0\%	1\%	30\%
Cod	Barramundi Cod	Cromileptes altivelis	39\%	49\%	7\%	0\%	3\%	2\%
	Blackspotted Rockcod	Epinephelus malabaricus	7\%	35\%	32\%	0\%	10\%	16\%
	Blacktip Rockcod	Epinephelus fasciatus	14\%	65\%	2\%	4\%	0\%	14\%
	Breaksea Cod	Epinephelides armatus	11\%	59\%	14\%	7\%	3\%	6\%
	Chinaman Rockcod	Epinephelus rivulatus	17\%	37\%	20\%	1\%	9\%	16\%
	Eightbar Grouper	Hyporthodus octofasciatus	0\%	100\%	0\%	0\%	0\%	0\%

N	Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
		Frostback Rockcod	Epinephelus bilobatus	11\%	71\%	16\%	0\%	1\%	0\%
		Goldspotted Rockcod	Epinephelus coioides	11\%	38\%	25\%	3\%	7\%	16\%
		Harlequin Fish	Othos dentex	69\%	6\%	14\%	0\%	1\%	10\%
		Potato Rockcod PROTECTED	Epinephelus tukula	0\%	38\%	18\%	0\%	0\%	44\%
		Queensland Grouper PROTECTED	Epinephelus lanceolatus	0\%	0\%	9\%	0\%	15\%	76\%
		Rankin Cod	Epinephelus multinotatus	22\%	41\%	18\%	1\%	5\%	12\%
		Tomato Rockcod	Cephalopholis sonnerati	11\%	66\%	6\%	0\%	0\%	17\%
		Temperate Rockcods	Epinephelidae - undifferentiated	0\%	14\%	34\%	0\%	0\%	53\%
		Yellowspotted Rockcod	Epinephelus areolatus	14\%	68\%	16\%	0\%	0\%	2\%
	Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	8\%	62\%	12\%	2\%	5\%	11\%
$\begin{aligned} & T 1 \\ & \frac{1}{n} \\ & \stackrel{2}{0} \\ & \frac{3}{0} \end{aligned}$		Common Coral Trout	Plectropomus leopardus	6\%	67\%	4\%	19\%	0\%	3\%
		Yellowedge Coronation Trout	Variola louti	17\%	55\%	15\%	0\%	13\%	0\%
	Emperor	Bluespotted Emperor	Lethrinus punctulatus	32\%	47\%	10\%	6\%	2\%	3\%
		Grass Emperor	Lethrinus laticaudis	13\%	75\%	7\%	1\%	2\%	1\%
\%		Longnose Emperor	Lethrinus olivaceus	0\%	66\%	34\%	0\%	0\%	0\%
$\stackrel{8}{0}$		Redspot Emperor	Lethrinus lentjan	48\%	41\%	11\%	0\%	0\%	0\%
$\underset{0}{0}$		Redthroat Emperor	Lethrinus miniatus	8\%	52\%	26\%	7\%	3\%	4\%
$\frac{\square}{\sim}$		Robinsons' Seabream	Gymnocranius grandoculis	4\%	20\%	29\%	16\%	0\%	31\%
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Spangled Emperor	Lethrinus nebulosus	13\%	65\%	10\%	5\%	4\%	3\%
		Yellowtail Emperor	Lethrinus atkinsoni	0\%	37\%	63\%	0\%	0\%	0\%
		Other Emperor	Lethrinidae - undifferentiated	0\%	90\%	0\%	0\%	0\%	10\%
\sum	Flathead	Northern Sand Flathead	Platycephalus endrachtensis	47\%	25\%	15\%	0\%	0\%	12\%
$\stackrel{8}{2}$		Southern Bluespotted Flathead	Platycephalus speculator	30\%	50\%	10\%	1\%	3\%	7\%
$\stackrel{\rightharpoonup}{0}$		Yellowtail Flathead	Platycephalus westraliae	30\%	48\%	3\%	0\%	17\%	2\%
$\begin{aligned} & \vec{D} \\ & \stackrel{y}{n} \\ & \stackrel{\rightharpoonup}{\hat{0}} \\ & 0.0 \end{aligned}$		Other Flathead	Platycephalidae - undifferentiated	33\%	56\%	6\%	0\%	1\%	5\%
	Flounder	Largetooth Flounder	Pseudorhombus arsius	0\%	0\%	0\%	0\%	0\%	100\%
		Smalltooth Flounder	Pseudorhombus jenynsii	27\%	6\%	11\%	0\%	39\%	17\%
		Flounder Sole Flatfish	Bothidae \& Pleuronectidae spp	0\%	86\%	0\%	0\%	14\%	0\%
$\underset{\sim}{7}$	Garfish	Three-by-two Garfish	Hemiramphus robustus	0\%	0\%	61\%	0\%	0\%	39\%
		Southern Garfish	Hyporhamphus melanochir	19\%	30\%	20\%	0\%	0\%	31\%
$\begin{aligned} & \text { No } \\ & \text { on } \end{aligned}$		Other Garfish	Hemiramphidae - undifferentiated	0\%	0\%	0\%	0\%	0\%	100\%
	Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	17\%	8\%	24\%	0\%	1\%	50\%
$\begin{aligned} & N \\ & \underset{\sim}{\prime} \end{aligned}$	Grunter	Sea Trumpeter	Pelsartia humeralis	1\%	1\%	25\%	0\%	0\%	73\%
		Western Striped Grunter	Pelates octolineatus	1\%	2\%	3\%	0\%	16\%	79\%
		Western Sooty Grunter	Hephaestus jenkinsi	2\%	4\%	8\%	0\%	0\%	85\%

$\left.\begin{array}{llllllcc}\hline \text { Reporting Group } & \text { Common Name } & \text { Scientific Name } & \begin{array}{c}\text { Too } \\ \text { Small }\end{array} & \begin{array}{c}\text { Under } \\ \text { Size }\end{array} & \begin{array}{c}\text { Too } \\ \text { Many }\end{array} & \begin{array}{c}\text { Over } \\ \text { Limit }\end{array} & \begin{array}{c}\text { Catch } \\ \text { Release }\end{array}\end{array} \begin{array}{c}\text { Other }\end{array}\right]$

$$	Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
$\stackrel{3}{8}$		Golden Trevally	Gnathanodon speciosus	6\%	32\%	30\%	0\%	18\%	13\%
\bigcirc		Bludger Trevally	Carangoides gymnostethus	7\%	0\%	15\%	0\%	0\%	77\%
0		Silver Trevally	Pseudocaranx dentex	8\%	32\%	42\%	6\%	7\%	5\%
\bigcirc		Rainbow Runner	Elagatis bipinnulata	75\%	0\%	0\%	0\%	0\%	25\%
$\stackrel{\rightharpoonup}{0}$		Common Dart	Trachinotus botla	30\%	0\%	18\%	0\%	0\%	53\%
\%		Yellowtail Scad	Trachurus novaezelandiae	18\%	28\%	12\%	5\%	4\%	35\%
8		Turrum	Carangoides fulvoguttatus	11\%	57\%	8\%	5\%	0\%	19\%
\bigcirc		Other Trevally	Carangidae - undifferentiated	17\%	32\%	36\%	0\%	5\%	9\%
	Tripletail	Tripletail	Lobotes surinamensis	0\%	86\%	14\%	0\%	0\%	0\%
\gtrless_{0}	Trumpeter	Trumpeter	Latridopsis spp	0\%	0\%	2\%	0\%	3\%	95\%
$\stackrel{0}{0}$	Tuna	Dogtooth Tuna	Gymnosarda unicolor	6\%	0\%	0\%	0\%	94\%	0\%
3		Mackerel Tuna	Euthynnus affinis	0\%	6\%	20\%	19\%	32\%	22\%
1		Longtail Tuna	Thunnus orientalis	1\%	38\%	29\%	1\%	28\%	2\%
5		Skipjack Tuna	Katsuwonus pelamis	0\%	3\%	35\%	0\%	2\%	60\%
\%		Southern Bluefin Tuna	Thunnus maccoyii	0\%	0\%	51\%	0\%	49\%	0\%
\cong		Yellowfin Tuna	Thunnus albacares	1\%	22\%	54\%	6\%	6\%	11\%
3	Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	4\%	83\%	2\%	8\%	2\%	0\%
		Blackspot Tuskfish	Choerodon schoenleinii	21\%	71\%	3\%	2\%	0\%	3\%
∞		Blue Tuskfish	Choerodon cyanodus	8\%	87\%	2\%	1\%	1\%	0\%
		Bluespotted Tuskfish	Choerodon cauteroma	61\%	13\%	27\%	0\%	0\%	0\%
\bigcirc		Brownspotted Wrasse	Notolabrus parilus	7\%	9\%	20\%	0\%	9\%	55\%
u		Foxfish	Bodianus frenchii	11\%	31\%	36\%	6\%	3\%	12\%
		Goldspot Pigfish	Bodianus perditio	21\%	0\%	33\%	0\%	0\%	46\%
		Humphead Maori Wrasse	Cheilinus undulatus	0\%	94\%	2\%	0\%	5\%	0\%
		Purple Tuskfish	Choerodon cephalotes	2\%	91\%	6\%	0\%	0\%	0\%
		Southern Maori Wrasse	Ophthalmolepis lineolatus	4\%	30\%	16\%	0\%	9\%	41\%
		Western Blue Groper	Achoerodus gouldii	41\%	51\%	7\%	0\%	0\%	2\%
		Western King Wrasse	Coris auricularis	8\%	5\%	31\%	0\%	6\%	51\%
		Other Tuskfish	Choerodon spp	0\%	100\%	0\%	0\%	0\%	0\%
		Other Wrasse	Labridae - undifferentiated	3\%	11\%	23\%	0\%	16\%	47\%
		Bluebarred Parrotfish	Scarus ghobban spp complex	3\%	32\%	20\%	6\%	7\%	32\%
		Other Parrotfish	Scaridae - undifferentiated	11\%	29\%	15\%	0\%	0\%	44\%
	Whiting	Goldenline Whiting	Sillago analis	59\%	20\%	21\%	0\%	0\%	0\%
9		King George Whiting	Sillaginodes punctata	16\%	77\%	2\%	2\%	3\%	0\%
		School Whiting	Sillago bassensis, vittata \& schomburgkii	56\%	28\%	9\%	1\%	4\%	1\%

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
	Western Trumpeter Whiting	Sillago burrus	1\%	5\%	17\%	0\%	9\%	69\%
	Other Whiting	Sillaginidae - undifferentiated	4\%	30\%	63\%	0\%	0\%	3\%
Western Blue Devil	Western Blue Devil	Paraplesiops sinclairi	3\%	14\%	28\%	0\%	1\%	55\%
Small Baitfish	Small Baitfish	NO CODE	70\%	0\%	30\%	0\%	0\%	0\%
	Australian Sardine	Sardinops sagax	0\%	0\%	100\%	0\%	0\%	0\%
	Other Herring	Clupeidae - undifferentiated	31\%	16\%	29\%	0\%	24\%	0\%
Finfish Other	Archerfishes	Toxotidae - undifferentiated	0\%	0\%	0\%	0\%	100\%	0\%
	Bighead Gurnard Perch	Neosebastes pandus	8\%	1\%	38\%	1\%	7\%	45\%
	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	7\%	0\%	4\%	0\%	6\%	83\%
	Silver Toadfish	Lagocephalus sceleratus	4\%	0\%	4\%	0\%	1\%	91\%
	Weeping Toadfish	Torquigener pleurogramma	0\%	0\%	3\%	0\%	0\%	96\%
	Morid Cod	Moridae - undifferentiated	1\%	34\%	35\%	0\%	0\%	30\%
	Conger Eel	Conger spp	0\%	0\%	20\%	0\%	0\%	80\%
	Eel	Anguilliformes \& Synbranchiformes	0\%	0\%	64\%	0\%	0\%	36\%
	Moonfish Batfish	Lampridae - undifferentiated	0\%	0\%	50\%	0\%	0\%	50\%
	Salmon	Salmonidae - undifferentiated	30\%	33\%	9\%	0\%	23\%	6\%
	Silver Drummer	Kyphosus spp Complex	0\%	0\%	0\%	0\%	0\%	100\%
	Oxeye Herring	Megalopidae - undifferentiated	0\%	0\%	0\%	0\%	100\%	0\%

6 Estimates of Catch for Key Species

This section presents estimates of recreational catch (kept, released and total in numbers) from the Phone-Diary Survey for the 12 month period from 1 May 2013 to 30 April 2014. Estimates from the previous survey (1 March 2011 to 29 February 2012) have been included in each figure. Survey data have been expanded to population estimates based on the total number of RFBL holders divided by the number of RFBL holders sampled for each residential stratum. Future research will include an assessment of the impact of avidity bias and non-intending fishing on weighting (see Chapter 9), and the estimates (and errors) in the following section may be revised on this basis. Shore-based recreational catch has not been assessed in this report. Shore-based fishers and boat-based fishers that intended to fish only in freshwater were out of scope for the Phone-Diary Survey. The catch estimates for inland, estuarine and nearshore species provided in this report, particularly those harvested with high proportions of shore-based effort, will be underestimated.

Summaries are provided by bioregion, habitat, fishing method and season for priority species identified on the basis of abundance in the reported catch and importance for management. Key Species have been allocated to habitat types according to the Resource Assessment Framework (RAF) (Department of Fisheries 2011). However, the following RAF indicator species were caught in low numbers and are not included in this section: Blue-eye Trevalla (Hyperoglyphe antarctica); Perth Herring (Nematalosa vlaminghi); Pilchard (Sardinops sagax); Sandbar Shark (Carcharhinus plumbeus); Western Blue Groper (Achoerodus gouldii); Whiskery Shark (Furgaleus macki); and Whitebait (Hyperlophus vittatus).

Estimates of recreational catch for key species are presented by habitat type. This includes:

- 1 species/taxa for inland; Silver Cobbler (Neoarius midgleyi).
- 5 species/taxa for estuarine; Barramundi (Lates calcarifer), Black Bream (Acanthopagrus butcheri), Estuary Cobbler (Cnidoglanis macrocephalus), Yellowtail Flathead (Platycephalus westraliae), and Southern Bluespotted Flathead (Platycephalus speculator).
- 17 species/taxa for nearshore; Australian Herring (Arripis georgianus), Western Australian Salmon (Arripis truttaceus), Garfish (Hyporhamphus melanochir and Hemiramphus robustus), Sea Mullet (Mugil cephalus), Tailor (Pomatomus saltatrix), Blue Threadfin (Eleutheronema tetradactylum), King Threadfin (Polydactylus macrochir), King George Whiting (Sillaginodes punctata), School Whiting (Sillago bassensis, vittata and schomburgkii), Western Trumpeter Whiting (Sillago burrus), Mangrove Jack (Lutjanus argentimaculatus), Silver Trevally (Pseudocaranx dentex), Western Butterfish (Pentapodus vitta), Western Yellowfin Bream (Acanthopagrus morrisoni), Western King Wrasse (Coris auricularis), Brownspotted Wrasse (Notolabrus parilus) and Yellowtail Scad (Trachurus novaezelandiae).
- 17 species/taxa for inshore demersal; Baldchin Groper (Choerodon rubescens), Bight Redfish (Centroberyx gerrardi), Blue Morwong (Nemadactylus valenciennesi), Bluespotted Emperor (Lethrinus punctulatus), Brownstripe Snapper (Lutjanus vitta), Goldband Snapper (Pristipomoides multidens), Pink Snapper (Chrysophrys auratus),

Rankin Cod (Epinephelus multinotatus), Red Emperor (Lutjanus sebae), Spangled Emperor (Lethrinus nebulosus), West Australian Dhufish (Glaucosoma hebraicum), Barcheek Coral Trout (Plectropomus maculatus), Common Coral Trout (Plectropomus leopardus), Breaksea Cod (Epinephelides armatus), Grass Emperor (Lethrinus laticaudis), Redthroat Emperor (Lethrinus miniatus) and Stripey Snapper (Lutjanus carponotatus).

- 3 species/taxa for offshore demersal; Eightbar Grouper (Epinephelus octofasciatus), Hapuku (Polyprion oxygeneios) and Ruby Snapper (Etelis carbunculus)
- 6 species/taxa for pelagic; Spanish Mackerel (Scomberomorus commerson), Samsonfish (Seriola hippos), Grey Mackerel (Scomberomorus semifasciatus), Blue Mackerel (Scomber australasicus), Billfish and Southern Bluefin Tuna (Thunnus maccoyii).
- 4 species/taxa for sharks; Whaler Sharks (Family Carcharhinidae), Gummy Sharks (Mustelus antarcticus and M. stevensi), Port Jackson Shark (Heterodontus portusjacksoni) and Wobbegong (Family Orectolobidae).
- 3 species/taxa for crustaceans; Western Rock Lobster (Panulirus cygnus), Mud Crab (Scylla olivacea and S. serrata) and Blue Swimmer Crab (Portunus armatus).
- 1 species/taxa for molluscs; Abalone (Haliotis spp.).
- 3 species/taxa for cephalopods; Cuttlefish (Order Sepiidae), Squid (Order Teuthoidea) and Octopus (Order Octopodidae).

6.1 Inland

Estimates of recreational catches for inland species will be underestimated as shore-based fishers and boat-based fishers that fished only in freshwater were out of scope.

6.1.1 Silver Cobbler (Neoarius midgleyi)

Silver Cobbler is an indicator species in the Northern Inland bioregion. All recreational catches of Silver Cobbler by RFBL holders aged five years or older occurred in the North Coast bioregion (Figure 16b and c). The majority of the boat-based recreational catches of Silver Cobbler were released (76%) (Figure 16a) with most releases attributed to "Too Many" (41\%) and under-size (24\%) (Table 7). Silver Cobbler were harvested in freshwater habitat (Figure 16d) throughout the year, with higher catches observed in spring (70%) and autumn (24\%) (Figure 16f). All catches were taken by line-fishing (Figure 16e). The estimated kept and released recreational catches of Silver Cobbler were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 16a, Table 5).

Figure 16. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Silver Cobbler in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2 Estuarine

Estimates of recreational catches for estuarine species will be underestimated as shore-based fishers were out of scope of the survey.

6.2.1 Barramundi (Lates calcarifer)

Barramundi is an indicator species in the North Coast bioregion. All recreational catches of Barramundi by RFBL holders aged five years or older occurred in the North Coast bioregion (Figure 17 b and c). The majority of the boat-based recreational catches of Barramundi were released (91\%) (Figure 17a) with most releases attributed to "Too Many" (59\%) (Table 7). The majority of catches were taken in estuary habitat (79\%), but also nearshore (13%) and freshwater (8\%) habitats (Figure 17d). Barramundi were harvested throughout the year, with higher catches observed in autumn (47\%), winter (21\%) and spring (25\%) (Figure 17f). All catches were taken by line-fishing (Figure 17e). The estimated kept recreational catches of Barramundi were similar in 2013/14 compared to 2011/12 (Figure 17a, Table 5).

Figure 17. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Barramundi in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.2 Black Bream (Acanthopagrus butcheri)

Black Bream is an indicator species in the West Coast and South Coast bioregions. The majority of the kept recreational catches of Black Bream by RFBL holders aged five years or older occurred in the South Coast (62\%), followed by the West Coast (38\%) (Figure 18b and c). The majority of the boat-based recreational catches of Black Bream were released (91\%) (Figure 18a) with most releases attributed to catch and release fishing (47\%) (Table 7). Catches were taken predominantly from estuary habitat (77\%), but also nearshore (15%) and freshwater (6%) habitats (Figure 18d). Black Bream were harvested throughout the year, with higher catches observed in summer (36%) and autumn (32%) compared with winter (18%) and spring (14%) (Figure 18f). The majority of kept catches were taken by line-fishing (99%) (Figure 18e). The estimated kept recreational catches of Black Bream were significantly lower in 2013/14 compared with 2011/12, although estimated released recreational catches were similar in both years (Figure 18a, Table 5).

Figure 18. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Black Bream in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.3 Estuary Cobbler (Cnidoglanis macrocephalus)

Estuary Cobbler is an indicator species in the West Coast and South Coast bioregions. The majority of the kept recreational catches of Estuary Cobbler by RFBL holders aged five years or older occurred in the West Coast (80\%), followed by the South Coast (14\%) (Figure 19b and c). Just over half of the boat-based recreational catches of Estuary Cobbler were released (37\%) (Figure 19a) with most releases attributed to "Other" (53\%) (Table 7). Catches were taken predominantly from nearshore (60%) and estuary (40%) habitats (Figure 19d). Estuary Cobbler were harvested from spring to autumn, with highest catches in autumn (81\%) compared with spring (4\%) and summer (15\%) (Figure 19f). The majority of catches were taken by line-fishing (85%), with some fishing from nets (15\%) (Figure 19e). The estimated kept and released recreational catches of Estuary Cobbler were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 19a, Table 5).

Figure 19. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Estuary Cobbler in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.4 Yellowtail Flathead (Platycephalus westraliae)

The majority of the recreational catches of Yellowtail Flathead by RFBL holders aged five years or older occurred in the West Coast (80%), with some catches in the Gascoyne Coast (11%) and South Coast (9%) (Figure 20b and c). The majority of the boat-based recreational catches of Yellowtail Flathead were released (87\%) (Figure 20a) with most releases attributed to under-size catches (48%) (Table 7). Catches were taken predominantly from nearshore habitat (42%), but also inshore demersal (38%) and estuary (20%) habitats (Figure 20d). Yellowtail Flathead were harvested throughout the year, with higher catches observed in summer (38\%) and autumn (40\%) compared with winter (14\%) and spring (8\%) (Figure 20f). All catches were taken by line-fishing (Figure 20e). The estimated kept and released recreational catches of Yellowtail Flathead were similar in 2013/14 compared to 2011/12 (Figure 20a, Table 5).

Figure 20. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Yellowtail Flathead in Western Australia during 2013/14 a) kept and released; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.5 Southern Bluespotted Flathead (Platycephalus speculator)

The majority of the recreational catches of Southern Bluespotted Flathead by RFBL holders aged five years or older occurred in the West Coast (54\%), followed by the South Coast (46%) (Figure 21b and c). The majority of the boat-based recreational catches of Southern Bluespotted Flathead were released (88\%) (Figure 21a) with most releases attributed to under-size catches (50\%) (Table 7). Catches were taken predominantly from nearshore habitat (55%), but also inshore demersal (41%) and estuary (4%) habitats (Figure 21d). Southern Bluespotted Flathead were harvested throughout the year, with higher catches observed in summer (39\%) compared with autumn (22\%), winter (16\%) and spring (23\%) (Figure 21f). All catches were taken by line-fishing (Figure 21e). The estimated kept and released recreational catches of Southern Bluespotted Flathead were similar in 2013/14 compared to 2011/12 (Figure 21a, Table 5).

Figure 21. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Southern Bluespotted Flathead in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3 Nearshore

Estimates of recreational catch for nearshore species will be underestimated as shore-based fishers (using lines, nets, diving and pots) were out of scope of the survey.

6.3.1 Australian Herring (Arripis georgianus)

Australian Herring is an indicator species in the West Coast and South Coast bioregions. The majority of the kept recreational catches of Australian Herring by RFBL holders aged five years or older occurred in the West Coast (78\%), followed by the South Coast (22\%) (Figure 22b and c). The majority of the boat-based recreational catches of Australian Herring were kept (76\%) (Figure 22a). Catches were taken predominantly from nearshore habitat (86%), but also inshore demersal (8\%) and estuary (6%) habitats (Figure 22d). Australian Herring were harvested throughout the year, with higher catches observed in summer (27\%) and autumn (46%) compared with winter (16%) and spring (11\%) (Figure 22f). All catches were taken by line-fishing (Figure 22e). The estimated kept recreational catches of Australian Herring were significantly lower in 2013/14 compared with 2011/12, although estimated released recreational catches were similar in both years (Figure 22a, Table 5).

Figure 22. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Australian Herring in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.2 Western Australian Salmon (Arripis truttaceus)

Western Australian Salmon is an indicator species in the South Coast. The majority of the kept recreational catches of Western Australian Salmon by RFBL holders aged five years or older occurred in the South Coast (68\%), followed by the West Coast (32\%) (Figure 23b and c). The majority of the boat-based recreational catches of Western Australian Salmon were released in 2013/14 (64\%) (Figure 23a) with the releases attributed to under-size catches (28%), catch and release fishing (25%) and "Too Many" (24%) (Table 7). Catches were taken predominantly from nearshore habitat (60%), but also inshore demersal (30%), estuary (7%) and pelagic (3\%) habitats (Figure 23d). Western Australian Salmon were harvested throughout the year, with higher catches observed in autumn (81%) compared with winter (2%), spring (8%) and summer (9%) (Figure 23f). All catches were taken by line-fishing (Figure 23e). The estimated kept recreational catches of Western Australian Salmon were similar in 2013/14 compared to 2011/12 (Figure 23a, Table 5).

Figure 23. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Western Australian Salmon in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.3 Garfish (Hyporhamphus melanochir and Hemiramphus robustus)

Garfish species include Southern Garfish (Hyporhamphus melanochir) and three-by-two Garfish (Hemiramphus robustus). Garfish is an indicator species in the West Coast bioregion. The majority of kept recreational catches of Garfish by RFBL holders aged five years or older occurred in the North Coast (37\%) and West Coast (31\%), followed by the South Coast (20%) and Gascoyne Coast (12%) (Figure 24 b and c). The majority of the boat-based recreational catches of Garfish were kept (85%) (Figure 24a). Catches were taken predominantly from nearshore habitat (74\%), but also inshore demersal (12\%), estuary (6\%) and pelagic (8\%) habitats (Figure 24d). Garfish were harvested throughout the year, with higher catches observed in autumn (28%) and winter (50%) compared with spring (7%) and summer (15%) (Figure 24f). The majority of catches were taken by line-fishing (91%), with some fishing from nets (9\%) (Figure 24e). The estimated kept and released recreational catches of Garfish were significantly lower in 2013/14 compared with 2011/12 (Figure 24a, Table 5).

Figure 24. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Garfish in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.4 Sea Mullet (Mugil cephalus)

Sea Mullet is an indicator species in the Gascoyne, West and South Coast bioregions. The majority of the kept recreational catches of Sea Mullet by RFBL holders aged five years or older occurred in the West Coast (81%), with some catches in the Gascoyne Coast (16\%) and South Coast (3\%) (Figure 25b and c). The majority of the boat-based recreational catches of Sea Mullet were kept ($>99 \%$) (Figure 25a). Catches were taken predominantly from estuary habitat (51%), but also nearshore (34%) and inshore demersal (15%) habitats (Figure 25d). Sea Mullet were harvested throughout the year, with higher catches observed in autumn (44%) compared with winter (10\%), spring (32%) and summer (14%) (Figure 25f). Catches were taken by nets (88%), with some fishing from lines (9%) and pots (3%) (Figure 25e). The estimated kept and released recreational catches of Sea Mullet were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 25a, Table 5).

Figure 25. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Sea Mullet in Western Australia during 2013/14 a) kept and released; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.5 Tailor (Pomatomus saltatrix)

Tailor is an indicator species in the Gascoyne Coast and West Coast bioregions. The majority of the kept recreational catches of Tailor by RFBL holders aged five years or older occurred in the West Coast (88\%), with some catches in the Gascoyne Coast (10\%) and South Coast (2%) (Figure 26b and c). Equal proportions of the boat-based recreational catch of Tailor were kept (49%) and released (51%) (Figure 26a). Catches were taken predominantly from estuary habitat (50%), but also nearshore (38%) and inshore demersal (10%) habitats (Figure 26d). Tailor were harvested throughout the year, with higher catches observed in summer (35%) and autumn (34%) compared with winter (10%) and spring (21%) (Figure 26f). Catches were taken by line fishing (96%), with some fishing from nets (4\%) (Figure 26e). The estimated kept and released recreational catches of Tailor were similar in 2013/14 compared to 2011/12 (Figure 26a, Table 5).

Figure 26. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Tailor in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.6 Blue Threadfin (Eleutheronema tetradactylum)

Blue Threadfin is an indicator species in the North Coast bioregion. The majority of the kept recreational catches of Blue Threadfin by RFBL holders aged five years or older occurred in the North Coast (94\%), with some catches in the Gascoyne Coast (6\%) (Figure 27b and c). The majority of the boat-based recreational catches of Blue Threadfin were kept (66%) (Figure 27a). Catches were taken predominantly from nearshore habitat (66%), but also estuary (28\%) and inshore demersal (6\%) habitats (Figure 27d). Blue Threadfin were harvested throughout the year, with higher catches observed in winter (46%) compared with spring (21%), summer (5%) and autumn (28%) (Figure 27 f). All catches were taken by line fishing (Figure 27e). The estimated kept and released recreational catches of Blue Threadfin were similar in 2013/14 compared to 2011/12 (Figure 27a, Table 5).

Figure 27. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Blue Threadfin in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.7 King Threadfin (Polydactylus macrochir)

King Threadfin is an indicator species in the North Coast bioregion. The majority of the kept recreational catches of King Threadfin by RFBL holders aged five years or older occurred in the North Coast (98\%), with some catches in the Gascoyne Coast (2\%) (Figure 28b and c). The majority of the boat-based recreational catches of King Threadfin were released (63\%) (Figure 28a) with most releases attributed to catch and release fishing (74\%) (Table 7). Catches were taken from estuary (69\%) and nearshore (26\%) and inshore demersal (5\%) habitats (Figure 28d). King Threadfin were harvested throughout the year, with higher catches in summer (36\%), autumn (32\%) and winter (24%) compared with spring (8\%) (Figure 28 f). All catches were taken by line fishing (Figure 28e). The estimated kept and released recreational catches of King Threadfin were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 28a, Table 5).

Figure 28. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of King Threadfin in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.8 King George Whiting (Sillaginodes punctata)

Whiting species, including King George Whiting, are indicator species in the Gascoyne Coast, South Coast and West Coast bioregions. The majority of the kept recreational catches of King George Whiting by RFBL holders aged five years or older occurred in the South Coast (62\%), with some catches in the West Coast (38\%) (Figure 29b and c). The majority of the boat-based recreational catches of King George Whiting were kept (73\%) (Figure 29a). Catches were taken predominantly from nearshore habitat (66\%), but also inshore demersal (15\%) and estuary (18\%) habitats (Figure 29d). King George Whiting were harvested throughout the year, with equal catches in autumn (23\%), winter (21%), spring (28%) and summer (28\%) (Figure 29f). All catches were taken by line fishing (Figure 29e). The estimated released recreational catches of King George Whiting were significantly lower in 2013/14 compared with 2011/12, although estimated kept recreational catches were similar in both years (Figure 29a, Table 5).

Figure 29. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of King George Whiting in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.9 School Whiting (Sillago bassensis, vittata and schomburgkii)

Whiting species, including School and Yellowfin Whiting, are indicator species in the Gascoyne Coast, South Coast and West Coast bioregions. School Whiting includes Southern School Whiting (Sillago bassensis), Western School Whiting (S. vittata) and Yellowfin Whiting (S. schomburgkii). The majority of the kept recreational catches of School Whiting by RFBL holders aged five years or older occurred in the West Coast (92\%), with some catches in the South Coast (8\%) (Figure 30b and c). The majority of the boat-based recreational catches of School Whiting were kept (78\%) (Figure 30a). Catches were taken predominantly from nearshore habitat (68\%), but also inshore demersal (24\%) and estuary (5\%) habitats (Figure 30d). School Whiting were harvested throughout the year, with higher catches in summer (31\%) and autumn (29%) compared with winter (20%) and spring (20%) (Figure 30f). All catches were taken by line fishing (Figure 30e). The estimated kept and released recreational catches of School Whiting were similar in 2013/14 compared to 2011/12 (Figure 30a, Table 5).

Figure 30. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of School Whiting in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.10 Western Trumpeter Whiting (Sillago burrus)

The majority of the recreational catches of Western Trumpeter Whiting by RFBL holders aged five years or older occurred in the Gascoyne Coast (45\%) and West Coast (38\%), with some catches in the North Coast (17\%) (Figure 31b and c). The majority of the boat-based recreational catches of Western Trumpeter Whiting were released (97\%) (Figure 31a) with most releases attributed to "Other" (69\%) (Table 7). Catches were taken predominantly from nearshore habitat (95\%), but also inshore demersal (4\%) and estuary (1\%) habitats (Figure 31d). Western Trumpeter Whiting were harvested throughout the year, with higher catches observed in spring (34\%), summer (30\%) and autumn (27\%) compared with winter (9\%) (Figure 31f). All catches were taken by line fishing (Figure 31e). The estimated kept and released recreational catches of Western Trumpeter Whiting were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 31a, Table 5).

Figure 31. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Western Trumpeter Whiting in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.11 Mangrove Jack (Lutjanus argentimaculatus)

Mangrove Jack is an indicator species in the North Coast bioregion. The majority of the kept recreational catches of Mangrove Jack by RFBL holders aged five years or older occurred in the North Coast (78\%), with some catches in the Gascoyne Coast (22\%) (Figure 32b and c). The majority of the boat-based recreational catches of Mangrove Jack were released (62\%) (Figure 32a) with most releases attributed to under-size catches (42\%) (Table 7). Catches were taken predominantly from nearshore habitat (56\%), but also inshore demersal (21\%) and estuary (23\%) habitats (Figure 32d). Mangrove Jack were harvested throughout the year, with higher catches observed in summer (22%), autumn (25%) and winter (38%) compared with spring (15%) (Figure 32f). The majority of catches were taken by line fishing ($>99 \%$) (Figure 32e). The estimated kept and released recreational catches of Mangrove Jack were similar in 2013/14 compared to 2011/12 (Figure 32a, Table 5).

Figure 32. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Mangrove Jack in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.12 Silver Trevally (Pseudocaranx dentex and P. wrighti)

The majority of the recreational catches of Silver Trevally by RFBL holders aged five years or older occurred in the West Coast (84\%), with some catches in the South Coast (16\%) (Figure 33b and c). Similar proportions of the boat-based recreational catch of Silver Trevally were kept (56%) and released (44%) (Figure 33a). Catches were taken predominantly from nearshore habitat (65%), but also inshore demersal (30\%) and estuary (2%) habitats (Figure 33d). Silver Trevally were harvested throughout the year, with higher catches observed in autumn (28%) and winter (42%) compared with spring (11\%) and summer (19\%) (Figure $33 \mathrm{f})$. Catches were taken by line fishing (99%), with some fishing from diving (1\%) (Figure 33e). The estimated kept and released recreational catches of Silver Trevally were significantly lower in 2013/14 compared with 2011/12 (Figure 33a, Table 5).

Figure 33. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Silver Trevally in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.13 Western Butterfish (Pentapodus vitta)

The majority of the recreational catches of Western Butterfish by RFBL holders aged five years or older occurred in the West Coast (66\%), with some catches in the Gascoyne Coast (34%) (Figure 34 b and c). The majority of the boat-based recreational catches of Western Butterfish were released (76\%) (Figure 34a) with most releases attributed to "Other" (41\%) and "too Many" (38\%) (Table 7). Catches were taken predominantly from nearshore habitat (76\%), but also inshore demersal (18\%) (Figure 34d). Western Butterfish were harvested throughout the year, with higher catches in spring (25\%), summer (27\%) and autumn (29\%) compared with winter (19\%) (Figure 34f). The majority of catches were taken by line fishing ($>99 \%$) (Figure 34e). The estimated kept and released recreational catches of Western Butterfish were similar in 2013/14 compared to 2011/12 (Figure 34a, Table 5).

Figure 34. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Western Butterfish in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.14 Western Yellowfin Bream (Acanthopagrus morrisoni)

The majority of the recreational catches of Western Yellowfin Bream by RFBL holders aged five years or older occurred in the Gascoyne Coast (39\%), with some catches in the North Coast (27%) and West Coast (34%) (Figure 35b and c). The majority of the boat-based recreational catches of Western Yellowfin Bream were released (78\%) (Figure 35a) with most releases attributed to under-size catches (58\%) (Table 7). Catches were taken predominantly from nearshore habitat (75\%), but also estuary (21%) and inshore demersal (3\%) habitats (Figure 35d). Western Yellowfin Bream were harvested throughout the year, with higher catches observed in autumn (29\%) and winter (45\%) compared with spring (9\%) and summer (17\%) (Figure 35f). The majority of catches were taken by line fishing ($>99 \%$) (Figure 35e). The estimated kept and released recreational catches of Western Yellowfin Bream were similar in 2013/14 compared to 2011/12 (Figure 35a, Table 5).

Figure 35. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Western Yellowfin Bream in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.15 Western King Wrasse (Coris auricularis)

The majority of the recreational catches of Western King Wrasse by RFBL holders aged five years or older occurred in the West Coast (94\%), with some catches in the South Coast (6\%) (Figure 36b and c). The majority of the boat-based recreational catches of Western King Wrasse were released (85\%) (Figure 36a) with most releases attributed to "Other" (51\%) (Table 7). Catches were taken predominantly from nearshore habitat (62%), but also inshore demersal habitat (34\%) (Figure 36d). Western King Wrasse were harvested throughout the year, with higher catches observed in summer (43%) compared with autumn (26%), winter (17%) and spring (14%) (Figure 36f). All catches were taken by line fishing (Figure 36e). The estimated kept and released recreational catches of Western King Wrasse were similar in 2013/14 compared to 2011/12 (Figure 36a, Table 5).

Figure 36. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Western King Wrasse in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.16 Brownspotted Wrasse (Notolabrus parilus)

The majority of the recreational catches of Brownspotted Wrasse by RFBL holders aged five years or older occurred in the West Coast (78\%), with some catches in the South Coast (18\%) and Gascoyne Coast (4\%) (Figure 37b and c). The majority of the boat-based recreational catches of Brownspotted Wrasse were released (90\%) (Figure 37a) with most releases attributed to "Other" (55\%) (Table 7). Catches were taken predominantly from nearshore habitat (73\%), but also inshore demersal habitat (25\%) (Figure 37d). Brownspotted Wrasse were harvested throughout the year, with higher catches observed in summer (33%) and autumn (27%) compared with winter (18%) and spring (22%) (Figure 37f). The estimated kept and released recreational catches of Brownspotted Wrasse were similar in 2013/14 compared to 2011/12 (Figure 37a, Table 5).

Figure 37. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Brownspotted Wrasse in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4 Inshore Demersal

6.4.1 Baldchin Groper (Choerodon rubescens)

Baldchin Groper is an indicator species in the West Coast bioregion. The majority of the kept recreational catches of Baldchin Groper by RFBL holders aged five years or older occurred in the West Coast (76\%), with some catches in the Gascoyne Coast (24\%) (Figure 38b and c). Equal proportions of the boat-based recreational catch of Baldchin Groper were kept (46\%) and released (54\%) (Figure 38a). Catches were taken predominantly from inshore demersal habitat (50%), but also nearshore habitat (46%) (Figure 38d). Baldchin Groper were harvested throughout the year, with higher catches observed in autumn (35\%) compared with winter (23%), spring (26%) and summer (16%) (Figure 38 f). Catches were taken by line fishing (97\%), with some fishing from diving (3\%) (Figure 38e). The estimated kept and released recreational catches of Baldchin Groper were similar in 2013/14 compared to 2011/12 (Figure 38a, Table 5).

Figure 38. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Baldchin Groper in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.2 Bight Redfish (Centroberyx gerrardi)

Bight Redfish is an indicator species in the West and South Coast bioregions. The majority of the kept recreational catches of Bight Redfish by RFBL holders aged five years or older occurred in the South Coast (90\%), with some catches in the West Coast (10\%) (Figure 39b and c). The majority of the boat-based recreational catches of Bight Redfish were kept (66\%) (Figure 39a). Catches were taken predominantly from inshore demersal habitat (83\%), but also nearshore (5\%) and offshore demersal (12\%) habitats (Figure 39d). Bight Redfish were harvested throughout the year, with higher catches observed in summer (45%) and autumn (26%) compared with winter (19\%) and spring (10\%) (Figure 39f). All catches were taken by line fishing (Figure 39e). The estimated kept and released recreational catches of Bight Redfish were similar in 2013/14 compared to 2011/12 (Figure 39a, Table 5).

Figure 39. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Bight Redfish in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.3 Blue Morwong (Nemadactylus valenciennesi)

Blue Morwong is an indicator species in the South Coast. The majority of the kept recreational catches of Blue Morwong by RFBL holders aged five years or older occurred in the South Coast (74\%), with some catches in the West Coast (26\%) (Figure 40b and c). The majority of the boat-based recreational catches of Blue Morwong were kept (72\%) (Figure 40a). Catches were taken predominantly from inshore demersal habitat (79\%), but also nearshore habitat (16%) (Figure 40d). Blue Morwong were harvested throughout the year, with higher catches observed in summer (43\%) compared with autumn (24\%), winter (22%) and spring (11\%) (Figure 40f). Catches were taken by line fishing (93%), with some fishing from diving (7\%) (Figure 40e). The estimated kept and released recreational catches of Blue Morwong were similar in 2013/14 compared to 2011/12 (Figure 40a, Table 5).

Figure 40. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Blue Morwong in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.4 Bluespotted Emperor (Lethrinus punctulatus)

Bluespotted Emperor is an indicator species in the North Coast bioregion. The majority of the kept recreational catches of Bluespotted Emperor by RFBL holders aged five years or older occurred in the Gascoyne Coast (72\%), with some catches in the North Coast (28\%) (Figure 41 b and c). The majority of the boat-based recreational catches of Bluespotted Emperor were released (79\%) (Figure 41a) with most releases attributed to under-size catches (47\%) and "Too Small" (32\%) (Table 7). Catches were taken from nearshore (77\%) and inshore demersal (19\%) habitats (Figure 41d). Bluespotted Emperor were harvested throughout the year, with higher catches observed in autumn (43\%) and winter (45\%) compared with spring (9%) and summer (3%) (Figure 41f). All catches were taken by line fishing (Figure 41e). The estimated kept and released recreational catches of Bluespotted Emperor were similar in 2013/14 compared to 2011/12 (Figure 41a, Table 5).

Figure 41. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Bluespotted Emperor in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.5 Brownstripe Snapper (Lutjanus vitta)

Brownstripe Snapper is an indicator species in the North Coast bioregion. All the kept recreational catches of Brownstripe Snapper by RFBL holders aged five years or older occurred in the West Coast, although higher estimates of released recreational catches occurred in the North Coast (Figure 42b and c). The majority of the boat-based recreational catches of Brownstripe Snapper were released (87\%) (Figure 42a) with most releases attributed to "Too Small" (51\%) (Table 7). Catches were taken predominantly from inshore demersal habitat (68\%), but also nearshore habitat (32\%) (Figure 42d). Brownstripe Snapper were harvested in winter (87%) and summer (13\%) (Figure 42f). All catches were taken by line fishing (Figure 42e). The estimated kept and released recreational catches of Brownstripe Snapper were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 42a, Table 5).

Figure 42. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Brownstripe Snapper in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.6 Goldband Snapper (Pristipomoides multidens)

Goldband Snapper is an indicator species in the North Coast and Gascoyne Coast bioregions. The majority of the kept recreational catches of Goldband Snapper by RFBL holders aged five years or older occurred in the Gascoyne Coast (98\%), with some catches in the North Coast (2%) (Figure 43b and c). The majority of the boat-based recreational catches of Goldband Snapper were kept (84\%) (Figure 43a). Catches were taken predominantly from inshore demersal habitat (79\%), but also nearshore (9\%) and offshore demersal (11\%) habitats (Figure 43d). Goldband Snapper were harvested throughout the year, with higher catches observed in autumn (53%) and winter (34%) compared with spring (11%) and summer (2\%) (Figure 43f). All catches were taken by line fishing (Figure 43e). The estimated kept and released recreational catches of Goldband Snapper were similar in 2013/14 compared to 2011/12 (Figure 43a, Table 5).

Figure 43. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Goldband Snapper in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.7 Pink Snapper (Chrysophrys auratus)

Pink Snapper, previously known as Pagrus auratus, but now classified as Chrysophrys auratus, is harvested state-wide. Pink Snapper is an inshore demersal indicator species in the Gascoyne Coast, West Coast and South Coast bioregions. It is also a nearshore indicator species in the Gascoyne Coast. The majority of the kept recreational catches of Pink Snapper by RFBL holders aged five years or older occurred in the West Coast (50\%), with catches in the Gascoyne Coast (38%) and South Coast (10%) (Figure 44b and c). The majority of the boat-based recreational catches of Pink Snapper were released (83\%) (Figure 44a) with most releases attributed to under-size catches (78\%) (Table 7). Catches were taken predominantly from nearshore habitat (60%), but also inshore demersal (30\%), offshore demersal (6%) and estuary (4\%) habitats (Figure 44d). Pink Snapper were harvested throughout the year, with higher catches observed in autumn (32\%) and winter (31\%) compared with spring (24%) and summer (13\%) (Figure 44f). All catches were taken by line fishing (Figure 44e). The estimated kept and released recreational catches of Pink Snapper were similar in 2013/14 compared to 2011/12 (Figure 44a, Table 5).

Figure 44. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Pink Snapper in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.8 Rankin Cod (Epinephelus multinotatus)

Rankin Cod is an indicator species in the North Coast bioregion. The majority of the kept recreational catches of Rankin Cod by RFBL holders aged five years or older occurred in the Gascoyne Coast (56\%) and North Coast (42\%), with some catches in the West Coast (2\%) (Figure 45 b and c). Similar proportions of the boat-based recreational catch of Rankin Cod were kept (59%) and released (41%) (Figure 45a). Catches were taken predominantly from inshore demersal habitat (64%), but also nearshore (28%) and offshore demersal (7\%) habitats (Figure 45d). Rankin Cod were harvested throughout the year, with higher catches observed in autumn (35\%) and winter (37\%) compared with spring (17\%) and summer (11\%) (Figure 45 f). The majority of catches were taken by line fishing ($>99 \%$) (Figure 45e). The estimated kept and released recreational catches of Rankin Cod were significantly lower in 2013/14 compared with 2011/12 (Figure 45a, Table 5).

Figure 45. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Rankin Cod in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.9 Red Emperor (Lutjanus sebae)

Red Emperor is an indicator species in the Gascoyne Coast and North Coast bioregions. The majority of the kept recreational catches of Red Emperor by RFBL holders aged five years or older occurred in the Gascoyne Coast (60\%) and North Coast (39\%), with some catches in the West Coast (1%) (Figure 46 b and c). Similar proportions of the boat-based recreational catch of Red Emperor were kept (55\%) and released (45\%) (Figure 46a). Catches were taken predominantly from inshore demersal habitat (72\%), but also nearshore (22%) and offshore demersal (6%) habitats (Figure 46d). Red Emperor were harvested throughout the year, with higher catches observed in autumn (48\%) and winter (34\%) compared with spring (12\%) and summer (6\%) (Figure 46f). All catches were taken by line fishing (Figure 46e). The estimated kept and released recreational catches of Red Emperor were similar in 2013/14 compared to 2011/12 (Figure 46a, Table 5).

Figure 46. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Red Emperor in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.10 Spangled Emperor (Lethrinus nebulosus)

Spangled Emperor is an indicator species in the Gascoyne Coast bioregion. The majority of the kept recreational catches of Spangled Emperor by RFBL holders aged five years or older occurred in the Gascoyne Coast (70\%) and North Coast (26\%), with some catches in the West Coast (4\%) (Figure 47b and c). The majority of the boat-based recreational catches of Spangled Emperor were released (69\%) (Figure 47a) with most releases attributed to undersize catches (65%) (Table 7). Catches were taken predominantly from inshore demersal habitat (49\%), but also nearshore habitat (46\%) (Figure 47d). Spangled Emperor were harvested throughout the year, with higher catches observed in autumn (33\%) and winter (49%) compared with spring (11%) and summer (7%) (Figure 47f). All catches were taken by line fishing (Figure 47e). The estimated kept recreational catches of Spangled Emperor were significantly lower in 2013/14 compared with 2011/12, although estimated released recreational catches were similar in both years (Figure 47a, Table 5).

Figure 47. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Spangled Emperor in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.11 West Australian Dhufish (Glaucosoma hebraicum)

West Australian Dhufish is an indicator species in the West Coast bioregion. The majority of the kept recreational catches of West Australian Dhufish by RFBL holders aged five years or older occurred in the West Coast (96\%), with some catches in the South Coast (4\%) (Figure 48 b and c). The majority of the boat-based recreational catches of West Australian Dhufish were released (68%) with most releases attributed to under-size catches (71\%) (Table 7). Catches were taken predominantly from inshore demersal habitat (68\%), but also nearshore habitat (26\%) (Figure 48d). West Australian Dhufish were harvested throughout the year, with higher catches observed in summer (29%) and autumn (30%) compared with winter (21%) and spring (20%) (Figure 48f). Catches were taken by line fishing (99%), with some fishing from diving (1\%) (Figure 48e). The estimated kept and released recreational catches of West Australian Dhufish were similar in 2013/14 compared to 2011/12 (Figure 48a, Table 5).

Figure 48. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of West Australian Dhufish in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.12 Barcheek Coral Trout (Plectropomus maculatus)

Barcheek Coral Trout is an indicator in the North Coast bioregion. The majority of the kept recreational catches of Barcheek Coral Trout by RFBL holders aged five years or older occurred in the North Coast (68\%), with some catches in the Gascoyne Coast (30\%) and West Coast (2\%) (Figure 49b and c). Similar proportions of the boat-based recreational catch of Barcheek Coral Trout were kept (46\%) and released (54\%) (Figure 49a). Catches were taken predominantly from inshore demersal (42\%) and nearshore (50\%) habitats (Figure 49d). Barcheek Coral Trout were harvested throughout the year, with higher catches observed in autumn (33%) and winter (39%) compared with spring (20%) and summer (8%) (Figure $49 \mathrm{f})$. Catches were taken by line fishing (88%), with some fishing from diving (12%) (Figure 49e). The estimated kept recreational catches of Barcheek Coral Trout were significantly lower in 2013/14 compared with 2011/12, although estimated released recreational catches were similar in both years (Figure 49a, Table 5).

Figure 49. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Barcheek Coral Trout in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.13 Common Coral Trout (Plectropomus leopardus)

All the recreational catches of Common Coral Trout by RFBL holders aged five years or older occurred in the West Coast (Figure 50b and c). The majority of the boat-based recreational catches of Common Coral Trout were kept (60\%) (Figure 50a). Catches were taken predominantly from inshore demersal habitat (64\%), but also nearshore (30\%) and offshore demersal (6\%) habitats (Figure 50d). Common Coral Trout were harvested throughout the year, with higher catches observed in autumn (50\%) compared with winter (29%), spring (6%) and summer (15%) (Figure 50f). Catches were taken by line fishing (94%), with some fishing from diving (6\%) (Figure 50e). The estimated kept and released recreational catches of Common Coral Trout were similar in 2013/14 compared to 2011/12 (Figure 50a, Table 5).

Figure 50. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Common Coral Trout in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.14 Breaksea Cod (Epinephelides armatus)

The majority of the recreational catches of Breaksea Cod by RFBL holders aged five years or older occurred in the West Coast (66\%), with some catches in the South Coast (34\%) (Figure 51 b and c). The majority of the boat-based recreational catches of Breaksea Cod were kept (54\%) (Figure 51a). Catches were taken predominantly from inshore demersal habitat (63%), but also nearshore (31\%) and offshore demersal (6\%) habitats (Figure 51d). Breaksea Cod were harvested throughout the year, with higher catches observed in summer (37%) compared with autumn (24%), winter (30%) and spring (9%) (Figure 51f). Catches were taken predominantly by line fishing (99\%) (Figure 51e). The estimated kept and released recreational catches of Breaksea Cod were similar in 2013/14 compared to 2011/12 (Figure 51a, Table 5).

Figure 51. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Breaksea Cod in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.15 Grass Emperor (Lethrinus laticaudis)

The majority of the recreational catches of Grass Emperor by RFBL holders aged five years or older occurred in the Gascoyne Coast (66%) and North Coast (34%) (Figure 52b and c). The majority of the boat-based recreational catches of Grass Emperor were released (64\%) (Figure 52a) with most releases attributed to under-size catches (75\%) (Table 7). Catches were taken predominantly from nearshore habitat (67\%), but also inshore demersal (28\%) and offshore demersal (5\%) habitats (Figure 52d). Grass Emperor were harvested throughout the year, with higher catches observed in autumn (41\%) and winter (44\%) compared with spring (10%) and summer (5\%) (Figure 52f). All catches were taken by line fishing (Figure $52 \mathrm{e})$. The estimated kept and released recreational catches of Grass Emperor were similar in 2013/14 compared to 2011/12 (Figure 52a, Table 5).

Figure 52. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Grass Emperor in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.16 Redthroat Emperor (Lethrinus miniatus)

Redthroat Emperor is an indicator in the West Coast bioregion. The majority of the kept recreational catches of Redthroat Emperor by RFBL holders aged five years or older occurred in the Gascoyne Coast (62\%), with some catches in the West Coast (32\%) and North Coast (6\%) (Figure 53b and c). The majority of the boat-based recreational catches of Redthroat Emperor were released (75\%) Figure 53a) with most releases attributed to under-size catches (52\%) (Table 7). Catches were taken predominantly from inshore demersal habitat (67%), but also nearshore (26\%) and inshore demersal (7\%) habitats (Figure 53d). Redthroat Emperor were harvested throughout the year, with higher catches observed in autumn (51\%) and winter (30%) compared with spring (11%) and summer (8%) (Figure 53f). All catches were taken by line fishing (Figure 53e). The estimated kept and released recreational catches of Redthroat Emperor were similar in 2013/14 compared to 2011/12 (Figure 53a, Table 5).

Figure 53. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Redthroat Emperor in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.17 Stripey Snapper (Lutjanus carponotatus)

The majority of the recreational catches of Stripey Snapper by RFBL holders aged five years or older occurred in the North Coast (78\%), with some catches in the Gascoyne Coast (22\%) (Figure 54b and c). The majority of the boat-based recreational catches of Stripey Snapper were released (78\%) (Figure 54a) with most releases attributed to under-size catches (53\%) (Table 7). Catches were taken predominantly from nearshore habitat (59\%), but also inshore demersal habitat (38\%) (Figure 54d). Stripey Snapper were harvested throughout the year, with higher catches observed in winter (52%) compared with spring (10%), summer (8%) and autumn (30%) (Figure 54f). All catches were taken by line fishing (Figure 54e). The estimated kept and released recreational catches of Stripey Snapper were similar in 2013/14 compared to 2011/12 (Figure 54a, Table 5).

Figure 54. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Stripey Snapper in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5 Offshore Demersal

6.5.1 Eightbar Grouper (Epinephelus octofasciatus)

Eightbar Grouper is an indicator species in the North Coast, Gascoyne Coast, West Coast bioregions. The majority of the kept recreational catches of Eightbar Grouper by RFBL holders aged five years or older occurred in the Gascoyne Coast (59\%), with some catches in the West Coast (21%) and South Coast (20%) (Figure 55b and c). The majority of the boatbased recreational catches of Eightbar Grouper were kept (91\%) (Figure 55a).). Catches were taken predominantly from inshore demersal habitat (65\%), but also offshore demersal (19\%) and pelagic (16%) habitats (Figure 55d). Eightbar Grouper were harvested throughout the year, with higher catches observed in autumn (39\%) and spring (36\%) compared with winter (11%) and summer (14%) (Figure 55f). All catches were taken by line fishing (Figure 55e). The estimated kept and released recreational catches of Eightbar Grouper were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 55a, Table 5).

Figure 55. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Eightbar Grouper in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.2 Hapuku (Polyprion oxygeneios)

Hapuku is an indicator species in the West Coast and South Coast bioregions. All kept recreational catches of Hapuku by RFBL holders aged five years or older occurred in the South Coast (Figure 56b and c). The majority of the boat-based recreational catches of Hapuku were kept (78\%) (Figure 56a). Catches were taken predominantly from inshore demersal habitat (71\%), but also offshore demersal (23\%) and pelagic (7\%) habitats (Figure 56d). Hapuku were harvested in spring (15%), summer (58%) and autumn (27%) (Figure $56 \mathrm{f})$. All catches were taken by line fishing (Figure 56e). The estimated kept and released recreational catches of Hapuku were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 56a, Table 5).

Figure 56. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Hapuku in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.3 Ruby Snapper (Etelis carbunculus)

Ruby Snapper is an indicator species in the North Coast and Gascoyne Coast. The majority of the kept recreational catches of Ruby Snapper by RFBL holders aged five years or older occurred in the Gascoyne Coast (88\%), with some catches in the North Coast (12\%) (Figure 57 b and c). The majority of the boat-based recreational catches of Ruby Snapper were kept (95%) (Figure 57a). Catches were taken predominantly from offshore demersal habitat (75\%), but also inshore demersal habitat (24\%) (Figure 57d). Ruby Snapper were harvested throughout the year, with higher catches observed in autumn (78\%) compared with winter (15%), spring (2%) and summer (5%) (Figure 57 f). All catches were taken by line fishing (Figure 57e). The estimated kept and released recreational catches of Ruby Snapper were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 57a, Table 5).

Figure 57. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Ruby Snapper in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6 Pelagic

6.6.1 Spanish Mackerel (Scomberomorus commerson)

Spanish Mackerel is an indicator species in the North Coast and Gascoyne Coast bioregions. The majority of the kept recreational catches of Spanish Mackerel by RFBL holders aged five years or older occurred in the Gascoyne Coast (46\%), with catches also in the North Coast (28%) and West Coast (26%) (Figure 58b and c). Similar proportions of the boat-based recreational catch of Spanish Mackerel were kept (52\%) and released (48\%) (Figure 58a). Catches were taken from inshore demersal (53\%) and nearshore (39\%) habitats, but also pelagic habitat (6\%) (Figure 58d). Spanish Mackerel were harvested throughout the year, with higher catches observed in autumn (45%) compared with spring (16%), summer (11%) and winter (28%) (Figure 58 f). Catches were taken by line fishing (97%), with some fishing from diving (3\%) (Figure 58e). The estimated kept and released recreational catches of Spanish Mackerel were similar in 2013/14 compared to 2011/12 (Figure 58a, Table 5).

Figure 58. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Spanish Mackerel in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.2 Samsonfish (Seriola hippos)

Samsonfish is an indicator species in the West Coast bioregion. The majority of the kept recreational catches of Samsonfish by RFBL holders aged five years or older occurred in the West Coast (72\%), with some catches in the South Coast (28\%) (Figure 59b and c). The majority of the boat-based recreational catches of Samsonfish were released (74\%) (Figure 59a) with most releases attributed to "Other" (37\%) and "Too Many" (35\%) (Table 7). Catches were taken from inshore demersal (64\%) and nearshore (28\%) habitats, but also pelagic habitat (8\%) (Figure 59d). Samsonfish were harvested throughout the year, with higher catches observed in autumn (29\%) and winter (33\%) compared with spring (16\%) and summer (Figure 59f). Catches were taken by line fishing (98%), with some fishing from diving (2%) (Figure 59e). The estimated kept and released recreational catches of Samsonfish were similar in 2013/14 compared to 2011/12 (Figure 59a, Table 5).

Figure 59. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Samsonfish in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.3 Grey Mackerel (Scomberomorus semifasciatus)

Grey Mackerel is an indicator species in the North Coast and Gascoyne Coast bioregions. Kept recreational catches of Grey Mackerel by RFBL holders aged five years or older occurred in the Gascoyne Coast (68\%) and North Coast (32\%) (Figure 60b and c). The majority of the boat-based recreational catches of Grey Mackerel were kept (57\%) (Figure 60a). Catches were taken from inshore demersal (35\%) and nearshore (65\%) habitats (Figure 60d). Grey Mackerel were harvested throughout the year, with higher catches observed in autumn (46%) and winter (43%) compared with spring (2%) and summer (9%) (Figure 60f). Catches were taken by line fishing (92%), with some fishing from diving (8%) (Figure 60e). The estimated kept and released recreational catches of Grey Mackerel were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 60a, Table 5).

Figure 60. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Grey Mackerel in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.4 Blue Mackerel (Scomber australasicus)

Kept recreational catches of Blue Mackerel by RFBL holders aged five years or older occurred in the West Coast (58\%) and South Coast (42\%) (Figure 61b and c). The majority of the boat-based recreational catches of Blue Mackerel were released (72\%) (Figure 61a) with most releases attributed to "Too Many" (78\%) (Table 7). Catches were taken predominantly from nearshore habitat (74\%), but also offshore demersal (12\%) and inshore demersal (10\%) habitats (Figure 61d). Blue Mackerel were harvested throughout the year, with higher catches observed in summer (37\%) and autumn (50\%) compared with winter (10\%) and spring (3\%) (Figure 61f). All catches were taken by line fishing (Figure 61e). The estimated kept and released recreational catches of Blue Mackerel were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 61a, Table 5).

Figure 61. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Blue Mackerel in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.5 Yellowtail Scad (Trachurus novaezelandiae)

Yellowtail Scad is an indicator species in the South Coast bioregion. The majority of the kept recreational catches of Yellowtail Scad by RFBL holders aged five years or older occurred in the South Coast (56\%), with some catches in the West Coast (44\%) (Figure 62b and c). The majority of the boat-based recreational catches of Yellowtail Scad were released (68\%) (Figure 62a) with most releases attributed to "Other" (35\%) and under-size (28\%) (Table 7). Catches were taken predominantly from nearshore habitat (74\%), but also inshore demersal habitat (17\%) (Figure 62d). Yellowtail Scad were harvested throughout the year, with higher catches observed in summer (36%) and autumn (37%) compared with winter (11%) and spring (16%) (Figure 62f). All catches were taken by line fishing (Figure 62e). The estimated kept and released recreational catches of Yellowtail Scad were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 62a, Table 5).

Figure 62. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Yellowtail Scad in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.6 Billfish

Billfish include Black Marlin (Makaira indica), Blue Marlin (M. nigricans), Striped Marlin (Tetrapturus audax) and Sailfish (Istiophorus platypterus). The majority of the kept recreational catches of Billfish by RFBL holders aged five years or older occurred in the Gascoyne Coast (84%) (Figure 63b and c). The majority of the boat-based recreational catches of Billfish were released ($>99 \%$) (Figure 63a) with most releases attributed to catch and release fishing (Table 7). Catches were taken predominantly from inshore demersal habitat (79\%), but also offshore demersal habitat (7\%) (Figure 63d). Billfish were harvested throughout the year, with higher catches observed in summer (57\%) compared with autumn (12%), winter (23%) and spring (8%) (Figure 63f). All catches were taken by line fishing (Figure 63e). The estimated kept and released recreational catches of Billfish were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 63a, Table 5).

Figure 63. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Billfish in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.7 Southern Bluefin Tuna (Thunnus maccoyii)

The majority of the recreational catches of Southern Bluefin Tuna by RFBL holders aged five years or older occurred in the West Coast (40\%) and South Coast (32\%), with some catches in the North Coast (10%) and Gascoyne Coast (18%) (Figure 64b and c). The majority of the boat-based recreational catches of Southern Bluefin Tuna were kept (69\%) (Figure 64a) with most releases attributed to "Too Many" (51%) and catch and release fishing (49\%) (Table 7). Catches were taken predominantly from inshore demersal habitat (81\%) (Figure 64d). Southern Bluefin Tuna were harvested throughout the year, with higher catches observed in autumn (55%) compared with winter (15%), spring (2%) and summer (28%) (Figure 64f). All catches were taken by line fishing (Figure 64e). The estimated kept and released recreational catches of Southern Bluefin Tuna were similar in 2013/14 compared to 2011/12 (Figure 64a, Table 5).

Figure 64. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Southern Bluefin Tuna in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.7 Sharks

6.7.1 Whaler Sharks (Family Carcharhinidae)

Whaler Sharks are a state-wide indicator species. Whaler Sharks (Family Carcharhinidae) have been aggregated, including the Bronze Whaler (Carcharhinus brachyurus) and Dusky Whaler (Carcharhinus obscurus). The majority of the kept recreational catches of Whaler Sharks by RFBL holders aged five years or older occurred in the West Coast (58\%), with some catches in the Gascoyne Coast (24\%), North Coast (12\%) and South Coast (6\%) (Figure 65b and c). The majority of the boat-based recreational catches of Whaler Sharks were released (92\%) (Figure 65a) with most releases attributed to "Other" and "Too Many" (Table 7). Catches were taken from inshore demersal (64%) and nearshore (28%) habitats, but also pelagic (3%). offshore demersal (2%) and estuary (3\%) habitats (Figure 65d). Whaler Sharks were harvested throughout the year, with higher catches observed in autumn (29\%) compared with winter (27\%), spring (6\%) and summer (38\%) (Figure 65f). All catches were taken by line fishing (Figure 65e). The estimated kept and released recreational catches of Whaler Sharks were similar in 2013/14 compared to 2011/12 (Figure 65a, Table 5).

Figure 65. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Whaler Sharks in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.7.2 Gummy Sharks (Mustelus antarcticus and M. stevensi)

Gummy Sharks includes Gummy Shark (Mustelus antarcticus), which occurs in southern waters to Geraldton, and Western Spotted Gummy Shark (M. stevensi), which occurs from Shark Bay to the Kimberley. M. antarticus is found from nearshore to about 80 m , although sometimes on the continental slop to 350 m while M. stevensi is found at depths of 120 to 400 m , possibly to 735 m (Last and Stevens 2009). The majority of the kept recreational catches of Gummy Sharks by RFBL holders aged five years or older occurred in the West Coast (76\%), with some catches in the North Coast (5\%), Gascoyne Coast (6\%) and South Coast (13\%) (Figure 66b and c). Similar proportions of the boat-based recreational catch of Gummy Sharks were kept (49%) and released (51%) (Figure 66a). Catches were taken predominantly from nearshore habitat (59\%), but also inshore demersal habitat (36\%) (Figure 66d). Gummy Sharks were harvested throughout the year, with higher catches observed in winter (39%) compared with summer (15%), autumn (25%) and spring (21%) (Figure 66f). All catches were taken by line fishing (99\%) (Figure 66e). The estimated kept and released recreational catches of Gummy Sharks were similar in 2013/14 compared to 2011/12 (Figure 66a, Table 5).

Figure 66. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Gummy Sharks in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.7.3 Port Jackson Shark (Heterodontus portusjacksoni)

All kept recreational catches of Port Jackson Shark by RFBL holders aged five years or older occurred in the West Coast (Figure 67b and c). All the boat-based recreational catches of Port Jackson Shark were released (Figure 67a) with most releases attributed to under-size catches (53\%) (Table 7). Catches were taken from nearshore (39\%) and inshore demersal (61\%) habitats (Figure 67d). Port Jackson Shark were harvested throughout the year, with higher catches observed in autumn (67%) compared with winter (16%), spring (8%) and summer (9%) (Figure 67 f). Catches were taken by line fishing (98%), with some fishing from pots (2\%) (Figure 67e). The estimated kept and released recreational catches of Port Jackson Shark were similar in 2013/14 compared to 2011/12 (Figure 67a, Table 5).

Figure 67. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Port Jackson Shark in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.7.4 Wobbegong (Family Orectolobidae)

The majority of the recreational catches of Wobbegong by RFBL holders aged five years or older occurred in the West Coast (70\%), with some catches in the Gascoyne Coast (30\%) (Figure 68b and c). The majority of the boat-based recreational catches of Wobbegong were released (91\%) (Figure 68a) with most releases attributed to "Other" (59\%) (Table 7). Catches were taken predominantly from nearshore habitat (52\%), but also inshore demersal habitat (42\%) (Figure 68d). Wobbegong were harvested throughout the year, with higher catches observed in winter (43%) compared with spring (4\%), summer (18%) and autumn (35%) (Figure 68f). Catches were taken by line fishing (82%), with some fishing from pots (18%) (Figure 68e). The estimated kept and released recreational catches of Wobbegong were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 68a, Table 5).

Figure 68. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Wobbegong in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.8 Crustaceans

6.8.1 Western Rock Lobster (Panulirus cygnus)

The estimated recreational catch from this survey does not account for catches from fishers that only have the Rock Lobster licence. Approximately 40\% of Rock Lobster licence holders do not have a RFBL, therefore these results underestimate the total recreational catch of Western Rock Lobster. All recreational catches of Western Rock Lobster by RFBL holders aged five years or older occurred in the West Coast (Figure 69b and c). The majority of the boat-based recreational catches of Western Rock Lobster were kept (60\%) (Figure 69a). Catches were taken predominantly from nearshore habitat (81\%), but also inshore demersal habitat (17\%) (Figure 69d). Western Rock Lobster were harvested throughout the year, with higher catches observed in summer (57%) compared with autumn (20%), winter (5%) and spring (18\%) (Figure 69f). Catches were taken by pots (78\%), with some fishing from diving (20%) and other (2%) (Figure 69e). The estimated kept and released recreational catches of Western Rock Lobster were similar in 2013/14 compared to 2011/12 (Figure 69a, Table 5).

Figure 69. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Western Rock Lobster in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.8.2 Mud Crab (Scylla olivacea and S. serrata).

Mud Crabs include Brown Mud Crab (Scylla olivacea) and Green Mud Crab (S. serrata). The majority of the kept recreational catches of Mud Crab by RFBL holders aged five years or older occurred in the North Coast (81\%), with some catches in the Gascoyne Coast (5\%) and West Coast (14%) (Figure 70b and c). Similar proportions of the boat-based recreational catch of Mud Crab were kept (45\%) and released (55\%) (Figure 70a). Catches were taken predominantly from nearshore habitat (52\%), but also estuary (42%) and inshore demersal (6\%) habitats (Figure 70d). Mud Crab were harvested throughout the year, with higher catches observed in winter (46\%) compared with spring (20\%), summer (12\%) and autumn (22%) (Figure 70f). The majority of catches were taken by pots (90%) (Figure 70e). The estimated kept and released recreational catches of Mud Crab were similar in 2013/14 compared to 2011/12 (Figure 70a, Table 5).

Figure 70. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Mud Crab in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.8.3 Blue Swimmer Crab (Portunus armatus)

Blue Swimmer Crab, previously known as Portunus pelagicus, but now classified as Portunus armatus, is harvested state-wide. The majority of the kept recreational catches of Blue Swimmer Crab by RFBL holders aged five years or older occurred in the West Coast (88%), with some catches in the North Coast (6\%), Gascoyne Coast (3\%) and South Coast (3\%) (Figure 71b and c). A lower proportion of Blue Swimmer Crab were kept (32\%) than released (68\%) (Figure 71a) with most releases attributed to under-size catches (80%) (Table 7). Catches were taken predominantly from estuary habitat (72\%), but also nearshore habitat (27\%) (Figure 71d). Blue Swimmer Crab were harvested throughout the year, with higher catches observed in summer (66%) compared with autumn (23%), winter (4%) and spring (7%) (Figure 71f). The majority of catches were taken by pots (including drop nets) (99\%) (Figure 71e). The estimated kept recreational catches of Blue Swimmer Crab were significantly lower in 2013/14 compared with 2011/12, although estimated released recreational catches were similar in both years (Figure 71a, Table 5).

Figure 71. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Blue Swimmer Crab in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.9 Molluscs

6.9.1 Abalone (Haliotis spp.)

Abalone includes Roe's Abalone (Haliotis roei), Greenlip Abalone (H. laevigata) and Brownlip Abalone (H. rubra conicopora). The majority of the kept recreational catches of Abalone by RFBL holders aged five years or older occurred in the West Coast (86\%), with some catches in the South Coast (14\%) (Figure 72b and c). All boat-based recreational catches of Abalone were kept (Figure 72a). All catches were taken from nearshore habitat (Figure 72d). Abalone were harvested from spring to autumn, with higher catches observed in summer (62%) compared with spring (13%) and autumn (25%) (Figure 72f). Catches were taken by diving (70%), with some fishing from other methods (30%) (Figure 72e). The estimated kept and released recreational catches of Abalone were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 72a, Table 5). These estimates do not include catches from shorebased recreational fishers.

Figure 72. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Abalone in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.10 Cephalopods

6.10.1 Cuttlefish (Order Sepiidae)

The majority of the recreational catches of Cuttlefish by RFBL holders aged five years or older occurred in the West Coast (82%), with some catches in the South Coast (18\%) (Figure 73 b and c). The majority of the boat-based recreational catches of Cuttlefish were kept (72\%) (Figure 73a). Catches were taken predominantly from nearshore habitat (60%), but also inshore demersal habitat (34\%) (Figure 73d). Cuttlefish were harvested throughout the year, with higher catches observed in autumn (37%) and winter (47%) compared with spring (3%) and summer (13%) (Figure 73f). Catches were taken by line fishing (93%), with some fishing from diving (7\%) (Figure 73e). The estimated kept and released recreational catches of Cuttlefish were significantly lower in 2013/14 compared with 2011/12 (Figure 73a, Table 5).

Figure 73. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Cuttlefish in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.10.2 Squid (Order Teuthoidea)

The majority of the recreational catches of Squid by RFBL holders aged five years or older occurred in the West Coast (72\%), with some catches in the North Coast (6\%), Gascoyne Coast (8%) and South Coast (14\%) (Figure 74b and c). The majority of the boat-based recreational catches of Squid were kept (93\%) (Figure 74a). Catches were taken predominantly from nearshore habitat (78\%), but also inshore demersal (19\%) (Figure 74d). Squid were harvested throughout the year, with higher catches observed in autumn (44\%) and winter (37%) compared with spring (9%) and summer (10%) (Figure 74f). Catches were taken by line fishing (99%), with some fishing from pots ($<1 \%$) (Figure 74e). The estimated kept recreational catches of Squid were significantly lower in 2013/14 compared with 2011/12, although estimated released recreational catches were similar in both years (Figure 74a, Table 5).

Figure 74. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Squid in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.10.3 Octopus (Order Octopodidae)

The majority of the recreational catches of Octopus by RFBL holders aged five years or older occurred in the West Coast (97\%), with some catches in the North Coast (2\%) and South Coast (1\%) (Figure 75b and c). The majority of the boat-based recreational catches of Octopus were kept (91\%) (Figure 75a). Catches were taken predominantly from nearshore habitat (88%), but also inshore demersal habitat (11\%) (Figure 75d). Octopus were harvested throughout the year, with higher catches observed in summer (72%) compared with autumn (13%), winter (9%) and spring (6%) (Figure 75 f). Catches were taken by pots (54%), with some catches taken from diving (30%), line (14%) and other (2%) (Figure 75e). The estimated kept and released recreational catches of Octopus were similar in 2013/14 compared to 2011/12, although the uncertainty for this species is high (Figure 75a, Table 5, Table 5).

Figure 75. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Octopus in Western Australia during 2013/14: a) comparison with 2011/12; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

7 Estimates of Catch by Bioregion

This section provides an overview of the species composition of the recreational catch in each bioregion. The estimated annual catch (total, kept and released numbers) and proportion released during 2013/14 by RFBL holders aged five years or older are presented for each bioregion: North Coast (Table 8), Gascoyne Coast (Table 9), West Coast (Table 10) and South Coast (Table 11).

7.1 North Coast

A total of 8 invertebrate species/taxa were taken in the North Coast. The most common were: Blue Swimmer Crab (54\%), Mud Crab (30\%) and Squid (14\%). These 3 species/taxa accounted for 98% of the total catch (by numbers).

A total of 47 demersal finfish species were taken in the North Coast. The most common were: Grass Emperor (17\%), Stripey Snapper (14\%), Mangrove Jack (8\%), Spangled Emperor (8\%), Barcheek Coral Trout (7\%), Red Emperor (5\%), Blackspot Tuskfish (5\%), Rankin Cod (4\%), Golden Snapper (3\%) and Crimson Snapper (3\%). These 10 species/taxa accounted for 76% of the total demersal catch (by numbers).

A total of 43 nearshore and estuarine finfish species were taken in the North Coast. The most common were: Garfish (14\%), Blue Threadfin (12\%), Trevally (11\%), Barramundi (10\%), Mullet (10\%), Golden Trevally (6\%), Northwest Black Bream (4\%), Small Baitfish (4\%), Black Jewfish (4\%) and Whiting (3\%). These 10 species/taxa accounted for 79% of the total nearshore and estuarine catch (by numbers).

7.2 Gascoyne Coast

A total of 6 invertebrate species were taken in the Gascoyne Coast. The most common were: Blue Swimmer Crab (55\%) and Squid (39\%). These 2 species accounted for 94% of the total catch (by numbers).

A total of 51 demersal finfish species were taken in the Gascoyne Coast. The most common were: Grass Emperor (21\%), Snapper (14\%), Spangled Emperor (13\%), Redthroat Emperor (6\%), Goldband Snapper (5\%), Red Emperor (5\%), Baldchin Groper (4\%), Rankin Cod (3\%), Goldspotted Rockcod (3\%) and Stripey Snapper (2\%). These 10 species accounted for 66% of the total catch (by numbers). These 10 species/taxa accounted for 77% of the total demersal catch (by numbers).

A total of 52 nearshore and estuarine finfish species were taken in the Gascoyne Coast. The most common were: Chinaman Rockcod (29\%), Sea Mullet (13\%), School Whiting (12\%), Western Butterfish (11\%), Mulloway (7\%), Golden Trevally (4\%), Tailor (4\%), Garfish (4\%), Western Yellowfin Bream (2\%) and Silver Trevally (2\%). These 10 species/taxa accounted for 88% of the total nearshore and estuarine catch (by numbers).

7.3 West Coast

A total of 10 invertebrate species were taken in the West Coast. The most common were: Blue Swimmer Crab (48\%), Western Rock Lobster (38\%) and Squid (10\%). These 3 species accounted for 96% of the total catch (by numbers).

A total of 49 demersal finfish species were taken in the West Coast. The top demersal species/taxa (as defined by the West Coast Demersal Scalefish Fishery) were: West Australian Dhufish (27\%), Snapper (19\%), Breaksea Cod (16\%), Baldchin Groper (13\%), Emperor (4\%), Sea Sweep (2\%), Sergeant Baker (2\%), Foxfish (2\%), Blue Morwong (2\%) and Bight Redfish (1\%). These species/taxa accounted for 88% of the total demersal catch (by numbers).

A total of 58 nearshore and estuarine finfish species were taken in the West Coast. The most common were: School Whiting (53\%), Australian Herring (21\%), Silver Trevally (6\%), King George Whiting (6\%), Sea Mullet (3\%), Western King Wrasse (2\%), Tailor (2\%), Striped Barracuda (1\%), Black Bream (1\%) and Western Butterfish (1\%). These 10 species/taxa accounted for 95% of the total nearshore and estuarine catch (by numbers).

7.4 South Coast

A total of 7 invertebrate species were taken in the South Coast. The most common were: Squid (52\%) and Blue Swimmer Crab (43\%). These 2 species accounted for 96% of the total catch (by numbers).

A total of 24 demersal finfish species were taken in the South Coast. The most common were: Bight Redfish (36\%), Breaksea Cod (22\%), Blue Morwong (11\%), Snapper (10\%), Swallowtail (6\%), Sea Sweep (4\%), Harlequin Fish (4\%), West Australian Dhufish (2\%), Sergeant Baker (2\%) and Foxfish (1\%). These 10 species/taxa accounted for 98% of the total demersal catch (by numbers).

A total of 46 nearshore and estuarine finfish species were taken in the South Coast. The most common were: King George Whiting (38\%), Australian Herring (24\%), School Whiting (17\%), Black Bream (6\%), Silver Trevally (5\%), Snook (2\%), Western Australian Salmon (1\%), Southern Bluespotted Flathead (1\%), Garfish (1\%) and Oriental Bonito (1\%). These 10 species/taxa accounted for 95% of the total nearshore and estuarine catch (by numbers).

Table 8. Estimated annual catch (total, kept and released numbers) and proportion released in the North Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Cephalopod	Cuttlefish	Sepia spp	4	3	0	0	4	3	0\%
	Octopus	Octopus spp	65	28	0	0	65	28	0\%
	Squid	Order Teuthoidea	4,125	981	379	192	4,504	1,079	8\%
Lobster	Western Rock Lobster	Panulirus cygnus	52	32	0	0	52	32	0\%
	Painted Rock Lobster	Panulirus versicolor	291	146	263	117	554	212	47\%
	Ornate Rock Lobster	Panulirus ornatus	104	44	24	11	128	54	19\%
Crab	Blue Swimmer Crab	Portunus armatus	16,405	3,575	20,243	5,653	36,648	9,074	55\%
	Sand Crab	Ovalipes spp	0	0	669	447	669	447	100\%
	Mud Crab	Scylla olivacea \& S serrata	9,056	1,380	11,244	2,202	20,300	3,279	55\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	0	0	187	59	187	59	100\%
	Bronze Whaler	Carcharhinus brachyurus	59	26	1,548	494	1,607	495	96\%
	Dusky Whaler	Carcharhinus obscurus	45	40	920	295	965	330	95\%
	Lemon Shark	Negaprion acutidens	0	0	92	48	92	48	100\%
	Sandbar Shark	Carcharhinus plumbeus	0	0	112	52	112	52	100\%
	Tiger Shark	Galeocerdo cuvier	0	0	87	37	87	37	100\%
	Whitetip Reef Shark	Triaenodon obesus	37	19	650	168	687	174	95\%
	Greynurse Shark PROTECTED	Carcharias taurus	0	0	386	223	386	223	100\%
	Gummy Sharks	Mustelus antarcticus \& M stevensi	41	18	150	68	191	73	79\%
	Hammerhead Shark	Family Sphyrnidae	0	0	31	11	31	11	100\%
	Sawshark	Family Pristiophoridae	0	0	19	15	19	15	100\%
	Wobbegong	Family Orectolobidae	0	0	21	12	21	12	100\%
	Other Whaler	Carcharhinidae - undifferentiated	113	68	1,803	369	1,916	375	94\%
	Other Shark	Sharks - undifferentiated	49	32	326	174	375	177	87\%
Rays	Sawfishes PROTECTED	Pristidae - undifferentiated	7	5	368	183	375	183	98\%
	Western Shovelnose Ray	Aptychotrema vincentiana	0	0	67	31	67	31	100\%
	Other Rays Skates	Rays - undifferentiated	0	0	17	10	17	10	100\%
Barracouta	Barracouta	Thyrsites atun	14	11	389	149	403	150	97\%
Barramundi	Barramundi	Lates calcarifer	1,676	373	17,929	6,901	19,605	7,231	91\%
Billfish	Black Marlin	Makaira indica	0	0	196	51	196	51	100\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Blue Marlin	Makaira nigricans	0	0	116	82	116	82	100\%
	Sailfish	Istiophorus platypterus	0	0	1,529	497	1,529	497	100\%
Bonito	Oriental Bonito	Sarda orientalis	7	5	0	0	7	5	0\%
Bream	Frypan Bream	Argyrops spinifer	33	26	7	6	40	26	18\%
	Northwest Black Bream	Acanthopagrus palmaris	677	241	2,308	666	2,985	867	77\%
	Pink Snapper	Chrysophrys auratus	258	149	445	239	703	293	63\%
	Tarwhine	Rhabdosargus sarba	287	149	681	314	968	412	70\%
	Western Yellowfin Bream	Acanthopagrus morrisoni	291	107	1,111	475	1,403	508	79\%
	Other Bream	Sparidae - undifferentiated	43	39	58	28	101	48	57\%
Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	69	36	7	5	76	37	10\%
Butterfish	Other Butterfish	Stromateidae - undifferentiated	0	0	35	30	35	30	100\%
Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	12	6	4,276	1,215	4,288	1,215	100\%
	Giant Sea Catfish	Arius thalassinus	151	59	5,454	859	5,605	866	97\%
	Silver Cobbler	Neoarius midgleyi	371	220	1,191	369	1,563	527	76\%
Cobia	Cobia	Rachycentron canadum	324	89	228	84	551	135	41\%
Cod	Barramundi Cod	Cromileptes altivelis	79	27	575	378	655	390	88\%
	Blackspotted Rockcod	Epinephelus malabaricus	956	341	6,223	1,448	7,179	1,557	87\%
	Blacktip Rockcod	Epinephelus fasciatus	0	0	740	662	740	662	100\%
	Chinaman Rockcod	Epinephelus rivulatus	357	78	1,842	449	2,199	462	84\%
	Duskytail Grouper	Epinephelus bleekeri	8	8	0	0	8	8	0\%
	Frostback Rockcod	Epinephelus bilobatus	214	155	1,561	1,154	1,775	1,307	88\%
	Goldspotted Rockcod	Epinephelus coioides	1,182	297	5,542	852	6,724	1,069	82\%
	Potato Rockcod PROTECTED	Epinephelus tukula	0	0	102	43	102	43	100\%
	Queensland Grouper PROTECTED	Epinephelus lanceolatus	0	0	69	39	69	39	100\%
	Rankin Cod	Epinephelus multinotatus	1,749	355	1,892	325	3,641	590	52\%
	Tomato Rockcod	Cephalopholis sonnerati	40	23	123	45	163	50	75\%
	Temperate Rockcods	Epinephelidae - undifferentiated	22	16	186	139	208	142	89\%
	Yellowspotted Rockcod	Epinephelus areolatus	310	129	1,457	636	1,767	728	82\%
Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	2,769	393	3,186	476	5,955	717	54\%
	Yellowedge Coronation Trout	Variola louti	0	0	159	72	159	72	100\%
Emperor	Bluespotted Emperor	Lethrinus punctulatus	346	142	1,624	596	1,970	695	82\%
	Grass Emperor	Lethrinus laticaudis	7,043	1,529	13,156	2,459	20,199	3,622	65\%
	Longnose Emperor	Lethrinus olivaceus	139	63	443	212	582	226	76\%
	Redspot Emperor	Lethrinus lentjan	19	15	381	268	399	283	95\%
	Redthroat Emperor	Lethrinus miniatus	382	96	1,596	576	1,979	641	81\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Robinsons' Seabream	Gymnocranius grandoculis	31	19	83	51	114	55	73\%
	Spangled Emperor	Lethrinus nebulosus	3,266	694	10,317	4,292	13,583	4,887	76\%
	Yellowtail Emperor	Lethrinus atkinsoni	7	5	0	0	7	5	0\%
	Other Emperor	Lethrinidae - undifferentiated	56	44	35	30	91	54	38\%
Flounder	Largetooth Flounder	Pseudorhombus arsius	35	30	0	0	35	30	0\%
Garfish	Three-by-two Garfish	Hemiramphus robustus	2,058	843	14	11	2,072	843	1\%
	Other Garfish	Hemiramphidae - undifferentiated	181	107	0	0	181	107	0\%
Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	42	33	0	0	42	33	0\%
Grunter	Western Striped Grunter	Pelates octolineatus	0	0	30	22	30	22	100\%
	Western Sooty Grunter	Hephaestus jenkinsi	89	44	405	134	494	148	82\%
Grunter Bream	Grunter Bream	Haemulidae - undifferentiated	22	16	439	229	461	238	95\%
Gurnard	Gurnard	Neosebastidae - undifferentiated	0	0	17	15	17	15	100\%
Javelinfish	Barred Javelin	Pomadasys kaakan	33	18	339	137	372	138	91\%
	Blotched Javelin	Pomadasys maculatus	7	5	44	32	52	33	86\%
Jewfish	Black Jewfish	Protonibea diacanthus	562	130	860	225	1,423	307	60\%
Leatherjacket	Leatherjacket	Monacanthidae - undifferentiated	0	0	163	62	163	62	100\%
Lizardfish Grinners	Lizardfish Grinners	Bathysauridae, Synodontidae undifferentiated	0	0	683	274	683	274	100\%
Longtom	Longtom	Belonidae - undifferentiated	11	10	165	54	176	57	94\%
Mackerel	Grey Mackerel	Scomberomorus semifasciatus	72	32	115	77	187	86	61\%
	School Mackerel	Scomberomorus queenslandicus	1,532	723	4,593	2,832	6,124	3,539	75\%
	Shark Mackerel	Grammatorcynus bicarinatus	42	25	263	113	305	115	86\%
	Spanish Mackerel	Scomberomorus commerson	2,543	384	4,679	743	7,221	995	65\%
	Spotted Mackerel	Scomberomorus munroi	79	37	360	122	439	150	82\%
	Wahoo	Acanthocybium solandri	0	0	15	13	15	13	100\%
	Other Mackerels and Tunas	Scombridae - undifferentiated	43	25	63	34	106	42	59\%
Morwong	Dusky Morwong	Dactylophora nigricans	14	11	0	0	14	11	0\%
	Other Morwong	Cheilodactylidae - undifferentiated	0	0	7	6	7	6	100\%
Mullet	Bluetail Mullet	Valamugil buchanani	622	277	211	166	833	376	25\%
	Diamondscale Mullet	Liza vaigiensis	10	7	0	0	10	7	0\%
	Greenback Mullet	Liza subviridis	207	151	20	14	227	165	9\%
	Other Mullet	Mugilidae - undifferentiated	799	270	293	261	1,092	376	27\%
Pearl Perch	Northern Pearl Perch	Glaucosoma buergeri	157	78	249	98	406	146	61\%
Pike	Great Barracuda	Sphyraena barracuda	66	35	281	104	347	121	81\%
	Snook	Sphyraena novaehollandiae	34	30	0	0	34	30	0\%
	Striped Seapike	Sphyraena obtusata	504	313	618	278	1,122	469	55\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Queenfish	Queenfish	Scomberoides spp	453	162	1,258	323	1,712	364	74\%
Sand Bass	Sand Bass	Psammoperca waigiensis	0	0	17	15	17	15	100\%
Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	0	0	62	38	62	38	100\%
Snappers King	Goldband Snapper	Pristipomoides multidens	66	30	201	166	267	169	75\%
	Rosy Snapper	Pristipomoides filamentosus	4	3	50	27	54	28	93\%
	Sharptooth Snapper	Pristipomoides typus	0	0	48	28	48	28	100\%
Snappers Tropical	Brownstripe Snapper	Lutjanus vitta	0	0	99	54	99	54	100\%
	Crimson Snapper	Lutjanus erythropterus	1,322	368	1,571	440	2,893	706	54\%
	Darktail Snapper	Lutjanus lemniscatus	160	74	46	25	206	93	22\%
	Flame Snapper	Etelis coruscens	17	15	0	0	17	15	0\%
	Golden Snapper	Lutjanus johnii	1,340	254	3,667	842	5,007	1,020	73\%
	Mangrove Jack	Lutjanus argentimaculatus	3,360	630	5,673	1,241	9,032	1,686	63\%
	Maori Snapper	Lutjanus rivulatus	0	0	7	5	7	5	100\%
	Moses' Snapper	Lutjanus russellii	831	165	2,743	574	3,573	693	77\%
	Red Emperor	Lutjanus sebae	2,066	393	2,247	370	4,313	715	52\%
	Ruby Snapper	Etelis carbunculus	132	93	19	15	151	94	12\%
	Saddletail Snapper	Lutjanus malabaricus	1,044	221	1,345	424	2,389	549	56\%
	Stripey Snapper	Lutjanus carponotatus	5,828	1,496	22,542	3,328	28,369	4,558	79\%
	Fusiliers	Caesionidae, Lutjanidae, Symphysanodontidae - undifferentiated	41	20	430	283	471	284	91\%
	Chinamanfish	Symphorus nematophorus	419	105	393	95	812	157	48\%
Sweep	Banded Sweep	Scorpis georgiana	9	8	0	0	9	8	0\%
Sweetlips	Painted Sweetlips	Diagramma labiosum	1,299	763	495	231	1,794	811	28\%
Tailor	Tailor	Pomatomus saltatrix	0	0	49	36	49	36	100\%
Threadfin	Blue Threadfin	Eleutheronema tetradactylum	1,866	403	1,000	276	2,866	593	35\%
	King Threadfin	Polydactylus macrochir	396	97	690	346	1,086	398	64\%
Trevalla	Blue-Eye Trevalla	Hyperoglyphe antarctica	0	0	132	79	132	79	100\%
Trevally	Amberjack	Seriola dumerili	47	34	106	77	153	111	69\%
	Giant Trevally	Caranx ignobilis	504	148	2,533	767	3,037	889	83\%
	Golden Trevally	Gnathanodon speciosus	1,001	367	2,741	578	3,742	759	73\%
	Rainbow Runner	Elagatis bipinnulata	0	0	38	23	38	23	100\%
	Turrum	Carangoides fulvoguttatus	109	49	799	425	908	468	88\%
	Other Trevally	Carangidae - undifferentiated	1,705	427	1,813	333	3,518	562	52\%
Tripletail	Tripletail	Lobotes surinamensis	90	39	52	38	142	72	36\%
Trumpeter	Trumpeter	Latridopsis spp	0	0	553	483	553	483	100\%
Tuna	Dogtooth Tuna	Gymnosarda unicolor	47	23	69	60	116	65	60\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Mackerel Tuna	Euthynnus affinis	664	370	398	207	1,062	436	37\%
	Longtail Tuna	Thunnus orientalis	217	65	575	172	792	207	73\%
	Skipjack Tuna	Katsuwonus pelamis	32	21	0	0	32	21	0\%
	Southern Bluefin Tuna	Thunnus maccoyii	47	23	5	4	52	24	10\%
	Yellowfin Tuna	Thunnus albacares	34	17	70	46	104	49	68\%
Tuskfish Wrasse	Blackspot Tuskfish	Choerodon schoenleinii	2,021	457	6,389	1,472	8,410	1,649	76\%
	Blue Tuskfish	Choerodon cyanodus	1,292	289	8,008	2,836	9,301	2,887	86\%
	Bluespotted Tuskfish	Choerodon cauteroma	119	66	329	128	448	154	73\%
	Brownspotted Wrasse	Notolabrus parilus	0	0	107	68	107	68	100\%
	Humphead Maori Wrasse	Cheilinus undulatus	0	0	7	6	7	6	100\%
	Purple Tuskfish	Choerodon cephalotes	85	62	323	231	408	253	79\%
	Other Tuskfish	Choerodon spp	56	44	0	0	56	44	0\%
	Other Wrasse	Labridae - undifferentiated	55	34	414	183	469	187	88\%
	Bluebarred Parrotfish	Scarus ghobban spp complex	2	1	259	161	261	161	99\%
	Other Parrotfish	Scaridae - undifferentiated	0	0	116	92	116	92	100\%
Whiting	Goldenline Whiting	Sillago analis	313	140	262	90	575	175	45\%
	Western Trumpeter Whiting	Sillago burrus	44	24	185	115	229	118	81\%
	Other Whiting	Sillaginidae - undifferentiated	222	162	170	124	392	286	43\%
Small Baitfish	Small Baitfish	NO CODE	170	152	0	0	170	152	0\%
	Other Herring	Clupeidae - undifferentiated	418	296	55	33	472	298	12\%
Finfish Other	Archerfishes	Toxotidae - undifferentiated	0	0	34	30	34	30	100\%
	Bighead Gurnard Perch	Neosebastes pandus	0	0	15	11	15	11	100\%
	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	0	0	82	38	82	38	100\%
	Silver Toadfish	Lagocephalus sceleratus	0	0	87	30	87	30	100\%
	Morid Cod	Moridae - undifferentiated	36	23	100	34	136	46	74\%
	Conger Eel	Conger spp	0	0	17	15	17	15	100\%
	Moonfish Batfish	Lampridae - undifferentiated	14	11	242	133	256	134	94\%
	Salmon	Salmonidae - undifferentiated	256	70	248	90	504	121	49\%
	Oxeye Herring	Megalopidae - undifferentiated	0	0	30	22	30	22	100\%

Table 9. Estimated annual catch (total, kept and released numbers) and proportion released in the Gascoyne Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Cephalopod	Octopus	Octopus spp	11	10	0	0	11	10	0\%
	Squid	Order Teuthoidea	6,530	1,246	231	113	6,761	1,267	3\%
Lobster	Western Rock Lobster	Panulirus cygnus	193	81	38	15	231	86	16\%
	Painted Rock Lobster	Panulirus versicolor	150	122	34	30	184	152	18\%
	Ornate Rock Lobster	Panulirus ornatus	80	26	0	0	80	26	0\%
Crab	Blue Swimmer Crab	Portunus armatus	8,716	2,316	6,425	1,800	15,141	4,070	42\%
	Mud Crab	Scylla olivacea \& S serrata	590	243	747	421	1,338	658	56\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	0	0	458	269	458	269	100\%
	Bronze Whaler	Carcharhinus brachyurus	99	38	4,271	2,477	4,370	2,477	98\%
	Dusky Whaler	Carcharhinus obscurus	106	49	683	215	789	247	87\%
	Lemon Shark	Negaprion acutidens	0	0	258	208	258	208	100\%
	Sandbar Shark	Carcharhinus plumbeus	43	38	143	60	186	71	77\%
	Tiger Shark	Galeocerdo cuvier	0	0	446	211	446	211	100\%
	Whitetip Reef Shark	Triaenodon obesus	20	11	475	135	495	137	96\%
	Greynurse Shark PROTECTED	Carcharias taurus	0	0	14	12	14	12	100\%
	Gummy Sharks	Mustelus antarcticus \& M stevensi	54	27	307	243	361	245	85\%
	Hammerhead Shark	Family Sphyrnidae	0	0	61	21	61	21	100\%
	Wobbegong	Family Orectolobidae	23	21	37	24	60	32	62\%
	Other Whaler	Carcharhinidae - undifferentiated	60	26	865	189	925	192	93\%
	Other Shark	Sharks - undifferentiated	0	0	86	32	86	32	100\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	0	0	104	53	104	53	100\%
Barracouta	Barracouta	Thyrsites atun	0	0	167	74	167	74	100\%
Barramundi	Barramundi	Lates calcarifer	0	0	49	24	49	24	100\%
Bass Groper	Bass Groper	Polyprion americanus	17	15	0	0	17	15	0\%
Billfish	Black Marlin	Makaira indica	6	3	777	271	782	271	99\%
	Blue Marlin	Makaira nigricans	0	0	3,748	3,228	3,748	3,228	100\%
	Sailfish	Istiophorus platypterus	18	12	405	190	423	190	96\%
	Striped Marlin	Tetrapturus audax	0	0	5	3	5	3	100\%
Bonito	Bonito	Sarda spp	52	33	150	100	202	105	74\%
	Oriental Bonito	Sarda orientalis	17	15	7	5	24	16	30\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Bream	Frypan Bream	Argyrops spinifer	104	53	79	38	182	65	43\%
	Northwest Black Bream	Acanthopagrus palmaris	43	31	405	314	448	345	90\%
	Pink Snapper	Chrysophrys auratus	9,719	1,048	81,205	12,051	90,924	12,519	89\%
	Tarwhine	Rhabdosargus sarba	114	64	399	175	512	231	78\%
	Western Yellowfin Bream	Acanthopagrus morrisoni	421	177	1,555	392	1,977	449	79\%
	Other Bream	Sparidae - undifferentiated	121	106	58	40	179	113	32\%
Threadfin Bream	Western Butterfish	Pentapodus vitta	2,117	1,265	1,320	417	3,437	1,438	38\%
Butterfish	Other Butterfish	Stromateidae - undifferentiated	0	0	288	258	288	258	100\%
Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	7	7	121	106	128	106	94\%
	Estuary Cobbler	Cnidoglanis macrocephalus	5	3	25	14	30	14	84\%
	Giant Sea Catfish	Arius thalassinus	0	0	44	18	44	18	100\%
Cobia	Cobia	Rachycentron canadum	526	98	262	93	788	157	33\%
Cod	Blackspotted Rockcod	Epinephelus malabaricus	1,316	277	2,780	664	4,096	792	68\%
	Blacktip Rockcod	Epinephelus fasciatus	16	5	121	76	137	76	89\%
	Chinaman Rockcod	Epinephelus rivulatus	5,465	1,542	9,466	1,720	14,931	3,037	63\%
	Duskytail Grouper	Epinephelus bleekeri	17	15	0	0	17	15	0\%
	Eightbar Grouper	Hyporthodus octofasciatus	115	43	0	0	115	43	0\%
	Frostback Rockcod	Epinephelus bilobatus	220	101	182	141	402	192	45\%
	Goldspotted Rockcod	Epinephelus coioides	2,200	585	1,792	437	3,992	887	45\%
	Potato Rockcod PROTECTED	Epinephelus tukula	6	6	34	30	40	31	85\%
	Queensland Grouper PROTECTED	Epinephelus lanceolatus	0	0	11	10	11	10	100\%
	Rankin Cod	Epinephelus multinotatus	2,342	293	838	151	3,180	381	26\%
	Tomato Rockcod	Cephalopholis sonnerati	479	175	463	281	942	390	49\%
	Temperate Rockcods	Epinephelidae - undifferentiated	0	0	63	35	63	35	100\%
	Yellowspotted Rockcod	Epinephelus areolatus	604	385	935	436	1,540	672	61\%
Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	1,239	186	1,153	234	2,392	356	48\%
	Yellowedge Coronation Trout	Variola louti	407	103	99	45	505	112	19\%
Emperor	Bluespotted Emperor	Lethrinus punctulatus	887	326	3,113	1,109	4,001	1,343	78\%
	Grass Emperor	Lethrinus laticaudis	13,918	2,966	23,060	3,366	36,978	5,402	62\%
	Longnose Emperor	Lethrinus olivaceus	60	33	68	61	128	78	53\%
	Redspot Emperor	Lethrinus lentjan	79	53	11	10	91	55	12\%
	Redthroat Emperor	Lethrinus miniatus	3,710	642	8,720	1,554	12,430	1,959	70\%
	Robinsons' Seabream	Gymnocranius grandoculis	1,436	452	226	125	1,662	515	14\%
	Spangled Emperor	Lethrinus nebulosus	8,693	1,233	15,581	2,918	24,274	3,746	64\%
	Yellowtail Emperor	Lethrinus atkinsoni	219	89	165	85	383	144	43\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Other Emperor	Lethrinidae - undifferentiated	69	38	305	253	374	275	82\%
Flathead	Northern Sand Flathead	Platycephalus endrachtensis	185	71	203	75	388	113	52\%
	Yellowtail Flathead	Platycephalus westraliae	167	56	120	73	287	92	42\%
	Other Flathead	Platycephalidae - undifferentiated	139	76	121	92	259	159	47\%
Garfish	Three-by-two Garfish	Hemiramphus robustus	727	472	0	0	727	472	0\%
Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	9	8	0	0	9	8	0\%
Grunter	Sea Trumpeter	Pelsartia humeralis	0	0	88	44	88	44	100\%
	Western Striped Grunter	Pelates octolineatus	11	10	616	461	627	463	98\%
Grunter Bream	Grunter Bream	Haemulidae - undifferentiated	0	0	10	5	10	5	100\%
Gurnard	Gurnard	Neosebastidae - undifferentiated	0	0	17	15	17	15	100\%
Javelinfish	Barred Javelin	Pomadasys kaakan	46	40	11	10	57	42	20\%
	Blotched Javelin	Pomadasys maculatus	5	3	0	0	5	3	0\%
Jewfish	Mulloway	Argyrosomus japonicus	1,292	595	1,621	648	2,913	1,058	56\%
Leatherjacket	Horseshoe Leatherjacket	Meuschenia hippocrepis	8	8	79	51	88	51	90\%
	Leatherjacket	Monacanthidae - undifferentiated	56	32	1,076	526	1,132	533	95\%
Lizardfish Grinners	Lizardfish Grinners	Bathysauridae, Synodontidae undifferentiated	178	152	389	259	567	300	69\%
Longtom	Longtom	Belonidae - undifferentiated	17	15	352	150	369	151	95\%
Mackerel	Grey Mackerel	Scomberomorus semifasciatus	150	53	54	24	205	70	27\%
	School Mackerel	Scomberomorus queenslandicus	1,280	326	651	150	1,932	428	34\%
	Shark Mackerel	Grammatorcynus bicarinatus	209	58	384	118	593	137	65\%
	Spanish Mackerel	Scomberomorus commerson	4,138	600	2,715	1,052	6,853	1,421	40\%
	Spotted Mackerel	Scomberomorus munroi	247	101	55	32	302	130	18\%
	Wahoo	Acanthocybium solandri	162	42	133	117	296	137	45\%
	Other Mackerels and Tunas	Scombridae - undifferentiated	197	80	213	87	409	151	52\%
Mahi Mahi	Mahi Mahi	Coryphaena spp	239	74	142	62	381	113	37\%
Morwong	Dusky Morwong	Dactylophora nigricans	23	20	8	8	31	22	27\%
Mullet	Bluetail Mullet	Valamugil buchanani	24	14	0	0	24	14	0\%
	Diamondscale Mullet	Liza vaigiensis	30	22	0	0	30	22	0\%
	Sea Mullet	Mugil cephalus	2,444	1,386	0	0	2,444	1,386	0\%
Pearl Perch	Northern Pearl Perch	Glaucosoma buergeri	484	141	139	49	623	157	22\%
	West Australian Dhufish	Glaucosoma hebraicum	81	47	5,570	4,253	5,651	4,297	99\%
Pike	Great Barracuda	Sphyraena barracuda	54	26	98	37	152	46	64\%
	Snook	Sphyraena novaehollandiae	46	32	45	20	91	38	49\%
	Striped Seapike	Sphyraena obtusata	77	43	60	46	137	82	44\%
Queenfish	Queenfish	Scomberoides spp	11	6	268	117	279	117	96\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Redfish	Swallowtail	Centroberyx lineatus	10	7	0	0	10	7	0\%
Sand Bass	Sand Bass	Psammoperca waigiensis	5	3	33	19	38	19	88\%
Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	0	0	120	60	120	60	100\%
Snappers King	Goldband Snapper	Pristipomoides multidens	3,423	736	471	130	3,894	802	12\%
	Rosy Snapper	Pristipomoides filamentosus	616	223	287	136	903	325	32\%
	Sharptooth Snapper	Pristipomoides typus	65	31	0	0	65	31	0\%
Snappers Tropical	Brownstripe Snapper	Lutjanus vitta	0	0	11	10	11	10	100\%
	Crimson Snapper	Lutjanus erythropterus	325	131	101	52	425	147	24\%
	Darktail Snapper	Lutjanus lemniscatus	56	23	0	0	56	23	0\%
	Golden Snapper	Lutjanus johnii	37	16	0	0	37	16	0\%
	Mangrove Jack	Lutjanus argentimaculatus	1,002	211	1,441	387	2,443	551	59\%
	Maori Snapper	Lutjanus rivulatus	5	3	0	0	5	3	0\%
	Moses' Snapper	Lutjanus russellii	244	106	132	93	376	185	35\%
	Red Emperor	Lutjanus sebae	3,159	805	1,727	469	4,886	1,107	35\%
	Ruby Snapper	Etelis carbunculus	1,009	506	43	39	1,053	514	4\%
	Saddletail Snapper	Lutjanus malabaricus	243	119	301	140	544	214	55\%
	Stripey Snapper	Lutjanus carponotatus	1,578	262	3,598	755	5,176	911	70\%
	Fusiliers	Caesionidae, Lutjanidae, Symphysanodontidae - undifferentiated	37	23	0	0	37	23	0\%
	Chinamanfish	Symphorus nematophorus	340	174	337	194	677	281	50\%
Sweetlips	Painted Sweetlips	Diagramma labiosum	1,334	455	2,201	833	3,535	1,263	62\%
Tailor	Tailor	Pomatomus saltatrix	754	287	153	93	907	356	17\%
Threadfin	Blue Threadfin	Eleutheronema tetradactylum	140	92	10	5	149	92	6\%
	King Threadfin	Polydactylus macrochir	5	3	0	0	5	3	0\%
Trevalla	Blue-Eye Trevalla	Hyperoglyphe antarctica	0	0	85	67	85	67	100\%
Trevally	Amberjack	Seriola dumerili	5	3	41	18	45	19	90\%
	Samsonfish	Seriola hippos	0	0	40	21	40	21	100\%
	Yellowtail Kingfish	Seriola lalandi	0	0	5	4	5	4	100\%
	Giant Trevally	Caranx ignobilis	167	68	1,012	388	1,178	397	86\%
	Golden Trevally	Gnathanodon speciosus	789	165	2,592	884	3,382	962	77\%
	Bludger Trevally	Carangoides gymnostethus	126	63	234	165	360	178	65\%
	Silver Trevally	Pseudocaranx dentex	156	59	682	196	838	205	81\%
	Rainbow Runner	Elagatis bipinnulata	6	4	0	0	6	4	0\%
	Common Dart	Trachinotus botla	6	4	19	8	25	9	75\%
	Yellowtail Scad	Trachurus novaezelandiae	0	0	224	142	224	142	100\%
	Turrum	Carangoides fulvoguttatus	101	39	77	46	178	78	43\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Other Trevally	Carangidae - undifferentiated	13	6	17	8	29	10	57\%
Tuna	Dogtooth Tuna	Gymnosarda unicolor	8	3	5	3	12	4	39\%
	Mackerel Tuna	Euthynnus affinis	431	199	552	192	983	294	56\%
	Longtail Tuna	Thunnus orientalis	280	83	349	133	630	159	55\%
	Skipjack Tuna	Katsuwonus pelamis	22	11	144	73	166	77	87\%
	Southern Bluefin Tuna	Thunnus maccoyii	83	39	0	0	83	39	0\%
	Yellowfin Tuna	Thunnus albacares	685	237	320	133	1,005	283	32\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	2,778	527	9,209	4,340	11,987	4,437	77\%
	Blackspot Tuskfish	Choerodon schoenleinii	1,452	479	3,770	1,393	5,221	1,650	72\%
	Blue Tuskfish	Choerodon cyanodus	634	373	1,270	549	1,904	907	67\%
	Bluespotted Tuskfish	Choerodon cauteroma	54	43	12	11	66	53	18\%
	Brownspotted Wrasse	Notolabrus parilus	122	56	369	192	492	205	75\%
	Foxfish	Bodianus frenchii	43	20	0	0	43	20	0\%
	Goldspot Pigfish	Bodianus perditio	118	50	133	73	251	100	53\%
	Humphead Maori Wrasse	Cheilinus undulatus	16	13	0	0	16	13	0\%
	Purple Tuskfish	Choerodon cephalotes	66	42	40	29	106	71	38\%
	Southern Maori Wrasse	Ophthalmolepis lineolatus	0	0	42	38	42	38	100\%
	Western Blue Groper	Achoerodus gouldii	46	32	180	152	225	155	80\%
	Other Tuskfish	Choerodon spp	2	1	88	78	90	78	97\%
	Other Wrasse	Labridae - undifferentiated	31	17	1,665	938	1,696	938	98\%
	Bluebarred Parrotfish	Scarus ghobban spp complex	95	52	167	82	262	117	64\%
	Other Parrotfish	Scaridae - undifferentiated	17	15	0	0	17	15	0\%
Whiting	Goldenline Whiting	Sillago analis	10	5	10	5	19	11	50\%
	King George Whiting	Sillaginodes punctata	261	236	0	0	261	236	0\%
	School Whiting	Sillago bassensis, vittata \& schomburgkii	2,156	1,064	759	469	2,915	1,524	26\%
	Western Trumpeter Whiting	Sillago burrus	119	106	0	0	119	106	0\%
Small Baitfish	Small Baitfish	NO CODE	86	76	0	0	86	76	0\%
	Other Herring	Clupeidae - undifferentiated	114	65	0	0	114	65	0\%
Finfish Other	Bighead Gurnard Perch	Neosebastes pandus	10	5	0	0	10	5	0\%
	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	0	0	1,807	444	1,807	444	100\%
	Silver Toadfish	Lagocephalus sceleratus	0	0	3,864	1,744	3,864	1,744	100\%
	Weeping Toadfish	Torquigener pleurogramma	0	0	270	222	270	222	100\%
	Morid Cod	Moridae - undifferentiated	194	68	139	79	333	106	42\%
	Eel	Anguilliformes \& Synbranchiformes	0	0	23	15	23	15	100\%
	Salmon	Salmonidae - undifferentiated	34	30	0	0	34	30	0\%

Table 10. Estimated annual catch (total, kept and released numbers) and proportion released in the West Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Abalone	Roe's Abalone	Haliotis roei	1,717	999	0	0	1,717	999	0\%
	Greenlip Abalone	Haliotis laevigata	350	303	0	0	350	303	0\%
	Brownlip Abalone	Haliotis rubra conicopora	1,356	857	0	0	1,356	857	0\%
Cephalopod	Cuttlefish	Sepia spp	1,211	213	434	119	1,644	248	26\%
	Octopus	Octopus spp	2,670	944	241	77	2,911	973	8\%
	Squid	Order Teuthoidea	52,295	6,755	4,177	2,454	56,473	7,484	7\%
Lobster	Western Rock Lobster	Panulirus cygnus	201,220	20,201	139,744	14,761	340,964	31,840	41\%
	Southern Rock Lobster	Jasus edwardsii	8,062	5,337	2,000	953	10,062	5,656	20\%
Crab	Blue Swimmer Crab	Portunus armatus	251,343	18,387	581,999	52,498	833,342	68,270	70\%
	Sand Crab	Ovalipes spp	22	20	52	45	74	49	70\%
	Mud Crab	Scylla olivacea \& S serrata	1,526	531	1,605	623	3,130	1,109	51\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	0	0	90	40	90	40	100\%
	Bronze Whaler	Carcharhinus brachyurus	439	95	739	228	1,178	273	63\%
	Dusky Whaler	Carcharhinus obscurus	60	36	289	142	350	153	83\%
	Lemon Shark	Negaprion acutidens	17	15	0	0	17	15	0\%
	Sandbar Shark	Carcharhinus plumbeus	0	0	17	15	17	15	100\%
	Tiger Shark	Galeocerdo cuvier	11	10	137	46	148	48	92\%
	Whitetip Reef Shark	Triaenodon obesus	12	10	0	0	12	10	0\%
	Greynurse Shark PROTECTED	Carcharias taurus	0	0	147	122	147	122	100\%
	Gummy Sharks	Mustelus antarcticus \& M stevensi	634	123	389	117	1,023	192	38\%
	Hammerhead Shark	Family Sphyrnidae	40	23	359	112	399	114	90\%
	Port Jackson Shark	Heterodontus portusjacksoni	17	15	4,136	2,097	4,153	2,097	100\%
	Whiskery Shark	Furgaleus macki	203	78	90	40	293	90	31\%
	Wobbegong	Family Orectolobidae	55	26	729	168	783	178	93\%
	Other Whaler	Carcharhinidae - undifferentiated	153	75	973	301	1,126	335	86\%
	Other Shark	Sharks - undifferentiated	17	11	190	63	207	63	92\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	0	0	704	143	704	143	100\%
	Other Rays Skates	Rays - undifferentiated	51	34	3,395	569	3,446	570	99\%
Barracouta	Barracouta	Thyrsites atun	645	564	0	0	645	564	0\%
Bass Groper	Bass Groper	Polyprion americanus	20	18	0	0	20	18	0\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Billfish	Blue Marlin	Makaira nigricans	0	0	11	10	11	10	100\%
Bonito	Bonito	Sarda spp	512	255	86	62	599	262	14\%
	Oriental Bonito	Sarda orientalis	207	154	167	137	375	206	45\%
Bream	Black Bream	Acanthopagrus butcheri	4,493	998	83,451	24,474	87,944	24,763	95\%
	Northwest Black Bream	Acanthopagrus palmaris	0	0	225	196	225	196	100\%
	Pink Snapper	Chrysophrys auratus	12,666	1,112	33,981	3,342	46,647	3,904	73\%
	Tarwhine	Rhabdosargus sarba	1,056	319	7,870	2,532	8,926	2,586	88\%
	Western Yellowfin Bream	Acanthopagrus morrisoni	367	198	1,094	356	1,460	430	75\%
	Other Bream	Sparidae - undifferentiated	119	66	671	376	789	384	85\%
Threadfin Bream	Western Butterfish	Pentapodus vitta	4,092	1,041	18,480	2,786	22,572	3,102	82\%
Butterfish	Other Butterfish	Stromateidae - undifferentiated	0	0	1,680	822	1,680	822	100\%
Catfish	Estuary Cobbler	Cnidoglanis macrocephalus	58	32	17	15	75	36	23\%
Cobia	Cobia	Rachycentron canadum	56	28	57	26	113	39	51\%
Cod	Blackspotted Rockcod	Epinephelus malabaricus	809	318	2,823	804	3,632	1,053	78\%
	Blacktip Rockcod	Epinephelus fasciatus	52	34	271	165	323	168	84\%
	Breaksea Cod	Epinephelides armatus	10,992	936	11,457	1,299	22,449	1,956	51\%
	Chinaman Rockcod	Epinephelus rivulatus	376	107	3,680	1,030	4,055	1,043	91\%
	Eightbar Grouper	Hyporthodus octofasciatus	40	32	0	0	40	32	0\%
	Goldspotted Rockcod	Epinephelus coioides	714	364	2,309	719	3,024	853	76\%
	Harlequin Fish	Othos dentex	694	125	793	536	1,487	552	53\%
	Queensland Grouper PROTECTED	Epinephelus lanceolatus	35	30	0	0	35	30	0\%
	Rankin Cod	Epinephelus multinotatus	82	28	108	53	190	60	57\%
	Tomato Rockcod	Cephalopholis sonnerati	0	0	6	5	6	5	100\%
	Temperate Rockcods	Epinephelidae - undifferentiated	0	0	88	67	88	67	100\%
	Yellowspotted Rockcod	Epinephelus areolatus	0	0	57	51	57	51	100\%
Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	104	39	408	306	511	312	80\%
	Common Coral Trout	Plectropomus leopardus	1,371	260	2,053	469	3,424	647	60\%
	Yellowedge Coronation Trout	Variola louti	102	91	73	54	175	106	42\%
Emperor	Grass Emperor	Lethrinus laticaudis	99	33	539	252	638	259	84\%
	Redthroat Emperor	Lethrinus miniatus	1,945	532	7,822	1,702	9,766	1,888	80\%
	Robinsons' Seabream	Gymnocranius grandoculis	28	18	86	62	114	65	75\%
	Spangled Emperor	Lethrinus nebulosus	405	100	1,916	611	2,321	656	83\%
Flathead	Northern Sand Flathead	Platycephalus endrachtensis	252	89	344	182	596	224	58\%
	Southern Bluespotted Flathead	Platycephalus speculator	1,401	226	16,197	3,059	17,598	3,120	92\%
	Yellowtail Flathead	Platycephalus westraliae	1,250	323	9,941	2,207	11,191	2,343	89\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Other Flathead	Platycephalidae - undifferentiated	391	120	3,425	987	3,816	1,012	90\%
Flounder	Largetooth Flounder	Pseudorhombus arsius	46	24	9	8	54	25	16\%
	Smalltooth Flounder	Pseudorhombus jenynsii	275	71	253	86	528	112	48\%
	Flounder Sole Flatfish	Bothidae \& Pleuronectidae spp	80	39	57	34	137	51	42\%
Garfish	Three-by-two Garfish	Hemiramphus robustus	257	124	0	0	257	124	0\%
	Southern Garfish	Hyporhamphus melanochir	1,628	630	542	241	2,171	685	25\%
	Other Garfish	Hemiramphidae - undifferentiated	0	0	34	30	34	30	100\%
Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	351	105	505	143	857	196	59\%
Grunter	Sea Trumpeter	Pelsartia humeralis	1,144	761	8,997	1,868	10,141	2,016	89\%
	Western Striped Grunter	Pelates octolineatus	203	182	13,508	2,749	13,711	2,755	99\%
	Western Sooty Grunter	Hephaestus jenkinsi	678	606	2,311	1,307	2,989	1,731	77\%
Grunter Bream	Grunter Bream	Haemulidae - undifferentiated	10	9	1,119	912	1,129	912	99\%
Gurnard	Gurnard	Neosebastidae - undifferentiated	126	51	3,203	513	3,329	530	96\%
Hapuku	Hapuku	Polyprion oxygeneios	0	0	34	22	34	22	100\%
Jewfish	Mulloway	Argyrosomus japonicus	328	113	463	150	791	235	59\%
Leatherjacket	Horseshoe Leatherjacket	Meuschenia hippocrepis	54	25	443	140	497	143	89\%
	Sixspine Leatherjacket	Meuschenia freycineti	35	30	170	67	204	73	83\%
	Leatherjacket	Monacanthidae - undifferentiated	291	81	718	165	1,009	189	71\%
Lizardfish Grinners	Lizardfish Grinners	Bathysauridae, Synodontidae undifferentiated	0	0	600	398	600	398	100\%
Longtom	Longtom	Belonidae - undifferentiated	51	33	0	0	51	33	0\%
Mackerel	Blue Mackerel	Scomber australasicus	323	166	543	340	866	484	63\%
	School Mackerel	Scomberomorus queenslandicus	54	28	50	38	104	57	48\%
	Shark Mackerel	Grammatorcynus bicarinatus	43	22	253	137	296	139	85\%
	Spanish Mackerel	Scomberomorus commerson	2,378	400	967	322	3,345	589	29\%
	Spotted Mackerel	Scomberomorus munroi	173	80	0	0	173	80	0\%
	Wahoo	Acanthocybium solandri	0	0	34	30	34	30	100\%
	Other Mackerels and Tunas	Scombridae - undifferentiated	102	68	362	168	464	182	78\%
Mahi Mahi	Mahi Mahi	Coryphaena spp	391	155	215	102	606	232	35\%
Morwong	Blue Morwong	Nemadactylus valenciennesi	1,054	202	658	196	1,712	326	38\%
	Dusky Morwong	Dactylophora nigricans	12	10	101	43	113	44	90\%
	Other Morwong	Cheilodactylidae - undifferentiated	0	0	35	32	35	32	100\%
Mullet	Diamondscale Mullet	Liza vaigiensis	116	106	0	0	116	106	0\%
	Sea Mullet	Mugil cephalus	12,590	5,295	40	25	12,630	5,295	0\%
	Yelloweye Mullet	Aldrichetta forsteri	2,609	1,289	680	410	3,290	1,370	21\%
	Other Mullet	Mugilidae - undifferentiated	0	0	121	106	121	106	100\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	18,215	1,322	34,893	3,032	53,108	4,118	66\%
Pike	Great Barracuda	Sphyraena barracuda	0	0	17	15	17	15	100\%
	Snook	Sphyraena novaehollandiae	2,636	991	1,174	331	3,810	1,086	31\%
	Striped Seapike	Sphyraena obtusata	4,727	3,052	845	360	5,572	3,099	15\%
	Other Pike	Sphyraenidae - undifferentiated	92	43	35	30	126	53	27\%
Queenfish	Queenfish	Scomberoides spp	23	14	17	15	40	21	42\%
Redfish	Bight Redfish	Centroberyx gerrardi	926	168	953	361	1,879	470	51\%
	Swallowtail	Centroberyx lineatus	193	65	102	50	295	82	35\%
	Yelloweye Redfish	Centroberyx australis	17	15	0	0	17	15	0\%
Salmon Herring	Australian Herring	Arripis georgianus	102,053	10,710	28,550	5,155	130,603	13,742	22\%
	Western Australian Salmon	Arripis truttaceus	741	216	2,307	971	3,048	1,050	76\%
Sand Bass	Sand Bass	Psammoperca waigiensis	125	81	29	26	155	93	19\%
Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	1,119	308	4,420	798	5,539	933	80\%
Snappers King	Goldband Snapper	Pristipomoides multidens	10	9	0	0	10	9	0\%
	Rosy Snapper	Pristipomoides filamentosus	10	5	23	20	32	21	70\%
Snappers Tropical	Brownstripe Snapper	Lutjanus vitta	17	15	0	0	17	15	0\%
	Crimson Snapper	Lutjanus erythropterus	0	0	17	15	17	15	100\%
	Darktail Snapper	Lutjanus lemniscatus	0	0	17	15	17	15	100\%
	Golden Snapper	Lutjanus johnii	7	5	11	8	18	13	60\%
	Maori Snapper	Lutjanus rivulatus	35	32	0	0	35	32	0\%
	Moses' Snapper	Lutjanus russellii	39	24	216	155	255	156	85\%
	Red Emperor	Lutjanus sebae	65	23	280	105	345	120	81\%
	Saddletail Snapper	Lutjanus malabaricus	7	5	0	0	7	5	0\%
	Stripey Snapper	Lutjanus carponotatus	31	20	324	136	355	147	91\%
	Fusiliers	Caesionidae, Lutjanidae, Symphysanodontidae - undifferentiated	12	10	113	43	124	46	91\%
	Chinamanfish	Symphorus nematophorus	69	44	132	71	201	94	66\%
Sweep	Banded Sweep	Scorpis georgiana	568	260	836	265	1,404	381	60\%
	Sea Sweep	Scorpis aequipinnis	1,223	309	1,682	329	2,905	486	58\%
Sweetlips	Painted Sweetlips	Diagramma labiosum	440	154	276	150	716	242	39\%
Tailor	Tailor	Pomatomus saltatrix	7,400	1,348	8,128	1,785	15,528	2,485	52\%
Trevalla	Blue-Eye Trevalla	Hyperoglyphe antarctica	76	49	0	0	76	49	0\%
Trevally	Amberjack	Seriola dumerili	206	81	80	53	285	97	28\%
	Samsonfish	Seriola hippos	1,989	344	7,170	970	9,159	1,147	78\%
	Yellowtail Kingfish	Seriola lalandi	880	201	1,467	1,005	2,347	1,132	62\%
	Giant Trevally	Caranx ignobilis	17	16	9	8	26	24	33\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Golden Trevally	Gnathanodon speciosus	0	0	34	30	34	30	100\%
	Silver Trevally	Pseudocaranx dentex	29,251	3,244	20,056	2,987	49,307	5,103	41\%
	Common Dart	Trachinotus botla	17	15	45	32	62	35	73\%
	Yellowtail Scad	Trachurus novaezelandiae	401	209	525	317	927	379	57\%
	Turrum	Carangoides fulvoguttatus	11	10	34	30	45	32	75\%
	Other Trevally	Carangidae - undifferentiated	68	43	207	131	276	149	75\%
Trumpeter	Trumpeter	Latridopsis spp	0	0	2,844	1,581	2,844	1,581	100\%
Tuna	Mackerel Tuna	Euthynnus affinis	393	154	298	213	691	309	43\%
	Longtail Tuna	Thunnus orientalis	11	10	0	0	11	10	0\%
	Skipjack Tuna	Katsuwonus pelamis	208	76	305	174	513	192	59\%
	Southern Bluefin Tuna	Thunnus maccoyii	180	53	122	84	302	99	40\%
	Yellowfin Tuna	Thunnus albacares	398	118	370	140	768	226	48\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	9,190	828	5,034	652	14,224	1,356	35\%
	Blackspot Tuskfish	Choerodon schoenleinii	142	45	57	37	199	73	29\%
	Blue Tuskfish	Choerodon cyanodus	49	29	134	88	183	93	73\%
	Brownspotted Wrasse	Notolabrus parilus	2,024	449	17,275	1,977	19,299	2,103	90\%
	Foxfish	Bodianus frenchii	1,063	188	1,065	324	2,128	422	50\%
	Goldspot Pigfish	Bodianus perditio	43	31	15	13	57	34	26\%
	Humphead Maori Wrasse	Cheilinus undulatus	0	0	407	364	407	364	100\%
	Purple Tuskfish	Choerodon cephalotes	64	57	99	77	163	103	61\%
	Southern Maori Wrasse	Ophthalmolepis lineolatus	547	206	5,836	1,848	6,383	1,881	91\%
	Western Blue Groper	Achoerodus gouldii	196	89	25	17	222	91	11\%
	Western King Wrasse	Coris auricularis	8,476	2,033	48,153	4,723	56,629	5,561	85\%
	Other Tuskfish	Choerodon spp	0	0	0	0	0	0	\#DIV/0!
	Other Wrasse	Labridae - undifferentiated	341	154	3,065	745	3,406	782	90\%
	Bluebarred Parrotfish	Scarus ghobban spp complex	3,227	2,789	4,905	2,429	8,133	5,177	60\%
	Other Parrotfish	Scaridae - undifferentiated	436	191	1,080	319	1,516	459	71\%
Whiting	King George Whiting	Sillaginodes punctata	27,599	4,501	11,675	2,278	39,274	6,094	30\%
	School Whiting	Sillago bassensis, vittata \& schomburgkii	253,064	29,180	67,790	8,911	320,854	36,314	21\%
	Western Trumpeter Whiting	Sillago burrus	102	91	9,638	1,778	9,739	1,820	99\%
	Other Whiting	Sillaginidae - undifferentiated	1,183	586	401	231	1,584	692	25\%
Western Blue Devil	Western Blue Devil	Paraplesiops sinclairi	15	11	168	65	183	66	92\%
Small Baitfish	Small Baitfish	NO CODE	34	30	87	79	121	84	72\%
	Australian Sardine	Sardinops sagax	98	66	45	40	143	83	32\%
	Other Herring	Clupeidae - undifferentiated	1,309	908	279	125	1,589	978	18\%
Finfish Other	Bighead Gurnard Perch	Neosebastes pandus	110	48	1,363	308	1,474	321	93\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	203	155	19,762	3,569	19,966	3,579	99\%
	Silver Toadfish	Lagocephalus sceleratus	95	60	2,533	554	2,628	560	96\%
	Weeping Toadfish	Torquigener pleurogramma	522	478	9,124	2,924	9,646	2,962	95\%
	Boarfish	Pentacerotidae - undifferentiated	11	10	0	0	11	10	0\%
	Boxfish	Ostraciidae - undifferentiated	17	15	0	0	17	15	0\%
	Morid Cod	Moridae - undifferentiated	93	63	643	240	736	248	87\%
	Conger Eel	Conger spp	0	0	68	61	68	61	100\%
	Eel	Anguilliformes \& Synbranchiformes	0	0	227	81	227	81	100\%
	Moonfish Batfish	Lampridae - undifferentiated	17	15	0	0	17	15	0\%
	Silver Drummer	Kyphosus spp Complex	45	32	0	0	45	32	0\%

Table 11. Estimated annual catch (total, kept and released numbers) and proportion released in the South Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Abalone	Roe's Abalone	Haliotis roei	217	197	0	0	217	197	0\%
	Greenlip Abalone	Haliotis laevigata	353	193	0	0	353	193	0\%
Cephalopod	Cuttlefish	Sepia spp	263	64	138	49	400	82	34\%
	Octopus	Octopus spp	22	15	17	15	39	21	44\%
	Squid	Order Teuthoidea	10,247	1,526	872	215	11,120	1,652	8\%
Lobster	Western Rock Lobster	Panulirus cygnus	21	11	9	5	30	16	30\%
	Southern Rock Lobster	Jasus edwardsii	5	2	0	0	5	2	0\%
Crab	Blue Swimmer Crab	Portunus armatus	8,738	1,769	7,589	2,062	16,327	3,157	46\%
Sharks	Bronze Whaler	Carcharhinus brachyurus	61	29	18	9	79	36	23\%
	Sandbar Shark	Carcharhinus plumbeus	0	0	3	2	3	2	100\%
	Greynurse Shark PROTECTED	Carcharias taurus	11	10	0	0	11	10	0\%
	Gummy Sharks	Mustelus antarcticus \& M stevensi	104	26	10	7	114	27	9\%
	Hammerhead Shark	Family Sphyrnidae	10	7	3	2	13	8	23\%
	Port Jackson Shark	Heterodontus portusjacksoni	0	0	77	44	77	44	100\%
	School Shark	Galeorhinus galeus	8	8	0	0	8	8	0\%
	Whiskery Shark	Furgaleus macki	20	15	0	0	20	15	0\%
	Other Whaler	Carcharhinidae - undifferentiated	7	5	138	66	145	66	95\%
	Other Shark	Sharks - undifferentiated	0	0	187	158	187	158	100\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	34	30	67	35	101	63	66\%
	Other Rays Skates	Rays - undifferentiated	20	15	54	19	74	24	73\%
Barracouta	Barracouta	Thyrsites atun	0	0	37	30	37	30	100\%
Billfish	Blue Marlin	Makaira nigricans	5	2	8	4	12	6	62\%
Bonito	Bonito	Sarda spp	948	231	883	374	1,831	472	48\%
	Oriental Bonito	Sarda orientalis	938	238	895	498	1,833	574	49\%
Bream	Black Bream	Acanthopagrus butcheri	7,160	1,950	30,525	5,370	37,685	6,500	81\%
	Pink Snapper	Chrysophrys auratus	2,558	347	7,950	1,727	10,508	1,872	76\%
	Tarwhine	Rhabdosargus sarba	521	381	1,958	827	2,479	948	79\%
	Western Yellowfin Bream	Acanthopagrus morrisoni	10	7	17	15	27	17	63\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Butterfish	Other Butterfish	Stromateidae - undifferentiated	10	7	0	0	10	7	0\%
Catfish	Estuary Cobbler	Cnidoglanis macrocephalus	10	7	0	0	10	7	0\%
Cod	Blacktip Rockcod	Epinephelus fasciatus	25	20	64	24	89	31	72\%
	Breaksea Cod	Epinephelides armatus	5,457	608	2,761	564	8,218	1,108	34\%
	Eightbar Grouper	Hyporthodus octofasciatus	40	15	19	11	59	18	32\%
	Harlequin Fish	Othos dentex	906	119	98	30	1,003	128	10\%
	Queensland Grouper PROTECTED	Epinephelus lanceolatus	5	2	0	0	5	2	0\%
	Temperate Rockcods	Epinephelidae - undifferentiated	3	2	300	112	303	112	99\%
Emperor	Redthroat Emperor	Lethrinus miniatus	18	9	183	169	201	169	91\%
	Yellowtail Emperor	Lethrinus atkinsoni	13	10	0	0	13	10	0\%
	Other Emperor	Lethrinidae - undifferentiated	53	31	0	0	53	31	0\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	1,184	266	2,743	563	3,927	735	70\%
	Yellowtail Flathead	Platycephalus westraliae	139	76	336	191	474	205	71\%
	Other Flathead	Platycephalidae - undifferentiated	87	36	51	23	138	47	37\%
Flounder	Smalltooth Flounder	Pseudorhombus jenynsii	205	77	52	45	257	90	20\%
	Flounder Sole Flatfish	Bothidae \& Pleuronectidae spp	47	22	51	34	98	51	52\%
Garfish	Three-by-two Garfish	Hemiramphus robustus	0	0	9	5	9	5	100\%
	Southern Garfish	Hyporhamphus melanochir	1,180	392	463	177	1,643	524	28\%
Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	303	111	2,206	539	2,510	619	88\%
Grunter	Sea Trumpeter	Pelsartia humeralis	20	15	1,603	533	1,623	534	99\%
	Western Striped Grunter	Pelates octolineatus	0	0	1,230	324	1,230	324	100\%
Gurnard	Gurnard	Neosebastidae - undifferentiated	27	12	132	50	159	54	83\%
Hapuku	Hapuku	Polyprion oxygeneios	120	65	0	0	120	65	0\%
Javelinfish	Blotched Javelin	Pomadasys maculatus	0	0	31	16	31	16	100\%
Leatherjacket	Horseshoe Leatherjacket	Meuschenia hippocrepis	117	43	734	261	850	269	86\%
	Sixspine Leatherjacket	Meuschenia freycineti	75	25	1,175	396	1,250	404	94\%
	Leatherjacket	Monacanthidae - undifferentiated	488	163	4,198	1,353	4,686	1,378	90\%
Mackerel	Blue Mackerel	Scomber australasicus	234	66	898	319	1,132	334	79\%
	School Mackerel	Scomberomorus queens/andicus	40	29	60	44	100	53	60\%
	Shark Mackerel	Grammatorcynus bicarinatus	10	7	10	7	20	10	50\%
	Spanish Mackerel	Scomberomorus commerson	9	5	0	0	9	5	0\%
	Other Mackerels and Tunas	Scombridae - undifferentiated	15	8	16	6	30	11	52\%
Mahi Mahi	Mahi Mahi	Coryphaena spp	7	4	45	24	52	27	87\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Morwong	Blue Morwong	Nemadactylus valenciennesi	2,852	301	842	208	3,693	415	23\%
	Dusky Morwong	Dactylophora nigricans	3	2	0	0	3	2	0\%
	Other Morwong	Cheilodactylidae - undifferentiated	16	8	0	0	16	8	0\%
Mullet	Sea Mullet	Mugil cephalus	478	433	0	0	478	433	0\%
	Yelloweye Mullet	Aldrichetta forsteri	205	113	26	17	231	115	11\%
	Other Mullet	Mugilidae - undifferentiated	34	30	0	0	34	30	0\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	611	139	541	127	1,152	247	47\%
Pike	Snook	Sphyraena novaehollandiae	2,349	849	795	345	3,144	1,187	25\%
	Striped Seapike	Sphyraena obtusata	322	259	1,865	1,667	2,187	1,717	85\%
	Other Pike	Sphyraenidae - undifferentiated	68	30	0	0	68	30	0\%
Queenfish	Queenfish	Scomberoides spp	94	28	10	7	104	31	10\%
Redfish	Bight Redfish	Centroberyx gerrardi	8,965	977	4,058	461	13,023	1,315	31\%
	Swallowtail	Centroberyx lineatus	1,546	320	1,833	303	3,379	481	54\%
Salmon Herring	Australian Herring	Arripis georgianus	30,102	3,977	12,703	1,870	42,805	5,174	30\%
	Western Australian Salmon	Arripis truttaceus	1,576	294	1,886	393	3,461	584	54\%
Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	471	95	2,258	300	2,730	326	83\%
Snappers Tropical	Fusiliers	Caesionidae, Lutjanidae, Symphysanodontidae - undifferentiated	9	5	10	7	19	9	52\%
Sweep	Banded Sweep	Scorpis georgiana	157	46	83	32	240	56	35\%
	Sea Sweep	Scorpis aequipinnis	1,047	190	791	209	1,839	329	43\%
Sweetlips	Painted Sweetlips	Diagramma labiosum	9	5	0	0	9	5	0\%
Tailor	Tailor	Pomatomus saltatrix	217	72	335	147	552	167	61\%
Trevally	Amberjack	Seriola dumerili	12	10	0	0	12	10	0\%
	Samsonfish	Seriola hippos	748	122	757	193	1,505	252	50\%
	Yellowtail Kingfish	Seriola lalandi	264	63	315	93	578	121	54\%
	Golden Trevally	Gnathanodon speciosus	203	182	0	0	203	182	0\%
	Bludger Trevally	Carangoides gymnostethus	80	59	0	0	80	59	0\%
	Silver Trevally	Pseudocaranx dentex	5,542	1,120	6,581	1,460	12,122	2,415	54\%
	Yellowtail Scad	Trachurus novaezelandiae	514	181	1,170	406	1,684	449	69\%
	Other Trevally	Carangidae - undifferentiated	0	0	44	31	44	31	100\%
Trumpeter	Trumpeter	Latridopsis spp	51	45	2,624	1,606	2,675	1,608	98\%
Tuna	Dogtooth Tuna	Gymnosarda unicolor	7	5	0	0	7	5	0\%
	Mackerel Tuna	Euthynnus affinis	37	18	23	20	60	34	38\%
	Skipjack Tuna	Katsuwonus pelamis	124	92	82	61	206	153	40\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
	Southern Bluefin Tuna	Thunnus maccoyii	150	41	76	31	227	61	34\%
	Yellowfin Tuna	Thunnus albacares	34	14	10	7	44	16	23\%
Tuskfish Wrasse	Brownspotted Wrasse	Notolabrus parilus	470	145	4,985	895	5,455	948	91\%
	Foxfish	Bodianus frenchii	331	63	203	93	534	116	38\%
	Goldspot Pigfish	Bodianus perditio	2	1	0	0	2	1	0\%
	Humphead Maori Wrasse	Cheilinus undulatus	0	0	20	15	20	15	100\%
	Southern Maori Wrasse	Ophthalmolepis lineolatus	53	32	832	218	884	226	94\%
	Western Blue Groper	Achoerodus gouldii	104	34	178	122	282	127	63\%
	Western King Wrasse	Coris auricularis	599	308	2,931	636	3,530	804	83\%
	Other Wrasse	Labridae - undifferentiated	173	151	359	109	532	186	67\%
	Bluebarred Parrotfish	Scarus ghobban spp complex	0	0	92	49	92	49	100\%
	Other Parrotfish	Scaridae - undifferentiated	50	37	176	81	226	89	78\%
Whiting	King George Whiting	Sillaginodes punctata	46,469	9,275	16,075	3,902	62,544	12,806	26\%
	School Whiting	Sillago bassensis, vittata \& schomburgkii	21,009	5,032	7,336	1,553	28,345	5,711	26\%
	Other Whiting	Sillaginidae - undifferentiated	0	0	20	15	20	15	100\%
Western Blue Devil	Western Blue Devil	Paraplesiops sinclairi	43	14	185	54	228	57	81\%
Small Baitfish	Small Baitfish	NO CODE	0	0	38	25	38	25	100\%
	Other Herring	Clupeidae - undifferentiated	301	243	27	14	328	244	8\%
Finfish Other	Bighead Gurnard Perch	Neosebastes pandus	27	16	43	22	70	27	62\%
	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	0	0	979	386	979	386	100\%
	Silver Toadfish	Lagocephalus sceleratus	0	0	47	30	47	30	100\%
	Weeping Toadfish	Torquigener pleurogramma	0	0	40	21	40	21	100\%
	Boarfish	Pentacerotidae - undifferentiated	12	6	0	0	12	6	0\%
	Morid Cod	Moridae - undifferentiated	19	9	185	62	204	63	91\%
	Eel	Anguilliformes \& Synbranchiformes	34	30	20	15	54	34	37\%
	Silver Drummer	Kyphosus spp Complex	0	0	36	15	36	15	100\%

8 Estimates of Catch by Zones within Bioregions

This section provides an overview of the species composition of the recreational catch for zones within each bioregion (Figure 76). The estimated annual catch (total, kept and released numbers) and proportion released during 2013/14 by RFBL holders aged five years or older are presented for the: Kimberley (Table 12) and Pilbara (Table 13) zones in the North Coast bioregion; Ningaloo (Table 14) and Carnarvon/Shark Bay (Table 15) zones in the Gascoyne Coast bioregion; Kalbarri (Table 16), Mid West (Table 17), Metro (Table 18) and Southern (Table 19) zones in the West Coast bioregion; and the Albany (Table 20) and Esperance (Table 21) zones in the South Coast bioregion.

Additional small-scale estimates for key Blue Swimmer Crab fisheries and recreational fishing within Marine Parks will be reported separately. The sample size and relative standard error for many species was not adequate to provide representative and robust estimates. Estimates are only provided for species where the sample size and relative standard error was acceptable.

8.1 Kimberley

The total number of species/taxa taken in the Kimberley zone was 129 in 2011/12 and 134 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in Table 12. The most common finfish species were: Stripey Snapper, Barramundi, Grass Emperor, Golden Snapper, Mangrove Jack and Spangled Emperor. These six species accounted for 45% of the total catch (by numbers). The most common invertebrate species was Mud Crab, which accounted for 10% of the total catch (by numbers).

8.2 Pilbara

The total number of species/taxa taken in the Pilbara zone was 153 in 2011/12 and 151 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in Table 13. The most common finfish species were: Stripey Snapper, Grass Emperor, Spangled Emperor, Barcheek Coral Trout, Blue Tuskfish, Spanish Mackerel, Blackspotted Rockcod, Blackspot Tuskfish and Red Emperor. These nine species accounted for 41% of the total catch (by numbers). The most common invertebrate species were Blue Swimmer Crab and Mud Crab, which accounted for 18% of the total catch (by numbers).

8.3 Ningaloo

The total number of species/taxa taken in the Ningaloo zone was 158 in 2011/12 and 136 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in

Table 14. The most common finfish species were: Spangled Emperor, Chinaman Rockcod, Grass Emperor, Redthroat Emperor, Stripey Snapper and Spanish Mackerel. These six species accounted for 41% of the total catch (by numbers). The most common invertebrate species were Blue Swimmer Crab and Squid, which accounted for 16% of the total catch (by numbers).

8.4 Carnarvon/Shark Bay

The total number of species/taxa taken in the Carnarvon/Shark Bay zone was 151 in 2011/12 and 156 in 13/14. Estimates for species where the sample size and relative standard error was acceptable are given in Table 15. The most common finfish species were: Pink Snapper, Grass Emperor, Spangled Emperor, Redthroat Emperor and Baldchin Groper. These five species accounted for 62% of the total catch (by numbers). The most common invertebrate species was Blue Swimmer Crab, which accounted for 4% of the total catch (by numbers).

8.5 Kalbarri

The total number of species/taxa taken in the Kalbarri zone was 83 in 2011/12 and 66 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in

Table 16. The most common finfish species were: Black Bream, Spanish Mackerel, Pink Snapper, Tailor and Mulloway. These five species accounted for 23% of the total catch (by numbers). The most common invertebrate species was Western Rock Lobster, which accounted for 42% of the total catch (by numbers).

Figure 76. Map of zones within bioregions.

8.6 Mid West

The total number of species/taxa taken in the Mid West zone was 146 in 2011/12 and 128 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in Table 17. The most common finfish species were: West Australian Dhufish, Australian Herring, Pink Snapper, School Whiting, Baldchin Groper and Western King Wrasse. These five species accounted for 35% of the total catch (by numbers). The most common invertebrate species was Western Rock Lobster, which accounted for 40% of the total catch (by numbers).

8.7 Metropolitan

The total number of species/taxa taken in the Metropolitan zone was 171 in 2011/12 and 169 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in

Table 18. The most common finfish species were: School Whiting, Australian Herring, Western King Wrasse, Black Bream, Silver Trevally, Pink Snapper, King George Whiting, West Australian Dhufish, Western Butterfish, Tailor, Brownspotted Wrasse, Breaksea Cod and Southern Bluespotted Flathead. These 13 species accounted for 34% of the total catch (by numbers). The most common invertebrate species were Blue Swimmer Crab, Western Rock Lobster and Squid, which accounted for 50% of the total catch (by numbers).

8.8 Southern

The total number of species/taxa taken in the Southern zone was 134 in 2011/12 and 120 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in

Table 19. The most common finfish species were: School Whiting, Australian Herring, Black Bream, King George Whiting, Silver Trevally, Pink Snapper and West Australian Dhufish. These seven species accounted for 38% of the total catch (by numbers). The most common invertebrate species were Blue Swimmer Crab, Western Rock Lobster and Squid, which accounted for 38% of the total catch (by numbers).

8.9 Albany

The total number of species/taxa taken in the Albany zone was 92 in 2011/12 and 83 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in Table 20. The most common finfish species were: King George Whiting, Black Bream, Australian Herring, School Whiting, Silver Trevally and Pink Snapper. These six species accounted for 64% of the total catch (by numbers). The most common invertebrate species were Blue Swimmer Crab and Squid, which accounted for 8% of the total catch (by numbers).

8.10 Esperance

The total number of species/taxa taken in the Esperance zone was 146 in 2011/12 and 128 in $13 / 14$. Estimates for species where the sample size and relative standard error was acceptable are given in Table 21. The most common finfish species were: Australian Herring, Bight Redfish, School Whiting, Black Bream, Silver Trevally, Breaksea Cod, Snook, Brownspotted Wrasse and Swallowtail. These nine species accounted for 65% of the total catch (by numbers). The most common invertebrate species were Blue Swimmer Crab and Squid, which accounted for 10% of the total catch (by numbers).

Table 12. Estimated annual catch (total, kept and released numbers) and proportion released in the Kimberley zone of the North Coast bioregion 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Crab	Mud Crab	Scylla olivacea \& S serrata	5,349	1,058	8,831	2,090	14,180	2,957	62\%
Barramundi	Barramundi	Lates calcarifer	1,582	368	16,512	6,815	18,094	7,141	91\%
Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	12	6	1,882	350	1,894	352	99\%
	Giant Sea Catfish	Arius thalassinus	86	36	2,867	586	2,953	593	97\%
Cod	Blackspotted Rockcod	Epinephelus malabaricus	595	327	2,962	1,276	3,557	1,369	83\%
	Goldspotted Rockcod	Epinephelus coioides	336	92	1,299	234	1,636	271	79\%
Emperor	Grass Emperor	Lethrinus laticaudis	4,484	1,360	5,656	1,462	10,140	2,678	56\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	1,015	293	1,134	288	2,149	509	53\%
Snappers Tropical	Golden Snapper	Lutjanus johnii	1,232	249	3,280	808	4,512	982	73\%
	Mangrove Jack	Lutjanus argentimaculatus	1,396	270	3,114	1,048	4,510	1,240	69\%
	Stripey Snapper	Lutjanus carponotatus	4,000	1,436	12,171	2,706	16,171	3,990	75\%
Trevally	Golden Trevally	Gnathanodon speciosus	657	336	1,617	437	2,274	581	71\%
	Other Trevally	Carangidae - undifferentiated	675	189	737	229	1,412	313	52\%
Tuskfish Wrasse	Blackspot Tuskfish	Choerodon schoenleinii	714	296	1,794	473	2,508	708	72\%

Table 13. Estimated annual catch (total, kept and released numbers) and proportion released in the Pilbara zone of the North Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	Rel
Crab	Blue Swimmer Crab	Portunus armatus	15,454	3,517	19,220	5,596	34,673	8,962	55%
	Mud Crab	Scylla olivacea \& S serrata	3,707	810	2,413	638	6,120	1,271	39%
Cod	Blackspotted Rockcod	Epinephelus malabaricus	361	93	3,261	662	3,622	719	90%
	Chinaman Rockcod	Epinephelus rivulatus	244	65	1,700	442	1,944	448	87%
	Goldspotted Rockcod	Epinephelus coioides	845	281	4,243	803	5,088	1,016	83%
	Rankin Cod	Epinephelus multinotatus	1,479	329	1,527	308	3,006	559	51%
Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	2,453	383	2,768	451	5,221	685	53%
Emperor	Grass Emperor	Lethrinus laticaudis	2,559	682	7,500	1,960	10,059	2,411	75%
	Spangled Emperor	Lethrinus nebulosus	3,012	683	9,306	4,250	12,318	4,838	76%
Mackerel	Spanish Mackerel	Scomberomorus commerson	1,527	246	3,545	665	5,072	826	70%
Snappers Tropical	Mangrove Jack	Lutjanus argentimaculatus	1,964	555	2,559	567	4,522	1,045	57%
	Red Emperor	Lutjanus sebae	1,955	385	2,092	359	4,047	697	52%
	Lutjanus carponotatus	1,828	398	10,370	1,899	12,198	2,151	85%	
Trevally	Ctripey Snapper	Carangidae - undifferentiated	1,030	380	1,076	240	2,106	463	51%
Tuskfish Wrasse	Other Trevally	Choerodon schoenleinii	1,307	338	4,595	1,385	5,902	1,479	78%
	Choerodon cyanodus	655	189	7,055	2,791	7,710	2,820	92%	

Table 14. Estimated annual catch (total, kept and released numbers) and proportion released in the Ningaloo zone of the Gascoyne Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Cephalopod	Squid	Order Teuthoidea	5,807	1,168	$\mathbf{2 3 1}$	$\mathbf{1 1 3}$	$\mathbf{6 , 0 3 8}$	$\mathbf{1 , 1 9 1}$	4%
Cod	Chinaman Rockcod	Epinephelus rivulatus	5,145	1,524	$\mathbf{7 , 8 8 3}$	$\mathbf{1 , 6 1 3}$	$\mathbf{1 3 , 0 2 8}$	$\mathbf{2 , 9 3 6}$	61%
	Rankin Cod	Epinephelus multinotatus	1,068	202	$\mathbf{5 1 6}$	$\mathbf{1 3 2}$	$\mathbf{1 , 5 8 4}$	$\mathbf{2 8 2}$	33%
Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	589	86	$\mathbf{8 6 3}$	$\mathbf{2 0 9}$	$\mathbf{1 , 4 5 3}$	$\mathbf{2 5 8}$	59%
Emperor	Grass Emperor	Lethrinus laticaudis	$\mathbf{2 , 0 0 4}$	446	$\mathbf{5 , 4 0 5}$	$\mathbf{1 , 2 9 6}$	$\mathbf{7 , 4 0 9}$	$\mathbf{1 , 5 5 3}$	73%
	Redthroat Emperor	Lethrinus miniatus	$\mathbf{2 , 7 8 7}$	597	$\mathbf{5 , 7 2 5}$	$\mathbf{1 , 3 0 1}$	$\mathbf{8 , 5 1 2}$	$\mathbf{1 , 6 8 5}$	67%
	Spangled Emperor	Lethrinus nebulosus	6,136	975	$\mathbf{1 0 , 0 6 4}$	$\mathbf{1 , 9 9 7}$	$\mathbf{1 6 , 2 0 0}$	$\mathbf{2 , 6 5 4}$	62%
Mackerel	Spanish Mackerel	Scomberomorus commerson	$\mathbf{2 , 0 4 8}$	355	$\mathbf{2 , 1 7 9}$	$\mathbf{1 , 0 4 0}$	$\mathbf{4 , 2 2 7}$	$\mathbf{1 , 3 0 5}$	52%
Snappers King	Goldband Snapper	Pristipomoides multidens	3,287	$\mathbf{7 2 3}$	$\mathbf{4 5 4}$	$\mathbf{1 2 9}$	$\mathbf{3 , 7 4 1}$	$\mathbf{7 8 9}$	12%
Snappers Tropical	Red Emperor	Lutjanus sebae	$\mathbf{2 , 5 3 8}$	$\mathbf{7 8 4}$	$\mathbf{1 , 1 9 0}$	$\mathbf{3 4 2}$	$\mathbf{3 , 7 2 8}$	$\mathbf{1 , 0 3 8}$	$\mathbf{3 2 \%}$
Trevally	Golden Trevally	Gnathanodon speciosus	694	$\mathbf{1 6 1}$	$\mathbf{2 , 1 8 8}$	$\mathbf{8 4 6}$	$\mathbf{2 , 8 8 2}$	$\mathbf{9 2 5}$	$\mathbf{7 6 \%}$

Table 15. Estimated annual catch (total, kept and released numbers) and proportion released in the Carnarvon/Shark Bay zone of the Gascoyne Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Bream	Pink Snapper	Chrysophrys auratus	9,405	1,035	79,855	11,938	89,259	12,406	89\%
Cod	Blackspotted Rockcod	Epinephelus malabaricus	1,004	259	1,867	467	2,871	617	65\%
	Goldspotted Rockcod	Epinephelus coioides	1,100	264	1,111	265	2,210	438	50\%
	Rankin Cod	Epinephelus multinotatus	1,274	211	322	71	1,596	253	20\%
Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	650	164	289	102	939	242	31\%
Emperor	Grass Emperor	Lethrinus laticaudis	11,914	2,917	17,654	3,086	29,569	5,142	60\%
	Redthroat Emperor	Lethrinus miniatus	923	229	2,995	837	3,918	984	76\%
	Spangled Emperor	Lethrinus nebulosus	2,556	713	5,518	1,954	8,074	2,410	68\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	2,090	479	535	120	2,625	544	20\%
Snappers Tropical	Stripey Snapper	Lutjanus carponotatus	702	159	2,200	573	2,902	647	76\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	2,335	491	8,496	4,296	10,831	4,371	78\%

Table 16. Estimated annual catch (total, kept and released numbers) and proportion released in the Kalbarri zone of the West Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. There were less than 30 diarists for all species in this zone; however key species are displayed.

| Reporting Group | Common Name | Scientific Name | Kept | se | Rel | se | Total | se | \% Rel |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bream | Pink Snapper | Chrysophrys auratus | $\mathbf{2 2 1}$ | $\mathbf{9 8}$ | $\mathbf{4 0}$ | $\mathbf{2 6}$ | $\mathbf{2 6 1}$ | $\mathbf{1 0 8}$ | $\mathbf{1 5 \%}$ |
| Pearl Perch | West Australian Dhufish | Glaucosoma hebraicum | $\mathbf{1 3 6}$ | $\mathbf{6 4}$ | $\mathbf{5 9}$ | $\mathbf{3 2}$ | $\mathbf{1 9 4}$ | $\mathbf{8 3}$ | 30% |
| Snappers Tropical | Red Emperor | Lutjanus sebae | $\mathbf{1 7}$ | $\mathbf{1 5}$ | 0 | 0 | $\mathbf{1 7}$ | $\mathbf{1 5}$ | 0% |
| Tuskfish Wrasse | Baldchin Groper | Choerodon rubescens | $\mathbf{1 5 7}$ | $\mathbf{6 9}$ | $\mathbf{2 7 1}$ | $\mathbf{1 7 1}$ | $\mathbf{4 2 8}$ | $\mathbf{2 3 4}$ | 63% |

Table 17. Estimated annual catch (total, kept and released numbers) and proportion released in the Mid West zone of the West Coast

 bioregion during 2013/14 by RFBL holders aged five years or older.se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Lobster	Western Rock Lobster	Panulirus cygnus	49,379	8,974	37,768	8,539	87,147	15,532	43\%
Bream	Pink Snapper	Chrysophrys auratus	3,046	394	8,110	1,962	11,156	2,169	73\%
Cod	Breaksea Cod	Epinephelides armatus	2,070	367	2,577	561	4,646	773	55\%
Coral Trout	Common Coral Trout	Plectropomus leopardus	1,281	256	1,964	464	3,245	641	61\%
Emperor	Redthroat Emperor	Lethrinus miniatus	1,572	514	6,476	1,512	8,048	1,691	80\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	975	208	126	73	1,101	231	11\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	6,414	689	11,700	1,614	18,114	2,179	65\%
Trevally	Samsonfish	Seriola hippos	253	78	1,291	332	1,544	366	84\%
	Silver Trevally	Pseudocaranx dentex	1,658	391	669	171	2,327	483	29\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	5,808	676	3,600	579	9,408	1,166	38\%
	Western King Wrasse	Coris auricularis	2,712	1,631	4,762	1,696	7,474	2,580	64\%

Table 18. Estimated annual catch (total, kept and released numbers) and proportion released in the Metropolitan zone of the West Coast bioregion during 2013/14 by RFBL holders aged five years or older
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Cephalopod	Cuttlefish	Sepia spp	1,014	206	224	77	1,237	223	18\%
	Squid	Order Teuthoidea	39,403	4,834	3,625	2,425	43,028	5,719	8\%
Lobster	Western Rock Lobster	Panulirus cygnus	120,102	14,719	89,364	11,376	209,465	24,093	43\%
Crab	Blue Swimmer Crab	Portunus armatus	218,150	17,411	476,497	47,572	694,648	62,468	69\%
Sharks	Bronze Whaler	Carcharhinus brachyurus	291	75	560	215	851	254	66\%
	Port Jackson Shark	Heterodontus portusjacksoni	0	0	3,799	2,072	3,799	2,072	100\%
Rays	Other Rays Skates	Rays - undifferentiated	34	30	1,839	319	1,873	320	98\%
Bream	Black Bream	Acanthopagrus butcheri	2,190	537	50,193	17,793	52,383	17,926	96\%
	Pink Snapper	Chrysophrys auratus	7,409	932	17,624	2,021	25,033	2,496	70\%
	Tarwhine	Rhabdosargus sarba	721	276	2,878	762	3,599	885	80\%
Threadfin Bream	Western Butterfish	Pentapodus vitta	3,226	812	16,887	2,722	20,114	2,964	84\%
Cod	Breaksea Cod	Epinephelides armatus	7,471	760	7,662	1,078	15,133	1,606	51\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	733	157	11,843	2,742	12,575	2,788	94\%
	Yellowtail Flathead	Platycephalus westraliae	993	305	8,869	2,158	9,862	2,292	90\%
	Other Flathead	Platycephalidae - undifferentiated	279	99	2,022	619	2,300	653	88\%
Grunter	Sea Trumpeter	Pelsartia humeralis	364	304	6,517	1,656	6,881	1,683	95\%
	Western Striped Grunter	Pelates octolineatus	203	181	7,242	1,734	7,445	1,744	97\%
Morwong	Blue Morwong	Nemadactylus valenciennesi	501	153	142	50	643	163	22\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	8,584	944	18,500	2,150	27,084	2,900	68\%
Salmon Herring	Australian Herring	Arripis georgianus	74,400	9,872	22,575	5,003	96,975	12,851	23\%
Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	770	279	2,572	487	3,342	664	77\%
Sweep	Sea Sweep	Scorpis aequipinnis	993	294	1,373	309	2,366	459	58\%
Tailor	Tailor	Pomatomus saltatrix	6,071	1,251	5,945	1,296	12,016	2,029	49\%
Trevally	Samsonfish	Seriola hippos	1,289	293	4,926	823	6,215	957	79\%
	Silver Trevally	Pseudocaranx dentex	20,937	2,973	15,734	2,791	36,671	4,740	43\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	3,059	370	1,094	215	4,153	497	26\%
	Brownspotted Wrasse	Notolabrus parilus	1,359	389	13,334	1,763	14,693	1,851	91\%
	Foxfish	Bodianus frenchii	694	157	880	306	1,574	390	56\%
	Western King Wrasse	Coris auricularis	4,644	1,026	39,789	4,236	44,433	4,632	90\%

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se
\% Rel								
Whiting	King George Whiting	Sillaginodes punctata	$\mathbf{1 6 , 0 6 3}$	$\mathbf{2 , 1 0 9}$	5,023	$\mathbf{1 , 2 7 3}$	21,086	2,741
	School Whiting	Sillago bassensis, vittata \& schomburgkii	$\mathbf{1 9 8 , 0 7 2}$	$\mathbf{2 6 , 5 3 7}$	49,253	6,929	247,326	32,334
	Western Trumpeter Whiting	Sillago burrus	$\mathbf{1 0 2}$	$\mathbf{9 0}$	6,944	1,555	7,046	1,602
	99%							
Finfish Other	Toadfish Blowfish Pufferfish	Tetraodontidae - undifferentiated	$\mathbf{3 4}$	$\mathbf{3 0}$	$\mathbf{1 6 , 3 3 2}$	3,343	16,366	3,343
	Silver Toadfish	Lagocephalus sceleratus	$\mathbf{5 1}$	$\mathbf{4 5}$	$\mathbf{1 , 5 1 1}$	$\mathbf{4 5 6}$	$\mathbf{1 , 5 6 2}$	459

Table 19. Estimated annual catch (total, kept and released numbers) and proportion released in the Southern zone of the West Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Cephalopod	Squid	Order Teuthoidea	12,569	4,442	553	233	13,122	4,478	4\%
Lobster	Western Rock Lobster	Panulirus cygnus	30,061	9,717	11,781	3,162	41,842	12,388	28\%
Crab	Blue Swimmer Crab	Portunus armatus	31,810	5,076	103,265	20,475	135,075	25,022	76\%
Rays	Other Rays Skates	Rays - undifferentiated	17	16	1,499	468	1,516	468	99\%
Bream	Pink Snapper	Chrysophrys auratus	1,990	336	8,208	1,638	10,197	1,793	80\%
Cod	Breaksea Cod	Epinephelides armatus	1,420	227	970	272	2,390	429	41\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	654	160	3,900	1,229	4,554	1,277	86\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	3,081	389	4,634	617	7,716	938	60\%
Salmon Herring	Australian Herring	Arripis georgianus	23,021	3,571	5,580	1,063	28,600	4,231	20\%
Trevally	Samsonfish	Seriola hippos	447	103	953	269	1,400	309	68\%
	Silver Trevally	Pseudocaranx dentex	6,643	1,165	3,653	1,004	10,297	1,732	35\%
Tuskfish Wrasse	Western King Wrasse	Coris auricularis	1,106	503	3,284	681	4,390	869	75\%
Whiting	King George Whiting	Sillaginodes punctata	11,121	3,948	6,534	1,875	17,655	5,406	37\%
	School Whiting	Sillago bassensis, vittata \& schomburgkii	38,657	8,240	16,590	5,372	55,246	12,914	30\%

Table 20. Estimated annual catch (total, kept and released numbers) and proportion released in the Albany zone of the South Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Cephalopod	Squid	Order Teuthoidea	8,107	1,485	711	212	8,818	1,607	8\%
Crab	Blue Swimmer Crab	Portunus armatus	7,197	1,706	4,879	1,326	12,077	2,560	40\%
Bream	Black Bream	Acanthopagrus butcheri	5,086	1,448	27,461	5,141	32,547	5,857	84\%
	Pink Snapper	Chrysophrys auratus	2,300	338	7,847	1,719	10,147	1,862	77\%
Cod	Breaksea Cod	Epinephelides armatus	4,052	580	2,374	558	6,426	1,082	37\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	1,134	265	2,667	560	3,801	731	70\%
Morwong	Blue Morwong	Nemadactylus valenciennesi	2,080	285	342	123	2,422	353	14\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	560	134	523	126	1,083	242	48\%
Redfish	Bight Redfish	Centroberyx gerrardi	4,753	722	1,027	212	5,779	877	18\%
	Swallowtail	Centroberyx lineatus	1,285	315	1,125	277	2,410	456	47\%
Salmon Herring	Australian Herring	Arripis georgianus	21,510	3,686	8,435	1,647	29,945	4,778	28\%
	Western Australian Salmon	Arripis truttaceus	1,567	294	1,523	343	3,090	551	49\%
Sergeant Baker	Sergeant Baker	Aulopus purpurissatus	422	94	1,801	290	2,223	316	81\%
Trevally	Samsonfish	Seriola hippos	559	115	404	174	963	227	42\%
	Silver Trevally	Pseudocaranx dentex	4,957	1,104	5,462	1,435	10,419	2,378	52\%
Tuskfish Wrasse	Brownspotted Wrasse	Notolabrus parilus	205	77	3,576	829	3,781	843	95\%
Whiting	King George Whiting	Sillaginodes punctata	45,120	9,243	15,940	3,892	61,060	12,768	26\%
	School Whiting	Sillago bassensis, vittata \& schomburgkii	17,401	4,970	5,724	1,516	23,125	5,612	25\%

Table 21. Estimated annual catch (total, kept and released numbers) and proportion released in the Esperance zone of the South Coast bioregion during 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species. These tables only include species where more than 30 diarists reported a catch of that species.

Reporting Group	Common Name	Scientific Name	Kept	se	Rel	se	Total	se	\% Rel
Cephalopod	Squid	Order Teuthoidea	2,140	320	162	36	2,302	347	7\%
Cod	Breaksea Cod	Epinephelides armatus	1,405	168	387	64	1,792	211	22\%
	Harlequin Fish	Othos dentex	306	41	26	10	332	44	8\%
Morwong	Blue Morwong	Nemadactylus valenciennesi	772	89	500	160	1,272	207	39\%
Redfish	Bight Redfish	Centroberyx gerrardi	4,213	633	3,031	387	7,244	934	42\%
	Swallowtail	Centroberyx lineatus	261	45	708	114	970	144	73\%
Salmon Herring	Australian Herring	Arripis georgianus	8,592	1,221	4,268	860	12,860	1,751	33\%
Trevally	Silver Trevally	Pseudocaranx dentex	584	126	1,119	225	1,703	327	66\%

9 Harvest Weights

This section provides an overview of the estimated harvest (by weight) for species assemblages (or suites) within each bioregion and habitat, which are aligned with resources managed by the Department of Fisheries. A comparison of the estimated harvest by RFBL holders aged five years or older during 2011/12 and 2013/14 is provided for the: top 10 nearshore and estuarine scalefish species (or species groupings) in each bioregion (Table 22); dominant 15 scalefish species for the West Coast Demersal Scalefish Resource (Table 23); top 10 demersal scalefish species in the North, Gascoyne and South Coast Bioregions (Table 24); top 10 pelagic scalefish species in the North Coast (Table 25); and crab resources in each Bioregion (Table 26).

Extrapolation of recreational catches from numbers to weight requires estimates of average weights for recreational species. These have been obtained from concurrent Boat Ramp Surveys, long-term averages from previous Boat Ramp Surveys or from Tour Operator Returns (charter logbooks). These average weights are influenced by sample design, management, and biological/environmental factors, therefore sources of information and assumptions used to extrapolate the catch can bias the estimated weight for some species. A table of the estimated average weights for key species taken by RFBL holders aged five years or older during 2013/14 is given in Appendix 1. It is likely that additional data from future surveys will further refine and adjust estimates of weights.

These estimates of boat-based recreational harvest do not include catches from recreational charter fishing. The estimated recreational catch for nearshore and estuarine species provided in this report, particularly those harvested with high proportions of shore-based effort, will be underestimated. An overview of the information required for stock status reporting of major recreational fisheries based on estimates of recreational catch and 95% confidence intervals during 2013/14 by RFBL holders aged five years or older is provided in Table 27.

9.1 Nearshore and Estuarine Resources

The top 10 nearshore and estuarine species (or species groupings) in 2013-14 represented: 79% of the total catch (by numbers kept) in the North Coast, 87% in the Gascoyne Coast, 95% in the West Coast, and 95% in the South Coast Bioregions (Table 27).

Comparisons of estimated recreational catches of the top 10 nearshore and estuarine species in each bioregion between 2011/12 and 2013/14 (Table 22) indicated estimated catches:

- in the North Coast were steady at $16 \mathrm{t}(95 \%$ confidence intervals from 11-22) and 15 t (95% confidence intervals from 11-19)
- in the Gascoyne Coast were steady at 14 t (95% confidence intervals from 8-20) and 14 t (95% confidence intervals from 8-20)
- in the West Coast decreased from $111 \mathrm{t}(95 \%$ confidence intervals from 99-123) to 78 t (95% confidence intervals from 69-87)
- in the South Coast decreased from $37 \mathrm{t}(95 \%$ confidence intervals from 31-44) to 23 t (95% confidence intervals from 19-27)

Estimated recreational catches were steady between 2011/12 and 2013/14 for:

- Barramundi, Black Jewfish, Blue Threadfin and Trevally in the North Coast
- Chinaman Rockcod, Golden Trevally and Mulloway in the Gascoyne Coast
- King George Whiting, School Whiting and Tailor in the West Coast
- Australian Herring, King George Whiting, Silver Trevally and Western Australian Salmon in the South Coast

Estimated recreational catches decreased between 2011/12 and 2013/14 for:

- Australian Herring in the West Coast decreased from $26 \mathrm{t}(95 \%$ confidence intervals from 21-31) to 12 t (95% confidence intervals from 10-15)
- Silver Trevally in the West Coast decreased from 26 t (95% confidence intervals from 21-30) to 16 t (95% confidence intervals from 12-19)
- Black Bream in the South Coast decreased from 7 t (95% confidence intervals from $3-11)$ to $2 \mathrm{t}(95 \%$ confidence intervals from 1-3)
- Silver Trevally in the South Coast decreased from 5 t (95% confidence intervals from $4-6)$ to $2 \mathrm{t}(95 \%$ confidence intervals from 1-3)

Table 22. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the top 10 nearshore and estuarine scalefish species during 2011/12 and 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Species	2011/12				2013/14			
	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se
North Coast								
Barramundi	2,077	$4.061{ }^{\text {c }}$	8.435	2.680	1,676	$4.061{ }^{\text {s }}$	6.806	1.519
Black Jewfish	324	$3.000^{\text {c }}$	0.972	0.279	562	$3.000^{\text {C }}$	1.687	0.391
Blue Threadfin	2,233	$1.375{ }^{\text {B }}$	3.070	1.167	1,866	$1.375^{\text {B }}$	2.566	0.556
Garfish	1,245	$0.104^{\text {S }}$	0.129	0.058	2,239	$0.095{ }^{\text {S }}$	0.213	0.081
Golden Trevally	1,606	$1.281{ }^{\text {B }}$	2.057	0.391	1,001	$1.281{ }^{\text {B }}$	1.282	0.470
Mullet	1,821	$0.042^{\text {C }}$	0.076	0.023	1,638	$0.042^{\text {C }}$	0.069	0.021
Northwest Black Bream	590	N/A			677	N/A		
Small Baitfish	161	N/A			587	N/A		
Trevally	1,059	$1.281{ }^{\text {c }}$	1.356	0.324	1,813	$1.281{ }^{\text {c }}$	2.323	0.554
Whiting	1,525	$0.184^{\text {C }}$	0.281	0.126	535	$0.184^{\text {C }}$	0.099	0.040
TOTAL	12,640		16.377	2.983	12,595		15.044	1.818
Gascoyne Coast								
Chinaman Rockcod	5,465	$0.493{ }^{\text {s }}$	2.694	0.760	5,465	$0.430^{\text {s }}$	2.350	0.664
Garfish	727	$0.104^{\text {s }}$	0.076	0.049	727	$0.095{ }^{\text {s }}$	0.069	0.045
Golden Trevally	789	$4.979^{\text {c }}$	3.929	0.822	789	$4.979{ }^{\text {c }}$	3.931	0.821
Mulloway	1,292	$4.629^{\text {c }}$	5.980	2.754	1,292	$4.629{ }^{\text {c }}$	5.979	2.758
School Whiting	2,156	$0.097{ }^{\text {S }}$	0.209	0.103	2,156	$0.097{ }^{\text {S }}$	0.209	0.103
Sea Mullet	999	$0.042^{\text {C }}$	0.042	0.019	2,444	$0.042^{\text {C }}$	0.103	0.058
Silver Trevally	156	$0.518^{\text {s }}$	0.081	0.031	282	$0.495{ }^{\text {s }}$	0.140	0.043
Tailor	754	$0.652^{\text {s }}$	0.492	0.187	754	$0.666^{\text {s }}$	0.502	0.192
Western Butterfish	2,117	$0.191^{\text {s }}$	0.404	0.241	2,117	$0.191{ }^{\text {s }}$	0.404	0.242
Western Yellowfin Bream	421	$0.563{ }^{\text {s }}$	0.237	0.100	421	$0.563{ }^{\text {s }}$	0.237	0.100
TOTAL	16,321		14.144	2.993	16,448		13.924	2.975
West Coast								
Australian Herring	183,940	$0.140^{\text {B }}$	25.752	2.636	102,053	$0.122^{\text {B }}$	12.450	1.308
Black Bream	9,996	$0.312^{\text {s }}$	3.119	0.869	4,493	$0.254^{\text {s }}$	1.141	0.254
King George Whiting	48,678	$0.312^{\text {B }}$	15.188	2.294	27,599	$0.475{ }^{\text {B }}$	13.110	2.142
School Whiting	238,411	$0.097{ }^{\text {S }}$	23.126	2.046	253,064	$0.095^{\text {B }}$	24.041	2.776
Sea Mullet	7,372	$0.042^{\text {C }}$	0.310	0.175	12,590	$0.042^{\text {C }}$	0.529	0.223
Silver Trevally	54,573	$0.468^{\text {B }}$	25.540	2.235	29,251	$0.539^{\text {B }}$	15.766	1.751
Striped Barracuda	158	$0.417^{\text {S }}$	0.066	0.034	4,727	$0.417^{\text {S }}$	1.971	1.275
Tailor	21,092	$0.652^{\text {s }}$	13.752	3.826	7,400	$0.694^{\text {B }}$	5.135	0.936
Western Butterfish	3,084	$0.191{ }^{\text {B }}$	0.589	0.159	4,092	$0.191{ }^{\text {B }}$	0.782	0.199
Western King Wrasse	9,142	$0.350^{\text {s }}$	3.200	0.733	8,476	$0.328^{\text {B }}$	2.780	0.668
TOTAL	576,446		110.640	6.114	453,744		77.705	4.491
South Coast								
Australian Herring	25,443	$0.129^{\text {B }}$	3.282	0.666	30,102	$0.118^{\text {B }}$	3.552	0.471
Black Bream	22,839	$0.312^{\text {B }}$	7.126	1.936	7,160	$0.254^{\text {B }}$	1.819	0.496
Garfish	2,866	$0.104^{\text {S }}$	0.298	0.138	1,180	$0.095{ }^{\text {s }}$	0.112	0.037
King George Whiting	59,011	$0.196{ }^{\text {B }}$	11.566	2.197	46,469	$0.187^{\text {B }}$	8.690	1.749
Oriental Bonito	151	N/A	0	0	938	N/A		
School Whiting	16,731	$0.097{ }^{\text {s }}$	1.623	0.321	21,009	$0.089^{\text {B }}$	1.870	0.452
Silver Trevally	9,797	$0.518^{\text {s }}$	5.075	0.625	5,622	$0.389^{\text {B }}$	2.187	0.437
Snook	708	$0.862^{\text {s }}$	0.610	0.191	2,349	$0.383^{\text {B }}$	0.900	0.329
Sthn Bluespotted Flathead	1,995	$0.548^{\text {S }}$	1.093	0.250	1,184	$0.502^{\text {B }}$	0.595	0.134
WA Salmon	2,174	$3.135^{\text {B }}$	6.815	1.583	1,576	$2.137^{\text {B }}$	3.368	0.634
TOTAL	141,715		37.489	3.484	117,851		23.091	2.110

Average weights where: ${ }^{\mathrm{B}}$ is the bioregion estimate from Appendix $1 *$, ${ }^{\mathrm{S}}$ is the state-wide estimate from Appendix $1 *$, ${ }^{\mathrm{C}}$ unpublished Charter
data, ${ }^{\text {N }}$ NRFS estimate,, * Average weights for 2011/12 are from Appendix 1 (Ryan et al. 2013)

Table 23. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the dominant 15 species in the West Coast Demersal Scalefish Fishery during 2011/12 and 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Species	2011/12				2013/14			
West Coast Demersal	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se
Baldchin Groper	12,271	$2.337^{\text {B }}$	28.677	2.847	9,190	$2.224^{\text {B }}$	20.439	1.844
Bass Groper	12	N/A	0	0	20	N/A	0	0
Bight Redfish	1,288	$1.171^{\text {S }}$	1.508	0.252	1,136	$1.102^{\text {s }}$	1.252	0.273
Blue Morwong	1,348	$2.717^{\text {S }}$	3.663	0.560	1,054	$2.733^{\text {S }}$	2.882	0.552
Blue-Eye Trevalla	18	N/A	0	0	76	N/A	0	0
Breaksea Cod	9,949	$1.031{ }^{\text {s }}$	10.257	0.788	10,992	$0.919^{\text {s }}$	10.102	0.861
Eightbar Grouper	48	$5.270^{\text {C }}$	0.253	0.184	40	$5.270^{\text {C }}$	0.212	0.167
Emperor	3,119	$1.180^{\text {C }}$	3.680	0.786	2,449	$1.180^{\text {C }}$	2.890	0.784
Foxfish	973	$0.811^{\text {s }}$	0.789	0.135	1,063	$0.772^{\text {s }}$	0.821	0.146
Hapuku	0	N/A	0	0	0	N/A	0	0
Pink Snapper	14,354	$2.315^{\text {B }}$	33.230	2.595	12,666	$2.394^{\text {B }}$	30.322	2.666
Ruby Snapper	0	N/A	0	0	0	N/A	0	0
Sea Sweep	805	$1.252^{\text {S }}$	1.008	0.255	1,223	$1.244^{\text {s }}$	1.521	0.385
Sergeant Baker	1,627	$0.940^{\text {S }}$	1.529	0.319	1,119	$0.596^{\text {S }}$	0.667	0.184
WA Dhufish	16,495	$4.485{ }^{\text {B }}$	73.980	5.835	18,215	$4.456^{\text {B }}$	81.166	5.899
TOTAL	62,307		158.575	7.122	59,243		152.045	6.872

[^1]
9.2 Demersal Resources

The Integrated Fisheries Management Plan for the West Coast Demersal Scalefish utilised estimates of recreational catch by weight from surveys conducted in 2005/06 (Department of Fisheries 2010). The estimated harvest weights for the West Coast Demersal Scalefish Fishery (Table 23) includes: the top commercial and recreational species, demersal species where boat-based catches predominate, and species groupings for comparisons with the commercial catches. The 'Emperor' grouping includes 5 species: Bluespotted Emperor (Lethrinus punctulatus), Grass Emperor (L. laticaudis), Redthroat Emperor (L. miniatus), Spangled Emperor (L. nebulosus) and Yellowtail Emperor (L. atkinsoni). The 'Bight Redfish' grouping includes Bight Redfish (Centroberyx gerrardi), Swallowtail (C. lineatus) and Yelloweye Redfish (C. australis).

The top 10 demersal species (or groupings, 15 in the West Coast) in 2013/14 represented: 76% of the total catch (by numbers kept) in the North Coast, 77% in the Gascoyne Coast, 89% in the West Coast, and 98% in the South Coast (Table 27).

Comparisons of estimated recreational catches of the top demersal species (or groupings) in each bioregion between 2011/12 and 2013/14 (Table 23 and Table 24) indicated estimated catches:

- in the North Coast decreased from $77 \mathrm{t}(95 \%$ confidence intervals from 67-85) to 56 t (95\% confidence intervals from 48-64)
- the Gascoyne Coast decreased from 136 t (95% confidence intervals from 121-152) to 98 t (95% confidence intervals from 86-110)
- in the West Coast were steady at 159 t (95% confidence intervals from 145-173) and 152 t (95% confidence intervals from 139-166)
- in the South Coast decreased from $52 \mathrm{t}(95 \%$ confidence intervals from 44-60) to 34 t (95\% confidence intervals from 31-38)

Estimated recreational catches were steady between 2011/12 and 2013/14 for:

- Barcheek Coral Trout, Blackspot Tuskfish, Grass Emperor, Rankin Cod and Red Emperor in the North Coast
- Baldchin Groper, Goldband Snapper, Grass Emperor, Rankin Cod, Red Emperor and Pink Snapper in the Gascoyne Coast
- Baldchin Groper, Breaksea Cod, Pink Snapper and West Australian Dhufish in the West Coast
- Bight Redfish, Breaksea Cod, Blue Morwong and Pink Snapper in the South Coast

Estimated recreational catches decreased between 2011/12 and 2013/14 for:

- Spangled Emperor in the North Coast from 15 t (95% confidence intervals from 11-19) to $6 \mathrm{t}(95 \%$ confidence intervals from 4-9) (Table 24)
- Spangled Emperor in the Gascoyne Coast from 35 t (95% confidence intervals from 26-45) to $17 \mathrm{t}(95 \%$ confidence intervals from 12-21) and
- Redthroat Emperor in the Gascoyne Coast from 8 t (95% confidence intervals from $6-11)$ to $3 \mathrm{t}(95 \%$ confidence intervals from 2-4)

The estimated recreational catches were steady between 2011/12 and 2013/14 for the indicator species in the West Coast Bioregion: Baldchin Groper from 29 t (95% confidence intervals from 23-34) to 20 t (95% confidence intervals from 17-24); Pink Snapper from 33 $\mathrm{t}(95 \%$ confidence intervals from 28-38) to 30 t (95% confidence intervals from 25-36); and West Australian Dhufish from $74 \mathrm{t}(95 \%$ confidence intervals from 63-85) to $81 \mathrm{t}(95 \%$ confidence intervals from 70-93) (Table 23).

Table 24. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the top 10 demersal scalefish species during 2011/12 and 2013/14 by RFBL holders aged five years or older (excluding West Coast bioregion, refer to Table 23).
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Species	2011/12				2013/14			
	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se
North Coast								
Barcheek Coral Trout	4,702	$2.382^{\text {s }}$	11.200	1.567	2,769	$2.729^{\text {s }}$	7.556	1.075
Blackspot Tuskfish	2,310	$2.684^{\text {s }}$	6.200	1.275	2,021	$2.792{ }^{\text {s }}$	5.643	1.277
Crimson Snapper	1,052	$2.039^{\text {C }}$	2.145	0.587	1,322	$2.039^{\text {C }}$	2.695	0.752
Golden Snapper	1,116	$1.505^{\text {C }}$	1.680	0.406	1,340	$1.505^{\text {C }}$	2.017	0.384
Grass Emperor	12,018	$1.340^{\text {B }}$	16.104	2.968	7,043	1.714^{N}	12.072	2.625
Mangrove Jack	3,297	$0.822^{\text {B }}$	2.710	0.468	3,360	$0.775^{\text {s }}$	2.604	0.489
Rankin Cod	2,393	$2.994^{\text {s }}$	7.165	1.078	1,749	$3.719^{\text {s }}$	6.505	1.324
Red Emperor	2,698	$3.441^{\text {s }}$	9.284	1.359	2,066	$3.574^{\text {S }}$	7.385	1.409
Spangled Emperor	7,107	$2.084^{\text {s }}$	14.811	1.930	3,266	$1.929^{\text {s }}$	6.301	1.342
Stripey Snapper	8,497	$0.602^{\text {s }}$	5.115	1.044	5,828	$0.588^{\text {S }}$	3.427	0.881
TOTAL	45,190		76.414	4.631	30,764		56.204	4.117
Gascoyne Coast								
Baldchin Groper	3,093	$2.368{ }^{\text {B }}$	7.324	1.385	2,778	$2.237^{\text {S }}$	6.214	1.181
Goldband Snapper	2,238	$4.297{ }^{\text {C }}$	9.617	2.840	3,423	$4.297{ }^{\text {C }}$	14.709	3.168
Goldspotted Rockcod	1,562	$2.009^{\text {B }}$	3.138	0.687	2,200	$2.009^{\text {B }}$	4.420	1.177
Grass Emperor	15,538	$0.961{ }^{\text {A }}$	14.932	2.035	13,918	$0.708^{\text {B }}$	9.854	2.103
Pink Snapper	10,867	$2.459^{\text {A }}$	26.722	3.524	9,719	$2.172^{\text {B }}$	21.109	2.282
Rankin Cod	4,837	$2.994^{\text {B }}$	14.482	2.162	2,342	$3.719^{\text {s }}$	8.710	1.092
Red Emperor	4,525	$3.441^{\text {B }}$	15.571	2.622	3,159	$3.574{ }^{\text {S }}$	11.292	2.882
Redthroat Emperor	7,527	$1.088^{\text {A }}$	8.189	1.231	3,710	$0.834^{\text {B }}$	3.094	0.536
Spangled Emperor	16,884	$2.093{ }^{\text {A }}$	35.338	4.751	8,693	$1.930^{\text {B }}$	16.777	2.383
Stripey Snapper	1,459	$0.602^{\text {S }}$	0.878	0.186	1,578	$1.208^{\text {C }}$	1.906	0.317
TOTAL	68,530		136.191	7.918	51,520		98.084	6.165
South Coast								
Bight Redfish	10,088	$1.171^{\text {s }}$	11.813	1.660	8,965	$1.102^{\text {s }}$	9.880	1.085
Blue Morwong	4,407	$2.717^{\text {S }}$	11.974	1.791	2,852	$2.733^{\text {S }}$	7.793	0.828
Breaksea Cod	8,214	$1.031^{\text {s }}$	8.469	1.358	5,457	$0.919^{\text {s }}$	5.015	0.561
Foxfish	554	$0.811^{\text {s }}$	0.449	0.219	331	$0.772^{\text {s }}$	0.256	0.049
Harlequin Fish	1,236	$1.401{ }^{\text {s }}$	1.732	0.361	906	$1.137^{\text {S }}$	1.030	0.137
Pink Snapper	3,296	$2.846^{\text {B }}$	9.380	2.268	2,558	$2.057{ }^{\text {B }}$	5.262	0.716
Sea Sweep	2,398	$1.252^{\text {S }}$	3.002	0.845	1,047	$1.244^{\text {s }}$	1.303	0.237
Sergeant Baker	671	$0.940^{\text {s }}$	0.631	0.163	471	$0.940^{\text {C }}$	0.443	0.090
Swallowtail	2,654	$0.378^{\text {s }}$	1.003	0.196	1,546	$0.340^{\text {s }}$	0.526	0.109
WA Dhufish	849	$4.536^{\text {S }}$	3.851	1.520	611	$4.446^{\text {S }}$	2.717	0.621
TOTAL	34,367		52.304	4.027	24,745		34.224	1.781

[^2]
9.3 Pelagic Resources

The top 10 pelagic scalefish species in 2013/14 represented: 96% of the total catch (by numbers kept) in the North Coast (Table 27). Comparisons of estimated recreational catches of the top 10 pelagic species (or groupings) between 2011/12 and 2013/14 (Table 22) indicated estimated catches in the North Coast were steady at 40 t (95% confidence intervals from 31-49) to 30 t (95% confidence intervals from 22-37) (Table 26). The estimated kept recreational catch of Spanish Mackerel decreased from 31 t in 2011/12 (95% confidence intervals from 23-40) to 21 t in 2013/14 (95% confidence intervals from 15-27); however, the confidence intervals were overlapping indicating this was not a significant difference (Table 26).

Table 25. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the top 10 North Coast pelagic scalefish species during 2011/12 and 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Species	2011/12				2013/14			
North Coast Pelagic	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se
Amberjack	0	N/A	0	0	47	N/A	0	0
Cobia	434	$7.582^{\text {S }}$	3.291	1.054	324	$7.582^{\text {S }}$	2.453	0.679
Great Barracuda	48	N/A	0	0	66	N/A	0	0
Grey Mackerel	93	$5.075^{\text {c }}$	0.472	0.259	72	$5.075^{\text {c }}$	0.366	0.164
Mackerel Tuna	220	$2.781^{\text {S }}$	0.612	0.228	664	$2.781^{\text {S }}$	1.846	1.033
Northern Bluefin Tuna	208	$2.781^{\text {C }}$	0.578	0.203	217	$2.781^{\text {C }}$	0.604	0.182
School Mackerel	1,231	$1.942^{\text {S }}$	2.391	0.651	1,532	$1.942^{\text {S }}$	2.975	1.407
Southern Bluefin Tuna	0	N/A	0	0	47	N/A	0	0
Spanish Mackerel	3,794	$8.208^{\text {S }}$	31.141	4.350	2,543	$8.208^{\text {S }}$	20.869	3.163
Spotted Mackerel	350	$5.075^{\text {C }}$	1.776	0.594	79	$5.075^{\text {C }}$	0.402	0.188
TOTAL	6,378		40.261	4.579	5,590		29.514	3.689

Average weights where: ${ }^{\mathrm{B}}$ is the bioregion estimate from Appendix $1 *,{ }^{\mathrm{S}}$ is the state-wide estimate from Appendix $1 *$, ${ }^{\mathrm{C}}$ unpublished data, *
Average weights for 2011/12 are from Appendix 1 (Ryan et al. 2013)

9.4 Crab Resources

Comparisons of estimated recreational catches of crab resources in each bioregion between 2011/12 and 2013/14 (Table 26) indicated estimated catches:

- of Blue Swimmer Crab and the two Mud Crab species in the North Coast were steady at $11 \mathrm{t}(95 \%$ confidence intervals from 8-13) and $11 \mathrm{t}(95 \%$ confidence intervals from 8-13)
- of Blue Swimmer Crab in the Gascoyne Coast were steady at $4 \mathrm{t}(95 \%$ confidence intervals from 1-8) and $2 \mathrm{t}(95 \%$ confidence intervals from 1-3)
- of Blue Swimmer Crab in the West Coast decreased from 86 t (95% confidence intervals from 76-97) to $58 \mathrm{t}(95 \%$ confidence intervals from 50-66)
- of Blue Swimmer Crab in the South Coast were steady at 3 t (95% confidence intervals from 2-4) and 2 t (95% confidence intervals from 1-3)

Table 26. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the crab resources during 2011/12 and 2013/14 by RFBL holders aged five years or older.
se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 diarists recorded catches of the species.

Species	2011/12				2013/14			
	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se	Estimated catch kept (numbers)	Average weight (kg)	Estimated harvest (tonnes)	se
North Coast								
Giant Mud Crab	4,667	$0.866^{\text {B }}$	4.042	0.777	4,308	$0.866^{\text {B }}$	3.731	0.670
Orange Mud Crab	5,312	$0.606^{\text {B }}$	3.219	0.503	4,748	$0.606^{\text {B }}$	2.877	0.549
Blue Swimmer Crab	14,945	$0.229^{\text {S }}$	3.422	0.895	16,405	$0.254^{\text {S }}$	4.167	0.911
TOTAL	24,924		10.683	1.287	25,460		10.775	1.257
Gascoyne Coast								
Blue Swimmer Crab	19,344	$0.229^{\text {S }}$	4.430	1.608	8,716	$0.254^{\text {S }}$	2.214	0.595
West Coast								
Blue Swimmer Crab	377,672	$0.229^{\text {s }}$	86.487	5.313	251,343	$0.231{ }^{\text {s }}$	58.060	4.252
South Coast								
Blue Swimmer Crab	12,030	$0.229^{\text {S }}$	2.755	0.616	8,738	$0.254^{\text {s }}$	2.219	0.451

[^3]
9.5 Summary

The estimates of recreational catches presented in this chapter will be used, alongside biological, charter and commercial data to assess the status of resources managed by the Department of Fisheries. Estimates of recreational catches (Table 27) are important where the recreational sector takes a significant portion of the total catch, and therefore estimates of recreational catches of these species are included in stock assessments and required for resource allocation.

Recent assessments have indicated resources are adequate or recovering for the West Coast Demersal Scalefish (Fairclough et al. 2014), Tailor (Smith et al. 2013) and Whiting (Brown et al. 2013). However, while the overall catch of spangled emperor in the Gascoyne Coast is considered to be sustainable, fishing mortality in northern areas is considered to be high (Marriott et al. 2012) and is currently under review. Stock assessment for Australian Herring in the West Coast completed in late 2012 indicated low stock abundance resulting from environmental factors and fishing pressure (Smith et al. 2014). Since the 2013/14 survey, the daily bag limit of Australian Herring for recreational fishers was reduced from 30 to 12 (effective 1 March 2015) to assist stock recovery. Stock assessments of Blue Swimmer Crab in the West Coast are conducted for separate, spatial fisheries and the spawning stock in Cockburn Sound in 2013/14 was assessed as being inadequate due to environmental conditions.

Table 27. Information required for stock status reporting of major recreational fisheries based on estimates of recreational catch and 95% confidence intervals during 2013/14 by RFBL holders aged five years or older (excluding charter boat catches).

Fishery	Number of species/ groupings	Proportion of total catch by number	Estimated harvest (tonnes)	95\% confidence intervals (tonnes)
North Coast Bioregion	10	79%	15	$11-19$
North Coast Nearshore and Estuarine	10	76%	56	$48-64$
Northern Demersal Scalefish	10	96%	30	$22-37$
North Coast Pelagic (Mackerel)	3	$\mathrm{~N} / \mathrm{A}$	11	$8-13$
North Coast Crab				
Gascoyne Coast Bioregion	10	87%	14	$8-20$
Gascoyne Coast Nearshore and Estuarine	10	77%	98	$86-110$
Gascoyne Coast Demersal	1	$\mathrm{~N} / \mathrm{A}$	2	$1-3$
Gascyone Coast Blue Swimmer Crab	10	95%	78	$69-87$
West Coast Bioregion	15	89%	152	$139-166$
West Coast Nearshore and Estuarine	1	$\mathrm{~N} / \mathrm{A}$	58	$50-66$
West Coast Demersal Scalefish				
West Coast Blue Swimmer Crab	10	95%	23	$19-27$
South Coast Bioregion	98%	34	$31-38$	
South Coast Nearshore and Estuarine	10	$\mathrm{~N} / \mathrm{A}$	2	$1-3$
South Coast Demersal Scalefish	1			
South Coast Blue Swimmer Crab	10			

10 Summary and Future Research

10.1 Overview

The results from the $2011 / 12$ and 2013/14 state-wide surveys provide estimates of participation, effort and catch for boat-based recreational fishing. Although recreational fishing in Western Australia is conducted from boats and from the shore across a range of saltwater, estuarine and freshwater habitats, boat-based fishers were estimated to account for 43% of fishing effort and 46% of the recreational harvest in 2000/01, with both boat-based and shore-based fishing occurring almost entirely in saltwater (Henry and Lyle 2003).

Approximately 135,000 boat-based fishers purchased a RFBL in 2013/14 and approximately half of these fishers reside in the Perth metropolitan area. The spatial coverage of the resident population influences the distribution of boat-based fishing effort. The majority of boat-based recreational fishing effort during 1 May 2013 to 30 April 2014 occurred in the West Coast (67%) with the remainder spread among the North Coast (11\%), Gascoyne Coast (13\%) and South Coast (9\%). Distinct seasonal patterns of boat-based fishing effort occur in the north and south of the State. Autumn and winter are the most active seasons in the North Coast and Gascoyne Coast, while summer and autumn are the most active seasons in the West Coast and South Coast.

Although habitat was defined differently in the National Recreational and Indigenous Fishing Survey (2000/01) compared with the current survey, at a state-wide level, the majority of boat-based recreational fishing effort occurs in coastal waters. The majority of boat-based recreational fishing effort occurred in nearshore (51\%) and inshore demersal (25\%) habitats in 2013/14, compared with coastal habitat (from the shoreline to 5 km) (66%) in 2000/01. However, shore-based fishing is not included in these estimates, which would be high for these habitats. The proportion of boat-based recreational fishing effort in estuarine habitat was 16% in 2013/14 and 19% in 2000/01, and the proportion of effort in offshore demersal and pelagic habitats were 5% and 2% respectively in $2013 / 14$, compared with 11% in 2000/01, where offshore demersal was defined as marine waters $>5 \mathrm{~km}$ from the coast (Henry and Lyle 2003). Inland fishing effort reported in the 2013/14 survey was an under-estimate because the survey was based on RFBL holders and not all inland fishers possess this licence.

Recreational fishers use a variety of methods (e.g. line, pot, net and dive). In 2000/01, line fishing accounted for 77% of fishing effort and pot/trap methods accounted for 16% of fishing effort (Henry and Lyle 2003). The majority of boat-based fishing effort during 2013/14 was from line fishing (68%), followed by pots (26%), diving (4%) and nets (2%), but there were differences among bioregions.

Trends in participation by home residence, age, gender, avidity and bioregion fished were consistent across the four cross-sectional surveys by recall for the 12 months prior to March 2011, March 2012, May 2013 and May 2014. State-wide total fishing effort was consistent between the two longitudinal Phone-Diary Surveys in 2011/12 and 2013/14, as were trends by habitat, method and month, with the exception of February to April, which were higher in 2011/12 compared with 2013/14. Fishing effort within each bioregion was also consistent between 2011/12 and 2013/14, except for effort by line fishing and effort in February to April
in the West Coast and South Coast bioregions, which were higher in 2011/12 compared with 2013/14. Total fishing effort among habitats in the West Coast bioregion was similar in 2011/12 compared to 2013/14, although reduced fishing effort occurred across inshore demersal, nearshore and estuary habitats in the South Coast bioregion in 2011/12 compared with 2013/14.

The state-wide total catch was generally consistent between the two longitudinal Phone-Diary Surveys in 2011/12 and 2013/14, although there were some exceptions. For example, the estimated recreational catch of Blue Swimmer Crab kept by boat-based fishers in Western Australia decreased from 424,474 ($\mathrm{se}=26,787$, by number) in 2011/12 to 285,202 ($\mathrm{se}=19,034$) in $2013 / 14$. However, the release rates between these surveys increased from 51% to 68%, and the estimated recreational catch (kept and released) remained relatively consistent at $870,816(\mathrm{se}=56,031)$ in $2011 / 12$ and $901,458(\mathrm{se}=69,270)$ in 2013/14.

It should be noted that changes in the magnitude of estimates over time only provide an indication of the number kept and/or released by recreational fishers between surveys. They do not necessarily provide an indication of the drivers of any change. There are numerous actions that can influence the effort and catch of recreational species, including changes in the nature of the fishery (both fish and fisher dimensions), the spatial and temporal scales of the resource and fishing activity, and how these might respond to management actions. For example, access to the resource can vary over time through fish availability, legal size and bag limits, fisher mobility or fishing technology. Comparison of estimates of recreational catch over time has similar constraints to those required for evaluating changes in total catch from commercial fisheries where differences can result from changes in both fish abundance and catchability. Catchability can vary with changes in fish behaviour and movement patterns, which vary by species, age and environmental factors, or changes in fishing practices, such as changes in targeted effort, time spent fishing and distance travelled to fishing location. Therefore, comparison of estimates of recreational catch over time also requires consideration of release rates and the potential for change in fisher behaviour (e.g. species or targeting substitution).

Most importantly, evaluating time series of estimates of recreational catch requires consideration of the uncertainty associated with estimates. For the state-wide survey of boat-based recreational fishing, the desired outcome was to achieve estimates for indicator species at state-wide and bioregional levels with a precision suitable for stock assessments and developing management policies. It should not be expected that similar precision will be achieved for less common species, or any species at small spatial scales, although the design and sample sizes have allowed this to occur for some species. For example, the sample sizes and relative standard error achieved for indicator demersal species in the Mid West, Metropolitan and Southern zones have provided representative and robust estimates for spatial assessment of the West Coast Demersal Scalefish Fishery.

10.2 Validation of Estimates from On-Site Surveys

Estimates of recreational catch from the 2011/12 and 2013/14 integrated surveys are being compared with previous recreational fishing surveys to determine if there have been changes in the catch composition and whether current management arrangements are operating
appropriately. The results of these analyses will be published separately. Additional components of the integrated surveys, the Boat Ramp and Remote Camera Surveys, will provide biological data to assist in converting catch by numbers to weight and validation of estimates of fishing effort from the Phone-Diary Survey (fishers only) against launch and retrieval counts from the Remote Cameras (fishers and non-fishers). Additional information on the proportion of boat launches by fishing and non-fishing parties will allow the camera data to provide a direct comparison with estimates of fishing effort from the Phone-Diary Survey and potentially an ongoing measure of fishing activity between survey years.

10.3 Improving Accuracy and Precision of Estimates

Recreational fishers are numerous, diverse and diffuse. They use numerous access points and platforms for fishing, including boats launched from harbours, marinas, beaches and private docks. Their divergent nature ranges from avid fishers to infrequent participants and different survey methods will encounter avid and infrequent fishers in different relative proportions. This means that there is no single survey method that can be used to accurately and precisely estimate catch and effort from all recreational fishers. Consequently, all surveys of recreational fishing have customised designs, which reflect the specific objectives of the survey, the spatial and temporal scope to be covered, the nature of the recreational fishery, and the constraints on resources that are available to conduct the survey.

A research partnership between the Department of Fisheries, Recfishwest and Edith Cowan University has provided a number of post graduate scholarships for students to work on aspects of spatial and temporal modelling and the integration of the data obtained from recreational fishing surveys. As part of the analysis, appropriate statistical and modelling methods are being explored to integrate data collected at different spatial and temporal scales from current surveys (see Aidoo et al. 2014). This research will assist in determining whether data from the integrated surveys can provide information at the resolution required for management of recreational fisheries at small spatial and temporal scales.

The RFBL was implemented in 2010 and uptake of this licence has increased each year. A critical objective of the integrated survey is to develop an understanding of the types of biases that may be occurring due to potential changes in annual patterns of RFBL usage by considering possible biases and behavioural adjustments of fishers. It is likely that some components of the integrated survey will need to be modified in subsequent surveys to address problems, and in some cases it may be necessary to apply emerging techniques in survey design to further improve accuracy and precision of estimates. Further research will investigate whether improvements can be made to increase the robustness of estimates. This could include adjustment of weighting factors to account for avidity bias and non-intending fishing; estimates (and errors) may be revised on this basis.

As the pattern of fishing changes, the survey design needs to be flexible enough to accommodate these changes. A critical element of the research project is having the expertise across several related disciplines (experimental design, data mining, spatial and temporal statistics, survey sampling methodology) to allow further development and implementation of changes to the survey if warranted. A research partnership with Edith Cowan University will have a focus on developing human capital in the fields directly relevant to the state-wide
survey. The Department of Fisheries will continue to proactively work with its research partners to ascertain whether additional information could be collected to better understand the behaviour of recreational fishers and to improve the accuracy and precision for estimates of the recreational catch and effort to provide better information for the sustainable management of fishery resources.

11 Acknowledgements

This report would not be possible without contributions from all the recreational fishers who took the time to participate in the recreational fishing surveys. The authors would also like to thank: managers and researchers from the Department of Fisheries, Edith Cowan University, and RecFishWest for participating in and contributing to the planning and implementation of this project; Brett Harrison and staff from Geospatial Services (Department of Fisheries) for preparing licence extracts and maps; Stuart Blight for design and implementation of the remote camera surveys; Vangie Gerginis, Alissa Tate and casual field staff for their contributions to the on-site and remote camera surveys; Laurie West (Kewagama Research) for advice in ensuring a consistent approach to state-wide Phone Surveys of recreational fishing; and Vicki Graham, Theresa Wilkes, Amber Sky and staff from the Survey Research Centre (Edith Cowan University) for data collection and entry of the phone surveys. We also thank Joshua Brown, Nick Caputi, Fiona Crowe, David Fairclough, Rick Fletcher, Nathan Harrison, Gary Jackson, Lindsay Joll, Brett Molony and Clinton Syers for reviewing the report and providing valuable comments.

12 References

Aidoo EN, Mueller U, Goovaerts P, Hyndes GA (2015). Evaluation of geostatistical estimators and their applicability to characterise the spatial patterns of recreational fishing catch rates. Fisheries Research 168, 20-32.
Allen GR (2009). Field Guide to the Marine Fishes of Tropical Australia and South-East Asia, Fourth Edition. Western Australia Museum, Perth, Western Australia. 287 pp.
Brown J, Dowling C, Hesp A, Smith K, Molony B (2013). Status of nearshore finfish stocks in southwestern Western Australia. Part 3: Whiting (Sillaginidae). Fisheries Research Report No. 248. Department of Fisheries, Western Australia. 128 pp.
Cochran WG (1977). Sampling Techniques. Third Edition. Wiley, New York. 428 pp.
Currie DR, Sorokin SJ, Ward TJM (2006). Survey of recreational Rock Lobster Fishing in South Australia during 2004/05. South Australia Research and Development Institute Research Report Series No. 123. South Australia Research Development Institute, South Australia. 36 pp.
de Lestang S, Caputi N, How J, Melville-Smith R, Thomson A, Stephenson P (2012). Stock Assessment for the West Coast Rock Lobster Fishery. Fisheries Research Report No. 217. Department of Fisheries, Western Australia. 200 pp.

Department of Fisheries (2010). Integrated Fisheries Management Report: West Coast Demersal Scalefish Resource. Fisheries Management Paper No. 247. Department of Fisheries, Western Australia. 65 pp.
Department of Fisheries (2011). Recreational Fishing in Western Australia - Fishing Location Guide, May 2013. Fisheries Occasional Publication No. 92. Department of Fisheries, Western Australia. 20 pp.
Department of Fisheries (2012). A Resource-based Management Approach for Recreational Fishing in Western Australia 2012-2017: State-wide management proposals for finfish, crustaceans, molluscs and other invertebrates. Fisheries Management Paper No. 252. Department of Fisheries, Western Australia. 54 pp.
Department of Fisheries (2013). Recreational Fishing in Western Australia - Fish Identification Guide, February 2013. Fisheries Occasional Publication No. 103. Department of Fisheries, Western Australia. 30 pp .
Department of Fisheries (2015). Annual Report to Parliament 2014/15. Department of Fisheries, Western Australia. 212 pp.
Fairclough DV, Molony BW, Crisafulli BM, Keay IS, Hesp SA, Marriott RJ (2014). Status of demersal finfish stocks on the west coast of Australia. Fisheries Research Report No. 253. Department of Fisheries, Western Australia. 96 pp.

Fletcher WJ, Santoro K (eds) (2014). Status Reports of the Fisheries and Aquatic Resources of Western Australia 2013/14: The State of the Fisheries. Department of Fisheries, Western Australia, 359 pp.
Hartill BW, Cryer M, Lyle JM, Rees EB, Ryan KL, Steffe AS, Taylor SM, West L, Wise BS (2012). Scale- and Context-Dependent Selection of Recreational Harvest Estimation Methods: The Australasian Experience. North American Journal of Fisheries Management 32(1), 109-123

Henry GW, Lyle JM (2003). The National Recreational and Indigenous Fishing Survey. Final Report for FRDC Project No. 99/158. Australian Government Department of Agriculture, Fisheries and Forestry, Canberra. 188 pp.

Hutchins B, Swainston R (1999). Sea Fishes of Southern Australia: complete field guide for anglers and divers, Second Edition. Gary Allen Pty Ltd. 180 pp.
Jones DS, Morgan GJ (2002). A Field Guide to Crustaceans of Australian Waters. Reed, New Holland. 224 pp.
Jones K. (2009). South Australian Recreational Fishing Survey. South Australian Fisheries Management Series Paper No 54. PIRSA Fisheries, Adelaide. 84 pp.
Lhor S (2010). Sampling: design and analysis, Second Edition. Brooks/Cole, Cengage Learning. 596 pp .
Lindner RK, McLeod PB (1991). An economic impact of recreational fishing in Western Australia. Fisheries Management Paper No. 38. Department of Fisheries, Western Australia. 48 pp .

Lumley T (2004). Analysis of complex survey samples. Journal of Statistical Software 9, 119

Lumley T (2010). Complex Surveys: a guide to analysis using R. John Wiley and Sons Inc., New Jersey. 276 pp.

Lyle JM, Coleman APM, West L, Campbell D, Henry GW (2002). An innovative methodology for the collection of detailed and reliable data in large-scale Australian recreational fishing surveys. In: Recreational Fisheries: Ecological, Economic and Social Evaluation. Pitcher TJ, Hollingworth CE (Editors), pp. 207-226. (Fish and Aquatic Resources Series No. 8, Blackwell Science, Oxford, UK).
Lyle JM, Stark KE, Tracey SR (2014). 2012-13 survey of recreational fishing in Tasmania. The Institute for Marine and Antarctic Studies, University of Tasmania, 124 pp.

Lyle JM, Tracey SR (2010). Tasmanian recreational rock lobster and abalone fisheries: 200809 fishing season, Tasmanian Aquaculture and Fisheries Institute Report, 35 pp .
Lyle JM, Tracey SR, Stark KE, Wotherspoon S (2009). 2007-08 survey of recreational fishing in Tasmania, TAFI Technical Report, Tasmanian Aquaculture and Fisheries Institute, Hobart. 107 pp.
Lyle JM, Wotherspoon S, Stark KE (2010). Developing an analytical module for large-scale recreational fishery data based on phone-diary survey methodology. Final report to Fisheries Research and Development Corporation Project No. 2007/064. Tasmanian Aquaculture and Fisheries Institute, Hobart. 105 pp.

Malvestuto SP (1996). Sampling the Recreational Creel. In: Fisheries Techniques. Murphy BR, Willis DW (Editors) pp. 591-624. (American Fisheries Society, Bethesda, Maryland, USA).
Marriott R, Jackson G, Lenanton R, Telfer C, Lai E, Stephenson P, Bruce C, Adams D, Norriss J (2012). Biology and stock status of inshore demersal scalefish indicator species in the Gascoyne Coast Bioregion. Fisheries Research Report No. 228, Department of Fisheries, Western Australia. 216pp.

Melville-Smith R, Anderton SM (2000). Western rock lobster mail surveys of licensed recreational fishers 1986/87 to 1998/99. Fisheries Research Report No. 122. Department of Fisheries, Western Australia. 39 pp.

Pollock KH, Jones CM, Brown TL (1994). Angler survey methods and their applications in fisheries management. (American Fisheries Society Special Publication 25), American Fisheries Society, Bethesda. 371 pp .
R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rees AJ, Yearsley GK, Gowlett-Holmes K, Pogonoski J (2012). Codes for Australian Aquatic Biota (on-line version). CSIRO Marine and Atmospheric Research, World Wide Web electronic publication, 1999 onwards.
Rome B.M., Newman S.J. (2010). North Coast Fish Identification Guide. Fisheries Occasional Publication No. 80. Department of Fisheries, Western Australia. 79 pp.
Ryan KL, Morison AK, Conron S (2009). Evaluating methods of obtaining total catch estimates for individual Victorian bay and inlet recreational fisheries. Final report to Fisheries Research and Development Corporation Project No. 2003/047. Department of Primary Industries, Queenscliff. 124 pp.

Ryan KL, Wise BS, Hall NG, Pollock KH, Sulin EH, Gaughan DJ (2013). An integrated system to survey boat-based recreational fishing in Western Australia 2011/12. Fisheries Research Report No. 249, Department of Fisheries, Western Australia. 168pp.
Särndal CE, Swensson B, Wretman J (2003). Model Assisted Survey Sampling. Springer Series in Statistics, New York. 265 pp.
SAS Institute Inc. (2004). SAS/STAT® 9.1 User's Guide. Cary, NC: SAS Institute Inc. Chapter 72 PROC SURVEYSELECT pp 4419-4470
Blight SJ, Smallwood CB (2015). Technical manual for camera surveys of boat- and shorebased recreational fishing in Western Australia. Fisheries Occasional Publication No. 121. Department of Fisheries, Western Australia. 30 pp.

Smallwood CB, Sumner NR (2007). A 12-month survey of recreational estuarine fishing in the South Coast bioregion of Western Australia during 2002/03. Fisheries Research Report No. 159. Department of Fisheries, Western Australia, 56 pp.
Smith K, Brown J (2014). Biological synopsis of Australian herring (Arripis georgianus). Fisheries Research Report No. 251. Department of Fisheries, Western Australia. 40 pp.
Smith K, Lewis P, Brown J, Dowling C, Howard A, Lenanton R, Molony B (2013). Status of nearshore finfish stocks in south-western Western Australia Part 2: Tailor. Fisheries Research Report No. 247. Department of Fisheries, Western Australia. 112 pp.

Sumner NR, Williamson PC (1999). A 12-month survey of coastal recreational boat fishing between Augusta and Kalbarri on the west coast of Western Australia during 1996-97. Fisheries Research Report No. 117. Department of Fisheries, Western Australia. 58 pp.
Sumner NR, Williamson PC, Blight SJ, Gaughan DJ (2008). A 12-month survey of recreational boat-based fishing between Augusta and Kalbarri on the west coast of Western Australia during 2005-06. Fisheries Research Report No. 177. Department of Fisheries, Western Australia. 44 pp .
Sumner NR, Williamson PC, Malseed BE (2002). A 12-month survey of recreational fishing in the Gascoyne bioregion of Western Australia during 1998-99. Fisheries Research Report No. 139. Department of Fisheries, Western Australia. 60 pp.

Survey Development Working Group (2000). Development of the National Recreational and Indigenous Fishing Survey, FRDC Project No. 98/169. NSW Fisheries Final Report Series No. 23 (Volume 1). 36 pp.

Taylor S, Webley J, McInnes K (2012). 2010 Statewide Recreational Fishing Survey. Department of Agriculture, Fisheries and Forestry, Queensland. 82 pp.
Tracey S, Lyle KM (2008). Tasmanian Recreational Scallop Fishery: 2005-2008. Tasmanian Aquaculture and Fisheries Institute Internal Report. 30 pp.
West LD, Lyle JM, Matthews SR, Stark KE, Steffe AS (2012). Survey of recreational fishing in the Northern Territory, 2009/10. Northern Territory Fisheries. Department of Resources, Northern Territory. 128 pp.
Williamson PC, Sumner NR, Malseed BE (2006). A 12-month survey of recreational fishing in the Pilbara region of Western Australia during 1999-2000. Fisheries Research Report No. 153. Department of Fisheries, Western Australia. 61 pp.

Wise BS, Fletcher WJ (2013). Determination and development of cost effective techniques to monitor recreational catch and effort in Western Australian demersal finfish fisheries. Final Report for FRDC Project 2005/034 and WAMSI Subproject 4.4.3. Fisheries Research Report No. 245. Department of Fisheries, Western Australia.

13 Appendices

Appendix 1: State-wide and bioregion estimates of average weight of key species from Boat Ramp Surveys in 2013/14.

Av wt is the average weight (measured in grams); n is the number of weight measurements recorded; se is standard error; values in bold indicate <10 recorded weights of the species.

Reporting Group	Common Name	Scientific Name	State-wide			North Coast			Gascoyne Coast			West Coast			South Coast		
			n	AvW	se	n	AvW	se	n	AvW \mathbf{t}	se	n	AvW	se	n	AvW	se
Abalone	Roe's Abalone	Haliotis roei	41	79	4										41	79	4
Crab	Blue Swimmer Crab	Portunus armatus	346	254	5							275	231	4	71	340	18
	Giant Mud Crab	Scylla serrata	12	866	69	10	850	81	2	944	125						
	Orange Mud Crab	Seylla olivacea	60	606	16	60	606	16									
Lobster	Western Rock Lobster	Panulirus cygnus	290	576	25				1	1286		289	573	25			
Herring	Sandy Sprat	Hyperlophus vittatus	25	45	2							25	45	2			
Threadsail	Sergeant Baker	Aulopus purpurissatus	19	596	60							6	689	108	13	553	71
Garfish	Southern Garfish	Hyporhamphus melanochir	50	95	5							21	112	5	29	84	7
Redfish	Bight Redfish	Centroberyx gerrardi	35	1102	88							11	1219	175	24	1048	101
	Swallowtail	Centroberyx lineatus	37	340	12							4	400	56	33	333	11
Flathead	S'thrn Bluespotted Flathead	Platycephalus speculator	86	588	37							42	678	52	44	502	49
Coral Trout	Barcheek Coral Trout	Plectropomus maculatus	45	2729	235	6	1846	302	39	2864	261						
	Yellowedge Coronation Trout	Variola louti	22	1920	245				22	1920	245						
Rockcod	Blackspotted Rockcod					33	1578	183	5	3532	500						
	Breaksea Cod	Epinephelides armatus	299	919	33							211	934	44	88	885	45
	Chinaman Rockcod	Epinephelus rivulatus	413	430	7				407	427	7	6	625	145			
	Eightbar Grouper	Epinephelus octofasciatus	14	8123	2028				11	9733	2362	1	1225		2	2715	106
	Frostback Rockcod	Epinephelus bilobatus	13	1593	168				13	1593	168						
	Goldspotted Rockcod	Epinephelus coioides	39	2770	498	14	2826	673	20	1880	425	5	6170	2680			
	Greasy Rockcod	Epinephelus tauvina	15	1416	121				15	1416	121						
	Harlequin Fish	Othos dentex	32	1137	99							13	1165	116	19	1118	150
	Rankin Cod	Epinephelus multinotatus	66	3719	310	2	1149	210	64	3799	314						
	Tomato Rockcod	Cephalopholis sonnerati	28	1212	125				28	1212	125						
	Yellowspotted Rockcod	Epinephelus areolatus	56	710	40	1	1106		55	703	40						
Pearl Perch	Northern Pearl Perch	Glaucosoma buergeri	32	1648	99				32	1648	99						
	Western Australian Dhufish	Glaucosoma hebraicum	304	4446	158							302	4456	159	2	2855	225
Grunter	Eastern Striped Grunter	Pelates sexlineatus	20	111	8										20	111	8
	Western Striped Grunter	Pelates octolineatus		117	6							30	118	5	8	115	19
Whiting	King George Whiting		1101	233	5							175	475	22	926	187	3
	Southern School Whiting	Sillago bassensis		94	1							943	95	1	163	89	3

Reporting Group	Common Name	Scientific Name	State-wide			North Coast			Gascoyne Coast			West Coast			South Coast		
			n	$\begin{array}{r} \mathrm{AvW}_{t} \end{array}$	se	n	$\begin{array}{r} \mathrm{AvW}_{t} \end{array}$	se	n	A_{t}	se	n	$\begin{array}{r} \mathrm{AvW}_{t} \end{array}$	se	n	$\underset{t}{A_{t}}$	se
	Western School Whiting	Sillago vittata	91	98	4							91	98	4			
	Yellowfin Whiting	Sillago schomburgkii	13	121	13				3	190	4	10	100	9			
Tailor	Tailor	Pomatomus saltatrix	52	666	51							48	694	54	4	327	29
Black Kingfish	Cobia	Rachycentron canadus	35	7582	410				29	7610	461	6	7443	950			
Trevally	Bludger Trevally	Carangoides gymnostethus	18	1802	69				18	1802	69						
	Golden Trevally	Gnathanodon speciosus	54	2337	269	25	1281	201	29	3247	402						
	Samsonfish	Seriola hippos	40	5792	802							34	5619	892	6	6775	1875
	Silver Trevally	Pseudocaranx dentex	378	495	14							267	539	15	111	389	31
	Turrum	Carangoides fulvoguttatus	53	1824	220				53	1824	220						
	Yellowtail Kingfish	Seriola lalandi	12	2848	774							10	3007	902	2	2053	1484
	Yellowtail Scad	Trachurus novaezelandiae	39	65	4							14	77	8	25	58	3
Aust. Salmon	Australian Herring	Arripis georgianus	1130	120	1							607	122	1	523	118	2
	Western Australian Salmon	Arripis truttaceus	53	2652	271							12	4410	426	41	2137	282
Tropical	Chinamanfish	Symphorus nematophorus	22	5285	590	13	5030	699	9	5653	1071						
Snapper	Darktail Snapper	Lutjanus lemniscatus	17	726	88				16	734	93	1	597				
	Goldband Snapper	Pristipomoides multidens	192	1953	71				192	1953	71						
	Mangrove Jack	Lutjanus argentimaculatus	41	775	52	36	706	36	5	1279	263						
	Moses' Snapper	Lutjanus russelli	34	801	78				34	801	78						
	Red Emperor	Lutjanus sebae	124	3574	196	3	2634	563	121	3597	200						
	Rosy Snapper	Pristipomoides filamentosus	13	1372	156				13	1372	156						
	Ruby Snapper	Etelis carbunculus	72	6212	455				72	6212	455						
	Saddletail Snapper	Lutjanus malabaricus	22	1635	323	1	688		21	1680	336						
	Sharptooth Snapper	Pristipomoides typus	91	1448	64				91	1448	64						
	Stripey Snapper	Lutjanus carponotatus	105	588	16	46	604	18	59	575	25						
Threadfin Bream	Western Butterfish	Pentapodus vitta	63	232	73				3	130	11	60	237	76			
Grunter Bream	Painted Sweetlips	Diagramma labiosum	40	2139	193				37	1967	174	3	4260	751			
Emperor	Grass Emperor	Lethrinus laticaudis	219	1367	42	143	1714	39	75	708	25	1	1210				
	Redspot Emperor	Lethrinus lentjan	11	640	211				11	640	211						
	Redthroat Emperor	Lethrinus miniatus	145	822	32				97	834	39	48	797	60			
	Robinson's Seabream	Gymnocranius grandoculis	83	1705	127				83	1705	127						
	Spangled Emperor	Lethrinus nebulosus	220	1929	57	4	1564	269	213	1930	57	3	2324	1107			
	Spotcheek Emperor	Lethrinus rubrioperculatus	27	515	21				27	515	21						
	Yellowtail Emperor	Lethrinus atkinsoni	64	518	23				64	518	23						
Bream	Black Bream Frypan Bream	Acanthopagrus butcheri Argyrops spinifer	$\begin{aligned} & 14 \\ & 27 \end{aligned}$	$\begin{aligned} & 254 \\ & 708 \end{aligned}$	$\begin{aligned} & 11 \\ & 32 \end{aligned}$				27	708	32				14	254	11

Reporting Group	Common Name	Scientific Name	State-wide			North Coast			Gascoyne Coast			West Coast			South Coast		
			n	AvW	se	n	AvW t	se	n	$\mathrm{AvW}_{\mathrm{t}}$	se	n	$\mathrm{AvW}_{\mathrm{t}}$	se	n	AvW	se
	Pink Snapper	Chrysophrys auratus	160	2342	117				16	2172	142	130	2394	119	14	2057	753
	Tarwhine	Rhabdosargus sarba	11	439	47							5	428	67	6	448	72
Goatfish	Bluespotted Goatfish	Upenichthys vlamingii	11	158	21							2	114	114	9	167	15
Drummer	Sea Sweep	Scorpis aequipinnis	30	1244	80							21	1148	98	9	1468	111
Morwong	Blue Morwong	Nemadactylus valenciennesi	69	2733	190							16	3164	422	53	2603	211
Pike	Snook	Sphyraena novaehollandiae	22	449	54							8	565	90	14	383	62
Threadfinsal mon	Blue Threadfin	Eleuthronema tetradactylum	17	1316	318	16	1375	333	1	382							
Tuskfish	Blackspot Tuskfish	Choerodon schoenleinii	27	2792	305	2	2811	1507	25	2790	319						
Wrasse	Baldchin Groper	Choerodon rubescens	244	2237	59				10	2525	441	234	2224	59			
	Brownspotted Wrasse	Pseudolabrus parilus	92	401	16							79	421	17	13	280	32
	Foxfish	Bodianus frenchii	37	772	45							29	796	46	8	688	128
	Southern Maori Wrasse	Opthalmolepis lineolatus	11	245	23							11	245	23			
	Western King Wrasse	Coris auricularis	109	320	14							85	328	16	24	292	27
Mackerel	Longtail Tuna	Thunnus tonggol	47	5145	290	1	5905		45	5123	302	1	5381				
	Mackerel Tuna	Euthynnus affinis	33	2781	222	1	3118		27	3015	243	5	1451	47			
	Oriental Bonito	Sarda orientalis	71	1778	70				2	4302	978	4	1736	52	65	1703	48
	School Mackerel	Scomberomorus queenslandicus	45	1942	220	6	2344	985	39	1880	210						
	Skipjack Tuna	Katsuwonis pelamis	49	3325	156				39	2909	119	10	4945	201			
	Spanish Mackerel	Scomberomorus commerson	155	8208	252	5	8251	520	134	8263	285	16	7740	504			
	Yellowfin Tuna	Thunnus albacares	20	7116	744				13	7397	638	7	6595	1852			

Appendix 2: Summary of power boat launches and retrievals at 13 public boat ramps from Remote Camera Surveys in 2013/14.

The following pages provide summaries of the total power boat launches and retrievals during 2013/14, including: the location of the boat ramp; total annual launches and retrievals; total launches and retrievals by month; and hourly launches and retrievals by month. Error bars are 1 standard error where data imputation required for missing data.

Results are presented for the 13 public boat ramps monitored in the Remote Camera Survey:

- Broome (Lat 18.008, Long 122.208)
- Dampier (Lat 20.656, Long 116.707)
- Monkey Mia (Lat 25.793, Long 113.720)
- Denham (Lat 25.928, Long 113.533)
- Mindarie (Lat 31.692, Long 115.702)
- Ocean Reef (Lat 31.762, Long 115.728)
- Hillarys (Lat 31.822, Long 115.739)
- Leeuwin (Lat 32.030, Long 115.762)
- Woodmans Point Public Ramp (Lat 32.139, Long 115.762)
- Woodmans Point Private Ramp (Lat 32.139, Long 115.762)
- Point Peron (Lat 32.271, Long 115.698)
- Emu Point (Lat 34.995, Long 117.945)
- Bandy Creek (Lat 33.831, Long 121.932)

Figure 77. Total power boat launches (white bar) and retrievals (black bar) from Broome (Lat 18.008, Long 122.208) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 78: Total power boat launches (white bar) and retrievals (black bar) from Dampier (Lat 20.656, Long 116.707) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 79. Total power boat launches (white bar) and retrievals (black bar) from Monkey Mia (Lat 25.793, Long 113.720) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 80. Total power boat launches (white bar) and retrievals (black bar) from Denham (Lat 25.928, Long 113.533) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 81. Total power boat launches (white bar) and retrievals (black bar) from Mindarie (Lat 31.692, Long 115.702) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 82. Total power boat launches (white bar) and retrievals (black bar) from Ocean Reef (Lat 31.762, Long 115.728) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 83. Total power boat launches (white bar) and retrievals (black bar) from Hillarys (Lat 31.822, Long 115.739) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 84. Total power boat launches (white bar) and retrievals (black bar) from Leeuwin (Lat 32.030, Long 115.762) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for January 2014 were unavailable.

Figure 85. Total power boat launches (white bar) and retrievals (black bar) from Woodmans Point Public Ramp (Lat 32.139, Long 115.762) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 86. Total power boat launches (white bar) and retrievals (black bar) from Woodmans Point Private Ramp (Lat 32.139, Long 115.762) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 87. Total power boat launches (white bar) and retrievals (black bar) from Point Peron (Lat 32.271, Long 115.698) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 88. Total power boat launches (white bar) and retrievals (black bar) from Emu Point (Lat 34.995, Long 117.945) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 89. Total power boat launches (white bar) and retrievals (black bar) from Bandy Creek (Lat 33.831, Long 121.932) during 2013/14 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

[^0]: * fishing from charter tour operators was excluded from analysis in the report

[^1]: Average weights where: ${ }^{\mathrm{B}}$ is the bioregion estimate from Appendix $1 *,{ }^{\mathrm{S}}$ is the state-wide estimate from Appendix $1^{*},{ }^{\mathrm{C}}$ unpublished data, n / a is not available, * Average weights for 2011/12 are from Appendix 1 (Ryan et al. 2013)

[^2]: Average weights where: ${ }^{\mathrm{B}}$ is the bioregion estimate from Appendix $1 *,{ }^{\mathrm{S}}$ is the state-wide estimate from Appendix $1 *$, ${ }^{\mathrm{C}}$ unpublished data, * Average weights for 2011/12 are from Appendix 1 (Ryan et al. 2013)

[^3]: Average weights where: ${ }^{\mathrm{B}}$ is the bioregion estimate from Appendix $1 *,{ }^{\mathrm{S}}$ is the state-wide estimate from Appendix $1 *$, ${ }^{\mathrm{C}}$ unpublished data, *
 Average weights for 2011/12 are from Appendix 1 (Ryan et al. 2013)

