WEST COAST BIOREGION

ABOUT THE BIOREGION

The marine environment of the West Coast Bioregion between Kalbarri and Augusta is predominantly a temperate oceanic zone, but it is heavily influenced by the Leeuwin Current, which transports warm tropical water southward along the edge of the continental shelf. Most of the fish stocks of the region are temperate, in keeping with the coastal water temperatures that range from 18° C to about 24° C. The Leeuwin Current is also responsible for the existence of the unusual Abrolhos Islands coral reefs at latitude 29° S and the extended southward distribution of many tropical species along the West Coast and even into the South Coast.

The Leeuwin Current system, which can be up to several hundred kilometres wide along the West Coast, flows most strongly in autumn/winter (April to August) and has its origins in ocean flows from the Pacific through the Indonesian archipelago. The current is variable in strength from year-to-year, flowing at speeds typically around 1 knot, but has been recorded at 3 knots on occasions. The annual variability in current strength is reflected in variations in Fremantle sea levels, and is related to El Niño or Southern Oscillation events in the Pacific Ocean.

Weaker counter-currents on the continental shelf (shoreward of the Leeuwin Current), such as the Capes Current that flows northward from Cape Leeuwin as far as Shark Bay, occur during summer and influence the distribution of many of the coastal finfish species.

The most significant impact of the clear, warm, low-nutrient waters of the Leeuwin Current is on the growth and distribution of the temperate seagrasses. These form extensive meadows in protected coastal waters of the West Coast Bioregion, generally in depths of 20 m (but up to 30 m), and act as major nursery areas for many fish species and particularly for the western rock lobster stock.

The West Coast is characterised by exposed sandy beaches and a limestone reef system that creates surface reef lines, often about 5 kilometres off the coast. Further offshore, the continental shelf habitats are typically composed of coarse sand interspersed with low limestone reef associated with old shorelines. There are few areas of protected water along the west coast, the exceptions being within the Abrolhos Islands, the leeward sides of some small islands off the Midwest Coast, plus behind Rottnest and Garden Islands in the Perth metropolitan area.

The two significant marine embayments in the West Coast are Cockburn Sound and Geographe Bay. Along the West Coast, there are 4 significant estuarine systems – the Swan/Canning, Peel/Harvey and Leschenault estuaries and Hardy Inlet (Blackwood estuary). All of these are permanently open to the sea and form an extension of the marine environment except when freshwater run-off displaces the oceanic water for a short period in winter and spring.

Southward of Cape Naturaliste, the coastline changes from limestone to predominantly granite and becomes more exposed to the influences of the Southern Ocean.

SUMMARY OF FISHING AND AQUACULTURE ACTIVITIES

The principal commercial fishery in this region is the western rock lobster fishery, which is Australia's most valuable single-species wild capture fishery. There are also significant commercial fisheries for other invertebrates including scallops, abalone, blue swimmer crabs and octopus that use trawl, diving and potting methods. Commercial fishers also take a range of offshore finfish species including sharks, dhufish, snapper, baldchin groper and emperors using demersal line and net methods. Beach based methods such as beach seining and near-shore gillnetting, and hand-hauled nets are used to capture whitebait, mullet and whiting in a very restricted number of locations.

The West Coast Bioregion, which contains the state's major population centres, is the most heavily used bioregion for recreational fishing (including charter based fishing). The range of recreational fishing opportunities includes estuarine fishing, beach fishing and boat fishing either in embayments or offshore for demersal and pelagic/game species often around islands and out to the edge of the continental shelf.

The principal aquaculture development activities in the West Coast Bioregion are the production of blue mussels (Mytilus galloprovincialis) and marine algae (Dunaliella salina) for beta-carotene production, and the emerging black pearl industry based on the production of *Pinctada margaritifera* at the Abrolhos Islands. The main mussel farming area is in southern Cockburn Sound, where conditions are sheltered and the nutrient and planktonic food levels are sufficient to promote good growth rates. Owing to the generally low productivity of the Western Australian coastline under the influence of the Leeuwin Current, areas outside embayments (where nutrient levels are enhanced) are unsuitable for bivalve aquaculture. Initiatives to expand the number of aquaculture sectors in this bioregion currently include those for octopus, live rock/coral, finfish and the Department of Fisheries is in the process of securing strategic environmental approvals for the Mid-West Aquaculture Development Zone.

ECOSYSTEM MANAGEMENT

The marine benthic habitats and their associated biodiversity are largely protected along most of the West Coast from any physical impact of commercial fishing due to the extensive closures to trawling. These closures inside 200m depth were introduced in the 1970s and 1980s, in recognition of the significance of extensive areas of seagrass and reef as fish habitat (West Coast Ecosystem Management Figure 1). The extent of these areas means that most of the West Coast Bioregion inside 200 m depth could be classified as one of the marine protected area IUCN categories (Ecosystem Management Table 1; as per Day *et al.*, 2012)¹.

¹ Day J., Dudley N., Hockings M., Holmes G., Laffoley D., Stolton S. & S. Wells, 2012. Guidelines for applying the IUCN Protected Area Management Categories to Marine Protected Areas. Gland Switzerland: IUCN. 36pp

Protection of fish habitat and biodiversity is also provided by marine protected areas consistent with IUCN categories including:

Fish Habitat Protection Areas (FHPAs) at the Abrolhos Islands, Lancelin Island Lagoon, Cottesloe Reef, and Kalbarri Blueholes; Reef Observation Areas within the Abrolhos Islands FHPA and closures to fishing under s.43 of the Fish Resources Management Act 1994 at Yallingup Reef, Cowaramup Bay, the Busselton Underwater Observatory, and around the wrecks of the Saxon Ranger (Shoalwater Bay) and Swan (Geographe Bay); and marine conservation areas proclaimed under the Conservation and Land Management Act 1984 at Jurien Bay, Marmion, Swan Estuary, Shoalwater Islands, and Ngari Capes Marine Park between Cape Leeuwin and Cape Naturaliste; and the Rottnest Island Marine Reserve. (West Coast Ecosystem Management, Figure 2).

The Commonwealth Government is also undertaking a Marine Bioregional Planning process within this bioregion for Commonwealth waters between Kangaroo Island, South Australia and Shark Bay.

ECOSYSTEM BASED FISHERIES MANAGEMENT

Identification of Ecological Assets/Resources using the EBFM framework

Utilising the Integrated Marine and Coastal Regionalisation for Australia (IMCRA V. 4.0)¹ scheme, the West Coast Bioregion has been divided into 3 meso-scale regions: the Abrolhos Islands, the Central West Coast and the Leeuwin-Naturaliste (West Coast Ecosystem Management Figure 3). This sub-regional scale of management has now been adopted by the Department through the implementation of an Ecosystem Based Fisheries Management (EBFM) framework (Fletcher, et al., 2010)² see How to Use section for more details. EBFM is a risk based management approach, which recognizes the social, economic and ecological values at a regional level and links between exploited fish stocks and the broader marine ecosystem, to ensure the sustainable management of all fisheries resources into the future. EBFM identifies these individual ('lower level') values, and provides a mechanism for reporting on their status and the fisheries management arrangements that are being applied.

The West Coast was the first bioregion where the EBFM process, including the comprehensive risk assessment of each of the ecological assets, was applied (see West Coast Ecosystem Management Table 2). In terms of ecological assets (= resources), the Department utilises the following categories for the three IMCRA regions within the West Coast Bioregion:

1 Commonwealth of Australia (2006). A Guide to the Integrated Marine and Coastal Regionalisation of Australia Version 4.0. Department of the Environment and Heritage, Canberra, Australia. Ecosystem structure and biodiversity (on a meso-scale basis – subdivided into marine, estuarine/embayments);

Captured fish species

Listed species (direct impact – capture or interaction);

Benthic habitat; and

External impacts.

For some issues a finer level of division of the IMCRA ecosystems is used by the Department. This relates to recent management initiatives necessary to recognise different suites of exploited fish and invertebrates across the continental shelf. These sub-components are defined by depth contours (Estuarine/Nearshore 0-20m; Inshore 20-250m; Offshore >250m). The full set of ecological assets identified for ongoing monitoring are presented in West Coast Ecosystem Management Figure 4.

Risk Assessment of Regional Ecological Assets

The EBFM process identifies the ecological assets in a hierarchical manner such that the assets outlined in Figure 4 are often made up of individual components at species or stock level. The risks to each of the individual stock or lower level components are mostly detailed in the individual fishery reports presented in this document. The following table (West Coast Ecosystem Management Table 2) provides an overview and cumulative assessment of the current risks to the ecological assets of the West Coast Bioregion, at a bioregional level and provides a mechanism for reporting on their status and the fisheries management arrangements that are being applied. These bioregional level risks are now used by the Department as a key input into the Department's Risk Register which, combined with an assessment of the economic and social values and risks associated with these assets, is integral for use in the annual planning cycle for assigning priorities for activities across all Divisions in this Bioregion.

Summary of Monitoring and Assessment of Ecosystem Assets

The Department of Fisheries Research Division's Biodiversity and Biosecurity Branch have a number of research and monitoring initiatives underway.

Ecological risk assessments undertaken on the western rock lobster fishery identified that the ecological impacts of removing rock lobster biomass could be a moderate risk for deeper water reef community structure. A suitable reference area in deep water was identified and closed to lobster fishing in March 2011 as part of a project funded by the Fisheries Research and Development Corporation (FRDC) and Western Australian Marine Science Institution (WAMSI). Continued monitoring will provide the contrast required to enable the potential impacts of lobster fishing on deep water ecosystems to be quantified. Recent work has concentrated on identifying relationships between lobster size, abundance and key habitats.

Research focusing on the Abrolhos Islands FHPA has been expanded. A holistic research and monitoring program

² Fletcher, W.J., Shaw, J., Metcalf, S.J. & D.J. Gaughan (2010) An Ecosystem Based Fisheries Management framework: the efficient, regional-level planning tool for management agencies. Marine Policy 34 (2010) 1226–1238

examining key habitats and their associated finfish and invertebrate assemblages is now underway. The Department, independently and through collaborations with other institutes, such as the University of Western Australia, is establishing long term monitoring programs to assess and monitor both key finfish and invertebrates species as well as monitoring shallow water (<30m) coral reef habitats. The establishment of larger scale habitat maps across the shallow water environments (<30m) of the Abrolhos is also being undertaken to provide important baseline information on marine communities. The first detailed habitat map, focussing on the Wallabi Group and funded by the state NRM in 2009/10 is now complete. This biological information is complemented by environmental data loggers, to assist researchers in quantifying the effects of natural (i.e. climate change) and anthropogenic (i.e. fishing activities, tourism, aquaculture) impacts on the habitats and marine communities of the Abrolhos Islands FHPA.

As part of the Department of Fisheries project to secure strategic environmental approvals for the Mid-West Aquaculture Development Zone at the Abrolhos Islands FHPA. The Biodiversity and Biosecurity Branch have collected baseline data on water and sediment quality within the study areas as part of the projects Environmental Impact Assessment works.

The Department has established an ongoing monitoring and research program based on identified risks within the bioregion in conjunction with marine park management plan priorities. The program assesses the finfish community and the habitats they are associated with. Included in the program is the collection of environmental data to understand how natural factors influence the marine communities of the Ngari Capes region.

In the West Coast Bioregion, the Department continues to undertake research, and facilitate research by other agencies (e.g. DPaW, CSIRO) and universities (e.g. Curtin, Murdoch and the University of Western Australia), to assess the impacts on fisheries from other anthropogenic activities and environmental processes in order to determine appropriate management responses. The Department also inputs into the Western Australian Environmental Protection Authority's environmental impact assessment process when a development proposal has the potential, if implemented, to impact on the aquatic environment.

The Department actively engages with natural resource management groups within the West Coast to promote sustainable use of the aquatic environment. It has implemented emergency-response measures in a number of risk areas, including the development of 'introduced aquatic organism incursion' and 'fish kill incident response' programs to minimise risks to the marine environment through the introduction of exotic aquatic pests and diseases.

The Marine Biosecurity Research and Monitoring Group implements a range of monitoring and research activities in the Bioregion focussed on detection of introduced marine pests (IMPs) at high risk locations and vessel risk analyses. Early detection of IMPs is vital if any attempt at eradication or other management strategies are to be successful. Further details for these projects may be found in the "Introduced Pests Status Report" at the end of this section and also in the Appendix section entitled "Activities of the Marine Biosecurity Research Group during 2014/15".

A project that was supported by WAMSI 4.4, developed a bycatch risk assessment method to rapidly assess the cumulative risk to sustainability of multiple fisheries¹. The Ranked Risk Assessment of Multiple Fisheries (RRAMF) allowed ranking of bycatch species within each fishery and to accumulate the ranks across multiple fisheries incorporating the relative impact of each fishery. The RRAMF method was tested on the West Coast and Gascoyne Coast Bioregions of Western Australia using fishery independent data for general teleost and elasmobranch bycatch; and fishery dependent data for endangered, threatened and protected species (ETPS). The RRAMF analyses reveal all bycatch species received low to moderate risk scores in these bioregions. The RRAMF for the ETPS showed that while most species have high biological risk, the low interaction rates reported by fisheries maintained low to moderate risk categories for most species groups. A trial has also been conducted using a camera placed on a demersal gillnet vessel to investigate the efficacy of electronic monitoring to (a) identify listed species interactions, and (b) determine byproduct and target species catches.

¹ Evans, R. and Molony, B. W. 2010. Ranked Risk Assessment for Bycatch in Multiple Fisheries: a Bioregional Risk Assessment Method. Fisheries Research Report No. 212. Department of Fisheries, Western Australia. 88pp.

WEST COAST ECOSYSTEM MANAGEMENT TABLE 1

The areas and proportions of the West Coast Bioregion making up State Waters and all continental shelf waters, out to 200 m depth, which meet the IUCN criteria for classification as marine protected areas.

IUCN	State Waters only (10,088 km²)			(481,48	All Waters (481,488 km² (including State waters))			
category or	Fishe	eries	Existing	g MPA	Fishe	ries	Existing	g MPA
equivalent	km²	%	km²	%	km²	%	km²	%
· I	0	0	0	0	0	0	0	0
II	1	< 1	171	2	1	< 1	171	< 1
III	0	0	0	0	0	0	0	0
IV	4,500	44	1,900	19	33,600	7	1,900	< 1
V	0	0	0	0	0	0	0	0
VI	3,400	34	116	1	445,700	93	116	< 1

WEST COAST ECOSYSTEM MANAGEMENT TABLE 2 ANNUAL UPDATE OF RISK LEVELS FOR EACH WEST COAST ECOLOGICAL ASSET.

Risk levels in this Table are developed by combining the risks of lower level elements (usually indicator species) that make up each of these higher level (regional) components. Low and Moderate values are both considered to be acceptable levels of risk, whereby Moderate Risks will generally have some level of directed management actions associated with these which will be outlined in the detailed reports in the rest of the West Coast section. High and Significant risks indicate that the asset is no longer in a condition that is considered acceptable and additional management actions are required by the Department except where the value is followed by (non-fishing) this indicates that all, or the majority of the risk value, was not generated by fishing or related activities but by activities managed by other agencies.

Ecosystem Structure and Biodiversity

Ecosystem	Aquatic zone	Risk	Status and Current Activities
Abrolhos Islands	Marine	MODERATE	The Abrolhos Islands are protected within a 'Fish Habitat Protection Area', and are not considered to be at unacceptable risk from fisheries related activities. The first significant bleaching of corals was observed during the marine heat wave event along the Western Australian coast in 2011 (Abdo et al. 2012) ¹ , with the impact of this event being monitored as part of an ongoing monitoring program run by the Department. The program also includes monitoring of key invertebrate species, and the community structure of finfish within and outside of non-fishing areas.
Central West	Marine	LOW	An assessment of the community structure and trophic level of all commercially caught fish species over the past 30 years found no evidence of systematic changes that could be evidence of an unacceptable impact on this ecosystem (Hall and Wise, 2011)². Continued monitoring of a deep water closed area will aim to quantify potential ecosystem impacts of lobster fishing in these deeper water ecosystems.
Coast	Estuaries/ Embay.	SIGNIFICANT (non-fishing)	The estuaries and embayments within this area have been identified as being at significant risk, due to external factors (water quality issues due to high nutrient runoff from surrounding catchment) which have the potential to affect fish and other communities. Poor water quality within the Peel – Harvey and Swan – Canning estuaries, and to a lesser extent Cockburn Sound are of particular concern.

¹ Abdo, D.A., Bellchambers, L.M., Evans, S.N. (2012) Turning up the Heat: Increasing Temperature and Coral Bleaching at the High Latitude Coral Reefs of the Houtman Abrolhos Islands. PLoS ONE 7(8): e43878.

² Hall, N.G. and Wise, B.S. 2011. Development of an ecosystem approach to the monitoring and management of Western Australian fisheries. FRDC Report – Project 2005/063. Fisheries Research Report No. 215. Department of Fisheries, Western Australia. 112 pp.

Ecosystem	Aquatic zone	Risk	Status and Current Activities
Leeuwin	Marine	LOW	The impacts from fishing and other sources on the marine communities are relatively low in this region. In collaboration with the Department of Parks and Wildlife (DPaW), the Department has established an EBFM stepwise, risk-based research and monitoring program within the Ngari Capes Marine Park.
Naturaliste	Estuaries	HIGH (non-fishing)	External factors such as water quality issues in the Blackwood Estuary, due to high nutrient run-off from surrounding land, as well as acid-sulphate soil contamination are of concern to sustainable fish stocks and the ecosystem in general.

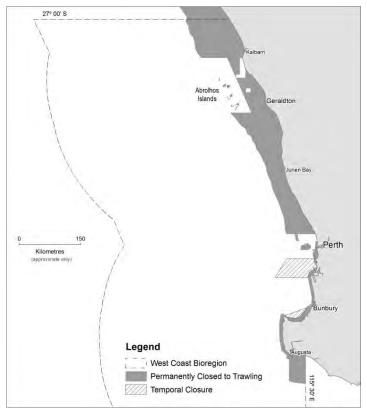
Captured fish species: Details of the analyses for these scores are located in the individual fishery reports.

Captured Species	Aquatic zone	Risk	Status and Current Activities
	Estuarine	SIGNIFICANT (non-fishing)	There is concern for some indicator fish stocks within estuaries in the West Coast Bioregion mainly due to external (non-fishing) factors (poor water quality).
	Nearshore (0-20m depth)	HIGH	With the increasing concerns for Australian herring, tailor and whiting in the nearshore regions, research projects are underway to assess these stocks and to develop methods to measure shore based fishing catch and effort.
Finfish	Inshore demersal (20-250m depth)	MODERATE	Management actions to reduce commercial and recreational catch levels by 50% were implemented between 2007 and 2010 to allow stocks to recover. Monitoring has demonstrated that catches are being maintained at appropriate levels, other than for snapper. Further management actions have been taken in 2015 to address this. A stock assessment in 2013 provided evidence of the commencement of recovery of indicator species for the inshore demersal suite. Another assessment is scheduled for 2016/17 to ensure recovery is continuing.
	Offshore demersal (>250m depth)	LOW	While the indicator species in this deepwater location are vulnerable to overfishing the current catch levels are low and therefore the stocks are not at risk. Long term management arrangements for fishing in these depths, particularly for the recreational sector are still being finalised.
	Pelagic	LOW	There is still minimal capture of pelagic fish in this bioregion.
	Nearshore/ Estuarine	MODERATE	Research on the stocks of crabs in this region (e.g. Peel/Harvey) has been completed and the stocks are all considered to be in an adequate state and fishing levels are acceptable.
Crustaceans	Shelf (Lobsters)	LOW	The stock levels of western rock lobster and prawns are both currently at appropriate levels. The strong management that was applied to the rock lobster fishery has ensured that the lobster spawning stock is currently at record high levels.
Molluscs	Nearshore	MODERATE	The stocks of abalone are conservatively managed with strong management controls on both commercial and recreational fishers but the heat wave in 2010/11 caused the almost total loss of Roes abalone in the Kalbarri region.

Listed species: Details on the analyses for these scores are either located within the individual fishery reports or in the bioregional level analyses documented in the EBFM report for this Bioregion (Fletcher et al., 2012¹).

Listed species	Species	Risk	Status and Current Activities
Listed non	Turtles/ Seabirds	LOW	There is minimal impact from fishing activities on any turtle species within this bioregion and the small trawl fishery has to operate using grids. Little Penguins are considered most at risk from boat strikes and non-fishing activities. Few other issues were identified.
'Fish' species	Mammals	MODERATE	Sea lion exclusion devices have now been implemented for rock lobster pots near sea lion breeding islands which has reduced the risk to low levels. Whale entanglements were reduced in 2014 after introduction of mitigation measures.

¹ Fletcher, W.J., Gaughan., D.J., Shaw, J. and S.J. Metcalf (2012) Ecosystem Based Fisheries Management: Case Study Report West Coast Bioregion. Fisheries Research Report No. 212, Department of Fisheries, Western Australia 104 pp.

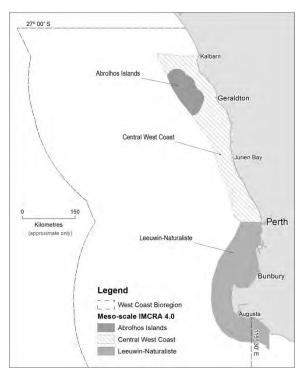

Listed species	Species	Risk	Status and Current Activities
Listed 'Fish' Species	Fish	LOW	Blue groper (Rottnest Island), cobbler (Swan Canning) and white sharks are within this category and are already unable to be landed by commercial or recreational fishers.

Benthic habitat: Details on the analyses for these scores are located in West Coast Ecosystem Management Table 1 above and in the individual fishery reports.

Benthic Habitat	Category	Risk	Status and Current Activities
Estuaries and Embayments	Sand	SIGNIFICANT (non–fishing)	Estuarine and embayment habitats are threatened by various non-fishing factors (poor water quality, direct loss of habitat through coastal infrastructure and physical disturbance, e.g. dredging), sedimentation and smothering by algae. There are minimal impacts of fishing on these habitats
Lindayments	Seagrass	HIGH (non-fishing)	Seagrass habitat is threatened from non-fishing related activities (coastal infrastructure and associated dredging (direct habitat loss, turbidity), eutrophication. Strong controls exist for direct destruction of seagrass.
	Sand	LOW	Minimal direct impacts (see West Coast Ecosystem Management Table 1) and high recovery rates.
Nearshore	Seagrass	LOW	No destructive fishing methods allowed in these areas.
(0-20 m	Mangroves	LOW	No destructive fishing methods allowed in these areas
depth)	Rocky Reef	LOW	Minimal direct impacts and high recovery rates.
22, 11,	Coral Reef (Abrolhos)	LOW MODERATE	Minimal direct impacts. Regular monitoring of corals at the Abrolhos Is. Reduced levels of pot fishing effort in this area are likely to have reduced the risk nd this should be reviewed.
Inshore demersal (20-250 m depth)	Sand/ Seagrass/ Rocky Reef/ Coral Reef/ Sponge	LOW	Minimal direct impacts. See Ecosystem Table 1 for details
Offshore demersal (>250 m depth)	Sand/ Rocky Reef/ Sponge	LOW	Minimal direct impacts. See Ecosystem Table 1 for details

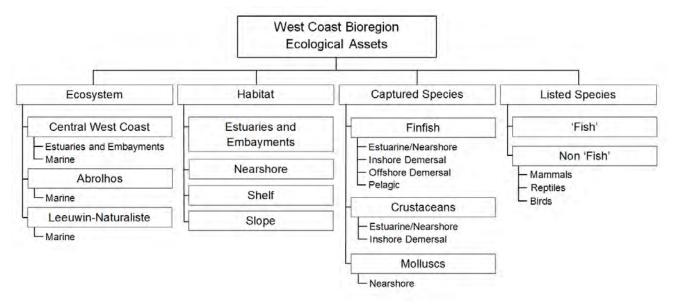

External Drivers: Details on some of the analyses used for these scores are located in the individual fishery reports plus there were whole of region assessments completed in the draft West Coast EBFM report.

External Drivers	Risk	Status and Current Activities
Introduced Pests and Diseases	MODERATE in short term HIGH in medium term	Port monitoring plans have been implemented targeting high risk port locations. These designs have been developed in line with the National System for introduced marine pest monitoring. The extent and findings of monitoring activities in this bioregion are detailed in the Introduced Pests Status Report at the end of this chapter. The introduced species Didemnum perlucidum has recently been detected at the Abrolhos Islands
Climate	MODERATE in short term HIGH in medium term	Risk assessment of the impact of climate change effects on key species has been undertaken. Some climate change impacts on rock lobster biology had already been taken into account in the stock assessment process.


WEST COAST ECOSYSTEM MANAGEMENT FIGURE 1

Map showing areas of permanent and extended seasonal closures to trawl fishing in the West Coast Bioregion. The areas permanently closed are consistent with IUCN marine protected area category IV.

WEST COAST ECOSYSTEM MANAGEMENT FIGURE 2


Map showing current and proposed formal marine protected areas in the West Coast Bioregion various areas of which are either consistent with IUCN categories I, II, III, IV or V.

WEST COAST ECOSYSTEM MANAGEMENT FIGURE 3

Map showing the three main IMCRA ecosystems in the West Coast Bioregion: the Abrolhos Is.; the Central West Coast; the Leeuwin-Naturaliste.

Note - This is based on Map 2 in IMCRA v4.0.

WEST COAST ECOSYSTEM MANAGEMENT FIGURE 4

Component tree showing the ecological assets identified and separately assessed for the West Coast Bioregion.

Introduced Pests Status Report

Regional Monitoring and Research Update

The introduction and spread of marine pests in WA waters poses a serious threat to native biodiversity and can have widespread effects on both our economy and health. There are two key vectors for marine pest translocation: ballast water and hull fouling. The Marine Biosecurity Research Group continue to implement a series of biosecurity related projects in the West Coast Bioregion, ranging from detection and control of introduced marine pests (IMP) to vessel risk analyses.

Early detection of IMPs is vital if any attempt at eradication or other management strategies is to be successful. Thus the Marine Biosecurity Research Group regularly undertake marine pest monitoring at the high risk sites of Fremantle Port and HMAS Stirling (Garden Island). This monitoring incorporates a three tiered approach. First the undertaking of a nationally approved design, second a more targeted monitoring program and third a program using permanently in-situ sampling equipment (Early Warning System). The national system monitoring adheres to the Australian Marine Pest Monitoring Guidelines, is endorsed by the Commonwealth, and occurs every second year. The more targeted monitoring is a smaller more focussed survey designed to target select high risk sites in each port and was established by the Marine Biosecurity Research Group to fill in the gap between the national system surveys (i.e. the alternate years). The national system monitoring of Fremantle Port was completed in early 2015. The next round of complementary monitoring for Fremantle Port is scheduled for early 2016. National monitoring at HMAS Stirling was completed in late 2014, with the more targeted survey scheduled for late 2015.

The Early Warning System program, which uses *in-situ* sampling arrays to aid in the early detection of marine pests in both ports, is run by the Marine Biosecurity Research Group, with financial and in-kind assistance from Fremantle Port Authority and the Defence Services Group and provides a mechanism for the potential early detection of marine pests in Fremantle Port and HMAS Stirling waters.

Other biosecurity activities include surveillance for the invasive Asian paddle crab *Charybdis japonica* first detected in 2012 by members of the public in the Swan River estuary. Since detection, the Marine Biosecurity Research Group have conducted extensive trap-based and diver surveillance of the target area in the lower reaches of the estuary. A recreational fisher caught and reported another single specimen of this species in later 2014, resulting in further delimiting trapping.

Through this combined surveillance the introduced marine pest species that have been detected since initiation of these projects in this bioregion are reported in Introduced Pests Table 1.

From a biosecurity perspective the introduction of a marine pest to any region is based on multiple factors that can be grouped into two themes; the likelihood of inoculation and the likelihood of infection and establishment. Inoculation likelihood assumes that the greater the number of vessel visits from a source with introduced marine pests (IMP) the greater the risk of IMPs being brought into the recipient port i.e. a positive linear relationship. The number of commercial vessels entering the West Coast Bioregion has significantly increased (~300%) over the past 12 years (2002 to 2014). As a result the group is analysing the change in numbers of commercial vessels as well as their visit and type profiles to

better inform management processes of the domestic and international risks to the Bioregion.

The group is currently quantifying the risk associated with recreational vessels for the introduction, harbouring and translocation of marine pests along our coast by analysing the biofouling associated with recreational vessels in marinas across the state, including the West Coast Bioregion. In addition marina-based vessel owners are being surveyed about their vessel management practices and vessel use profiles. The research outputs are designed to be applicable to biosecurity management across the state.

The group are also running a field trial to test the efficiency of different crab trap types to capture and retain crabs for monitoring purposes and a trial wrapping infrastructure to correlate length of time with mortality of biofouling.

Further details for these projects may be found in the Appendix section entitled "Activities of the Marine Biosecurity Research Group during 2014/15".

INTRODUCED PESTS TABLE 1

Introduced marine species detected during MBRM activities in this bioregion.

Common name	Scientific name	Type of organism	IMS/IMP listing	Noxious Listing
Mediterranean fanworm	Sabella spallanzanii	Polychaete	Pest	No
Scallop	Scaeochlamys livida N		Introduced species	No
Aeolid nudibranch	Godiva quadricolor	Mollusc	Introduced species	No
	Alexandrium catanella	Dinoflagellate	Pest	Yes
Ciona	Ciona intestinalis.	Ascidian	Introduced species	No
	Didemnum perlucidum	Ascidian	Introduced species – likely pest	Yes
Asian paddle crab	Charybdis japonica	Crab	Pest	Yes
Asian date mussel	Arcuatala senhousia	Mussel	Pest	Yes
Streaked goby	Acentrogobius pflaumi	Fish	Introduced species	No

FISHERIES

West Coast Rock Lobster Fishery Status Report

S. de Lestang, M. Rossbach, J. Kennedy and F. Trinnie.

Main Features			
Status		Current Landings (Season 2014)	
Stock level	Adequate	Commercial catch	5947 t
Fishing Level	Acceptable	Recreational catch (2013/14)	200 - 298 t

Fishery Description

Commercial

The West Coast Rock Lobster Managed Fishery (WCRLMF) targets the western rock lobster, *Panulirus cygnus*, on the west coast of Western Australia between Shark Bay and Cape Leeuwin, using baited traps (pots). This fishery was one of the first limited entry fisheries in the world and utilised a sophisticated Individual Transferrable Effort based system for over 20 years. In 2009/10 a notional Total Allowable Commercial Catch (TACC) was introduced. The transition to an Individually Transferable Quota (ITQ) fishery, which began in 2010/11, is now complete.

The fishery has historically been Australia's most valuable single species wild capture fishery and was the first fishery in the world to achieve Marine Stewardship Council (MSC) Certification. In early 2012 the fishery was certified by MSC for the third time.

Recreational

The recreational rock lobster fishery primarily targets western rock lobsters using baited pots and by diving. The recreational fishing season now begins on the 15 October each year and runs until the following 30 June.

Governing legislation/fishing authority

Commercial

Fish Resources Management Act 1994

Fish Resources Management Regulations 1995

West Coast Rock Lobster Managed Fishery Management Plan 2012

Other subsidiary legislation

West Coast Rock Lobster Managed Fishery Licence

Commonwealth Government *Environment Protection and Biodiversity Conservation Act 1999* (Wildlife Trade Operation)

Recreational

Fish Resources Management Act 1994

Fish Resources Management Regulations 1995

Other subsidiary legislation

Recreational Fishing Licence

Consultation processes

Commercial

Under the West Coast Rock Lobster Managed Fishery Management Plan 2012, it is a requirement that consultation be undertaken with the Western Rock Lobster Council prior to the management plan being amended or revoked. In addition, the Department holds Annual Management Meetings with licensees. These meetings are convened on behalf of the Department by the Industry Consultative Unit within the WA Fishing Industry Council (WAFIC).

Recreational

Recfishwest: Primarily through its Rock Lobster Reference Group.

Boundaries

Commercial

The fishery is situated along the west coast of Australia between Latitudes 21°44′ to 34°24′ S. The fishery is managed in three zones: south of latitude 30° S (Zone C), north of latitude 30° S (Zone B) and, within this northern area, a third offshore zone (Zone A) around the Abrolhos Islands.

Recreational

The recreational rock lobster fishery operates on a statewide basis and encompasses the take of all rock lobster species. Fishing is concentrated on western rock lobsters in inshore regions in depths of less than 20 meters between North West Cape and Augusta. The majority of recreational lobster fishing occurs in the Perth metropolitan area and Geraldton.

Management arrangements

Commercial

In 2014, the Department implemented a Harvest Strategy and Control Rules (HSCR) for the fishery following extensive consultation with the Western Rock Lobster Council, broader industry stakeholders and Recfishwest.

The HSCR is now used as the basis for setting the Total Allowable Commercial Catch (TACC) and the Total Allowable Recreational Catch (TARC) A copy of the HSCR can be found at the following link: http://www.fish.wa.gov.au/Documents/management_papers/fmp264.pdf

The HSCR is based around managing rock lobster stock sustainably in accordance with Maximum Economic Yield (MEY). The HSCR also established fixes TACC proportions between each fishing zone. The catch share between the northern zones (Zone A and Zone B) and Zone C is now split at a ratio of 50:50. With the 50% share allocated to the northern zones being split 36% to Zone A and 64% to Zone B

In 2014, the Department granted a short term exemption to enable commercial fishers to take setose rock lobster for a period from 1 September 2014 to 31 October 2014.

In 2013 an increase in interactions with migrating humpback whales resulted in the fishery's export approval being reduced from a five year exemption to a two year Wildlife Trade Operation. To reduce interactions with whales a number of measures, including gear modifications, were introduced in 2014. These measures were developed in consultation with industry and relevant Government agencies and included: restrictions on the amount of surface rope, number of surface floats and length of pot rope that could be used by fishers when operating in deep water areas of the fishery. In addition, other mitigation measures such as negatively buoyant rope requirements and pot retrieval restrictions were implemented. The gear modifications were applied for a period from 1 June 2014 until 14 November 2014

Recreational Fishery 2013/14

The recreational component of the western rock lobster fishery is managed under fisheries regulations. A combination of input and output controls are used to ensure that the recreational sector enjoys the amenity of its access to the rock lobster resource, while fishing to their 5% allocated share.

Recreational management controls which applied in the 2013/14 season included:

- Maximum of two pots per licence holder (maximum of three licences able to be operate from a boat)
- Pots must meet specific size requirements and have gaps to allow under-size rock lobster to escape (escape gaps required to be 54 mm)
- Minimum legal size limit of 76 mm
- · Bag limit of 8 per fisher, per day
- A maximum boat limit of 24 rock lobster when there are three or more licensed fishers on-board the boat (maximum of 8 if only if one licensed fisher on-board and,16 if two licensed fishers are on-board).
- Regulations relating to the protection of breeding female lobster and maximum size restrictions for female lobsters.
- Night fishing for lobster by other diving or potting is prohibited
- A possession limit of 24 rock lobster per person.

In 2013/14, the recreational rock lobster season was extended by a month in the West Coast Bioregion (Cape Leeuwin to North West Cape), with the exception of at the Abrolhos Islands. Previously, the season in the West Coast Bioregion commenced on 15 November each year. The season now runs from 15 October until 30 June.

In addition, to these changes, from the 2013/14 season, the seasonal restrictions on the taking of western rock lobster north of North West Cape were removed, allowing all species of lobster to be taken all year north of North West Cape.

Integrated Fisheries Management

In March 2008, through the Integrated Fisheries Management process, the Minister determined that the allocated shares of the sectors of the West Coast Rock Lobster resource would be 95% to the commercial sector, 5% to the recreational sector and one tonne to customary fishers. The 2009/10 season was the first season where these shares were formally allocated to each sector.

Research summary

Research activities focus on assessing stock sustainability, forecasting future recruitment and breeding stock levels. This involves fishery-dependent and independent monitoring of breeding stock levels and puerulus settlement. Industry performance is monitored through compulsory trip based catch disposal records which contain a volunteer research section from fishers and daily landing returns from processors, and a commercial monitoring program, all of which are used for modelling and stock assessment.

A project to assess the economic performance of the fishery was funded by the Seafood CRC. This project examined maximum economic yield assessment, in light of the recent move to a quota management system, and ways to incorporate the economic assessment into the outputs generated by the stock assessment model (see Caputi *et al.*)¹.

The recent move to quota has resulted in a change in fishing behaviour, from maximising catches from limited effort to maximising profitability from limited catch (quota). As a result the relativity of commercial catch rates, and thus biomass estimates, between years has degraded. In order to develop new bench mark population biomass estimates and exploitation rates under quota management a tag-recapture FRDC project has recently started ("An industry based mark recapture program to provide stock assessment inputs for the WRLF following introduction of quota management"). This project aims to release over 20 000 lobsters throughout the fishery over a three year period in five separate pulses. This project will also investigate lobster release survival, which is integral in understanding the impact of high grading lobsters, a phenomenon associated with quota fisheries.

An ecosystem-based project aims to examine the effects of western rock lobster fishing on the deep-water ecosystem off the west coast of Western Australia is being undertaken. This was started in 2009, using a comparison between fished and unfished deep water areas in deep water (~40 m) off Leeman. Preliminary results of this research indicate a substantial increase in lobster biomass and average carapace length of lobsters within the unfished region. A key output of this research will be a greater understanding of the carrying capacity of deep-water reef systems within the WRL fishery. A paper from this research was presented in 2014 at the 10th

¹ Caputi, N., de Lestang, S., Reid, C., Hesp, A., & How, J. (2015). Maximum economic yield of the western rock lobster fishery of Western Australia after moving from effort to quota control. Marine Policy, 51, 452-464.

International Conference and Workshop on Lobster Biology and Management in Cancun Mexico (http://www.dmc-cancun.com/icwl2014/index.php/component/content/?view=f eatured).

Another project examining lobster populations in fished and unfished zones is ongoing at Rottnest Island. This project consists of annual sampling using pots and underwater dive surveys at Armstrong Bay and Parker Point sanctuary zones. Results from the first five years after the no-take regions were implemented have shown a slight increase in lobster numbers within the protected areas. This study also aims to provide additional information on growth, natural mortality and size/sex-specific catchability.

Concern about the status of the breeding stock in the Big Bank region resulted in this area being closed to lobster fishing. Additional independent breeding stock survey sites have been sampled in this area since 2009 to generate baseline information to assess the effects of this closure.

Since the 1986/87 season, a mail survey has been used to estimate the total catch of the recreational sector. At the end of each fishing season, approximately 10% of people licensed to fish recreationally for rock lobster have been randomly sent a survey asking about their retained catch and level of effort for the season just completed. Typically, 40-60% of these surveys have been returned. It has been acknowledged that this survey method suffers from a recall bias (the inability of people to remember exact details of what fishing they may have completed as long as 7.5 months prior) and due to not all survey recipients returning the survey, a nonresponse bias (the possibility of non-respondents being different in their fishing behaviour and success than respondents). To reduce the impact of these biases on catch estimates, a phone-diary survey that is considered to suffer less from these biases (Baharthah, 2007)¹, has been conducted in concert with the mail survey for a number of seasons to develop a conversion factor (Thompson, A. 2013)². The resultant conversion factor has been used to standardise catch estimates from the far cheaper mail survey to that of the phone-diary survey.

Retained Species

Commercial landings (season 2014) 5947 tonnes

Lobsters: Trends in the annual catches from the West Coast Rock Lobster Managed Fishery are shown in West Coast Rock Lobster Figure 1. During the WCRLF 2014 season the fishery landed 5947 t which was 4% higher than last year. This is slightly higher than the TACC because there is a small allowance made for water loss.

Octopus: Octopus are also caught in rock lobster pots within shallow water (<40 m). In 2014 the WCRLF landed 14 t, with a catch rate of 0.025 octopus per pot lift in waters <40 m. This represents a decline in landings from 2011/12 season of 34 t. Historically the shallow-water catch rate of octopus has been compared to a historical range as a performance

indicator for this fishery. However, with a recent change in the reporting system for octopus from catches to landings (i.e. not including returned octopus) current catch rates cannot be compared to their historical range. This comparison will be reinstated once a new time series of landed octopus is developed

The catch rate of octopus (incidental landings) is an indicator for this fishery. Currently the catch rate is based on a different measure to those in the past and cannot therefore be compared. This comparison will be reinstated once a new time series of landed octopus is developed

Finfish: Finfish are incidentally caught in lobster pots when they are hauled to the surface. Commercial western rock lobster fishers were allowed to retain these finfish during the 2014 fishing season. A total of 2 t were landed during the 2014 season, with not all fish being retained (i.e. a large proportion were returned to the water alive). The three dominate species/groups of finfish landed were Baldchin Grouper (*Choerodon rubescens, 41%*), Unknown (e.g. wrasse and "trash" fish 37%) and Pink Snapper (*Pagrus auratus,* 8%).

Recreational catch estimate (season 2013/14) 200 – 298 tonnes

The recreational catch of western rock lobster for 2013/14 was estimated within the range of 200-298 t, with 184t (148-219 C.I.) by potting and 66 t (51-80 t C.I.) by diving.

Comparative catch estimates for 2012/13 were 128 t, with 95 t by potting and 34 t by diving. The estimated recreational catch in 2013/14 was therefore 94% higher than the 2012/13 catch estimate

Fishing effort/access level

Commercial

In 2014, 235 vessels fished for lobster which represented a decline of 6% from the 251 vessels that fished during the previous 2013/14 season. The season's management arrangements limited the maximum number of pots at 5% of a vessel's unit entitlement (with slightly different arrangements applying in Zone B). In 2014, the fishery recorded 2,369,158 potlifts an 18% decline on the previous extended season's potlifts of 2,874,088 (Figure 1). This decline primarily reflects the increased biomass of lobsters resulting in better catch rates and thus the quota being achieved with less effort.

Recreational

A total of 45,146 licences were sold that permitted fishing for lobsters during some part of the 2013/14 season with an estimated 16,634 (37%) utilised for lobster fishing. Sales of licences and associated usage figures are substantially higher in years of anticipated good recruitment into the fishery, which in turn results in those years producing a relatively higher overall recreational rock lobster catch due to a combination of increased lobster abundance and higher fishing effort. The number of licences used for rock lobster fishing in 2013/14 was 8% higher than the number of active licences in 2012/13.

¹ Baharthah, T. 2007. Comparison of three survey methods applied to the recreational rock lobster fishery of Western Australia. Master of Science Thesis. School of Engineering and Mathematics. Edith Cowan University, Western Australia.

² Thomson, Adrian Wilfred. 2013. An estimator to reduce mail survey nonresponse bias in estimates of recreational catch: a case study using data from the Panulirus cygnus fishery of Western Australia. Ph.D. Curtin University, Department of Mathematics and Statistics.

The average rates of usage by active pot and diving fishers (i.e. excluding all those who held a licence but failed to use it) were 16 and 6 days, respectively during the 2013/14 fishing season. These rates were similar in the 2012/13 fishing season.

Finally, the average diary-adjusted catch taken by active pot and diving fishers were 33 and 19 lobsters, respectively during the 2013/14 fishing season. In the 2012/13 season the average numbers of lobsters caught by pot and dive fishers were lower at 20 and 12, respectively.

Stock Assessment

Assessment complete:

Yes

Assessment method:

Level 5 - Length-structured population model

Breeding stock levels:

Adequate

The stock assessment process for this fishery utilises the broad range of fishery-dependent and fishery-independent monitoring data as outlined in the research summary.

Indices of egg production are the main indicators for assessing the sustainability of the lobster stock. These are derived from a fully integrated stock-assessment model that incorporates all available data sources to produce robust and spatially comprehensive estimates of egg production.

The primary focus of management is to ensure that the overall breeding stock is above, and is projected to remain above, the threshold levels based on the early to mid-1980s with a probability greater than 75% (West Coast Rock Lobster Figure 3). These model-estimates of breeding stock are supported by fishery-independent surveys that have been undertaken since the early 1990s and show that the breeding stock has been at record-high levels in recent years.

The secondary focus for management is to determine what levels of harvest correspond to maximum economic outcomes, how these harvest rate scenarios affect catch rates and egg production levels and what would be the impacts of removing different biological management measures such as the setose rule.

A performance measure for the fishery is that the egg production index for three breeding stock management areas are projected to be above their respective threshold levels (that estimated to be the early-mid 1980s levels) five years into the future with a probability greater than 75%. The fishery has therefore met this performance measure.

Catch per Unit Effort (CPUE)

Another assessment measure is the standardised catch per unit of effort (CPUE) achieved annually by the commercial fishery (West Coast Rock Lobster Figure 2). With the change in management from input (effort controlled), to output (TACC) based on individual catch limits in 2011/13, commercial fishing behaviour has changed dramatically. Under effort controls, fishers were driven to utilise and maximise (through improved behaviour) all available effort to maximise their catches. Under a TACC fishery, fishers are driven to maximise profits through catching the most

valuable grades of lobsters during the most profitable periods of the season, while using as little effort as possible. This has resulted in an increase in pot soak times and a move to fishing more in lower catch rate periods when beach prices are generally at their highest. This impacts the relativity of commercial catch rates between the pre and post TACC phases of the fishery, therefore these indices have been standardised temporally and spatially and for high-grading to allow for continuity across the different management periods.

Commercial

The progressive upward trend from the 1970s to the 1980s reflects increasing efficiency during this period (West Coast Rock Lobster Figure 2), which led to better catches from the same number of effort. This trend was exacerbated in the early 1990s, especially in Zone A following a substantial management-induced reduction in effort (i.e. pot usage was reduced to 82% of the unit holding and 77 mm CL lobsters were protected during the whites).

Historically short-term fluctuations in abundance resulting from the cyclical nature of puerulus settlement were reflected in the legal-sized lobster abundance (CPUE) 3 to 4 years later. The increase in CPUE for the 2008/09 fishing season, however, relates more to the significant reduction in effort levels during that season. The low TACC set for the subsequent two fishing seasons (2009/10 and 2010/11) of 5500 t, about half the long-term average annual landing of 11 000 t successfully maintained high levels of legal biomass and high catch rates in these two seasons. It should be noted that the catch rate does not directly reflect the overall abundance of lobsters, because legal catches do not include the large biomass of under-size animals and breeding females, which are both fully protected. Currently catch rates within the fishery (3.9, 2.6 and 2.5 kg/potlift in zones A, B and C, respectively) are at or close to record highs, well above the historical long-term levels in each zone.

Recreational

The average recreational pot and diving diary-adjusted catch rates were 2.1 and 3.2 lobsters per person per fishing day in the 2013/14 fishing season. These catch rates are higher than the 1.2 lobsters for potting and 2.1 lobsters for diving calculated for the 2012/13 fishing.

Puerulus settlement

Post-larval (puerulus) recruitment to the fishery is monitored on a lunar monthly basis. Recruitment levels are affected by fluctuations in environmental conditions such as strength of the Leeuwin Current and the frequency and intensity of low-pressure systems generating westerly winds. Investigations into additional factors that may be affecting these levels have been underway since the record lows occurred in 2008 identified the onset of spawning as a key factor.

The puerulus settlement during the 2014/15 collection season has shown a very similar pattern to all settlements since 2006. The new pattern of settlement has a very poor August – October period relative to the pre-2006 period, with most settlement now occurring in November to February each year. As this pattern has now occurred for nine consecutive years this may represent a new long term pattern.

Settlement in 2014/15 in the southern sites Warnbro, Alkimos, Lancelin and Jurien are below their pre 2006 "historical" averages but similar to or just above where they have been over the past nine years. In the northern areas of Port Gregory and Dongara were at their historical average

while the Abrolhos was below its historical average. All these three sites were well above (almost double) the average levels experienced since 2006.

This represents significant improvement compared with the recent seasons (West Coast Rock Lobster Figure 4). The 2014/15 settlement will mainly affect catch rates during the 2018 fishing season.

Non-Retained Species

By-catch species impact:

Low

Listed species interaction: Sealions (Low)

Leatherback Turtles (Low)

Whale Entanglements (Moderate)

All WCRLF pots fished in waters less than 20 m within approximately 30 km of Australian Sea Lion (ASL) breeding colonies have to be fitted with an approved Sea Lion Exclusion Device (SLED) (see http://www.fish.wa.gov.au/Documents/recreational_fishing/additional_fishing_information/sea_lion_exclusion_devices.pdf). Video trials have indicated that this device is successful in stopping sea lion pups from entering lobsters pots and potentially drowning.

The performance measure for this fishery is that no increase in the rate of capture of sea lions occurs. During the 2014 western rock lobster season, no sea lion captures were reported, whereas the historical level is just over three sea lions per season. The fishery has therefore met this performance measure.

Turtle deaths as a direct result of interaction with the lobster fishery are very rare. Given the significant reductions in effort and hence pot ropes in the water since this assessment was completed, the current risk is probably now even lower. During the 2014 fishing season there was one interaction with a turtle and no deaths reported.

The performance measure for the fishery is that there is no increase in interactions with turtles. In 2014 one leatherback turtle were reported to have been entangled in lobster fishing gear. This incident rate is below the historical range of between two and five entanglements per season over the preceding five seasons. The fishery has therefore met this performance measure.

The humpback whale is the predominant species that interacts with the WCRLF, during both its northward migration from May to August and then during its subsequent southward migration from September to November. Owing to the fishery's historical closed season (July-November), there was a limited period for interaction. There has been a rise in the number of entanglements in commercial rock lobster gear in recent seasons. This is likely due to the combination of an increasing population of humpback whales, and the transition of the WCRLF to a quota fishery with year-round fishing...

Entanglements are reported by industry and other water users to the Department of Parks and Wildlife (DPaW) whose specialist teams attempt to disentangle the animal, with a high success rate. The western rock lobster fishing industry has developed a code of practice to minimise the interaction with whales in conjunction with DPaW and the Department of Fisheries. The Minister for Fisheries initiated a ministerial taskforce which included members of the Department, Minister's office, Industry (WRLC, WAFIC), a commercial fisher and representatives of the federal Department of the Environment (DotE). Its main function has been to identify research projects and provide advice on possible mitigation measures to reduce whale entanglements.

An outcome of this process has been the development of two FRDC research projects, which in combination aim to assess the issue of whale entanglements both through the trial of gear modifications and by improving the collection of spatial and temporal data on the whale migration along the West Australian coast. The outputs of these projects have and will continue to feed into future management arrangements to reduce whale entanglements.

For the 2014 whale migration season fishers were required to use modified gear on all fishing gear with ropes greater than 27.4m (15 fathoms).

The effectiveness of these modifications is still to be assessed but a significant decline in whale entanglements with rock lobster gear was recorded in 2014, declining from 18 in 2013 to six in 2014. Management measures remain in place for the 2015 whale migration season.

The performance measure for the fishery is that there is no increase in the rate of interactions with whales and dolphins (entanglements). Over the recorded history (1990–2010), commercial lobster fishing has resulted in zero to six whale/dolphin interactions per season. Six whale entanglements with lobster gear were recorded during the 2014 lobster season. The fishery has therefore achieved this performance indicator.

Ecosystem Effects

Food chain effects:

Low

Low

Overall, the fishery has previously been found to be unlikely to cause any significant trophic ('food web') cascade effects within shallow waters, as the protected sub-legal-sized lobsters and breeding stock components form a relatively constant significant proportion of the biomass which remains from year-to-year, and the catch, particularly in inshore areas, is less than the annual variability in biomass due to natural recruitment cycles. A rock lobster-specific ecological risk assessment completed in 2013 considered that, due to considerable additional research that has been conducted on this issue over the past few years, the removal of lobster in deep-water regions are unlikely to be having a significant impact on the surrounding ecosystem. This forum subsequently classed this as a low risk.

Habitat effects:

The legislated design of rock lobster pots, the materials they are made from and the strict control of replacement pots

prevent 'ghost fishing' problems arising. A study of human impacts on the marine environments of the Abrolhos Islands estimated that potting might impact on less than 0.3% of the surface area of fragile habitat (corals) at the Abrolhos Islands. Generally, throughout the coastal fishery, rock lobster fishing occurs on sand areas around robust limestone reef habitats, covered with coralline and macro-algae such as kelp (*Ecklonia* spp.). This type of high-energy coastal habitat is regularly subjected to swell and winter storms and so is considered highly resistant to damage from rock lobster potting. The significant recent reductions in fishing effort will have reduced these risks even further.

Social Effects

Commercial

The western rock lobster fishery is an important sector of Western Australia's economy, with the commercial catch from the current reporting season valued ex-vessel at \$359 million. Employment is now year round, the fishing season being from 15 January to the following 14 January. During the year, 4 main processing establishments, located in the Perth metropolitan area (2), Geraldton (1) and Cervantes (1), serviced practically every location where fishing occurred.

Recreational

With around 45,000 licensed to fish, of which about 16,500 people take 498,000 individual lobsters annually, this fishery represents a major recreational activity and provides a significant social benefit to the Western Australian community.

Economic Effects

Estimated annual commercial value (to fishers) for 2014: \$359 million

The price that commercial fishers received for the western rock lobster in 2014 was an estimated to be \$60.40/kg averaged across all processors and all zones of the fishery. This was 26% increase on the \$48.02/kg paid in 2013/14, with the increase due to fishers only landing catch when the advertised beach price was high, the move to a 12-month season and a lower Australian dollar exchange rate. The overall value of the fishery increased by 32% from the previous season's value of \$271 million. This was a result of a higher TACC and an improved market value (beach price).

The majority of landed lobsters were exported to China with some product also going to Hong Kong, Taiwan, Japan, United States and some into Europe.

Fishery Governance

Commercial
Current Fishing (or Effort) Level:

Acceptable

Commercial catch target (2015):

6000 tonnes (TACC)

Between 1975/76 and 2014 commercial catches averaged 9,697 t with the maximum catch of 14,523 t being landed in 1999/2000 (West Coast Rock Lobster Figure 1). More recently (post 2008/09) the annual catch levels have been

based on much lower levels (down to 5,500 t). The pre-2008 variations in catches result primarily from varying levels both of recruitment, which were largely associated with the environmental conditions experienced by western rock lobster larvae and post-larvae, and fishing effort. The record low puerulus settlement in 2008/09 and poor settlement in 2009/10 followed a series of already low recruitment levels. This resulted in a series of catch limits for this period being imposed to generate a carry-over of legal biomass rather than continuing the historical strategy of catching a similar proportion of the available stock each year. This ensured sufficient catch rates and breeding stock was available in what would have otherwise been low catch years (2010/11 -2013/14). For the 2008/09 season this involved restricting the catch to below 7,800 t which required significant effort reductions for both the whites (ca. 35%) and reds (ca. 60%) portions of the season.

A different strategy was adopted for the 2009/10 and 2010/11 seasons, with defined overall catch limits set at 5,500 t \pm 10 % and 5,500 t, respectively, being used to reduce catch rather than effort reductions. The 2011/13 season was a 14 month season therefore the catch target (TACC) was been increased in proportion to what previously would have been taken at the start of following season. The 2013 season represented the first season when industry, through the Western Rock Lobster Council, were provided with a range of biologically acceptable TACCs based on an assessment of maximum economic yield. From this range they were able to recommend their preferred TACC to the Minister. For the 2013 season industry recommended 5554 t. The same process occurred for the 2014 season with industry recommending a TACC of 5859 t and for the 2015 season industry recommended 6000 t.

Recreational Current Fishing (or Effort) Level

Acceptable

Target recreational catch limit (2014/15):

404 tonnes

Between 1986/87 and 2013/14 recreational catches have varied between 98 t in 1987/88 to 360 t in 2002/03. Variation of these catches results primarily from variable levels of recruitment, which are driven by the environmental conditions as described above. From 2008/09 onwards the commercial and recreational sectors have been managed under the principles of Integrated Fisheries management (IFM), which allocates the commercial and recreational sectors 95 and 5% of the total catch, respectively. Under this arrangement the limit recreational catch for 2013/14 based on a maximum allowable commercial catch (top of the MEY range of acceptable catches) of 7,370 t was 388 t. (7370 x 5/95 = 388 t TARC). The estimated recreational catch for 2013/14 was approximately 64% of the TARC. The TARC for 2014/15 season is 422 t.

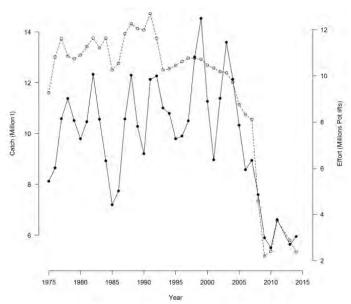
New management initiatives (2015/16)

In 2015, an application for further export approval will be made to the Commonwealth Department of the Environment. Existing whale entanglement mitigation measures will be reviewed with a view to making any necessary amendment prior to the 2015 humpback whale migration period. The

maximum legal lengths for female western rock lobsters will be removed for commercial fishers and there will be an extended trial (1 July – 14 November) removal of the prohibition on taking setose western rock lobsters in the commercial fishery. The Department will continue to work with Recfishwest to review recreational catch levels and determine any required management changes.

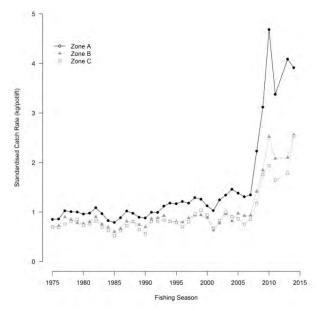
External Factors

The variations in western rock lobster catches both commercially and recreationally are largely a result of variable levels of puerulus settlement. A positive relationship has historically existed between Leeuwin Current strength and levels of puerulus settlement. The southward-flowing Leeuwin Current also affects the spatial distribution of puerulus settlement along the coast. Catches are also dependent upon the environmental conditions at the time of fishing.

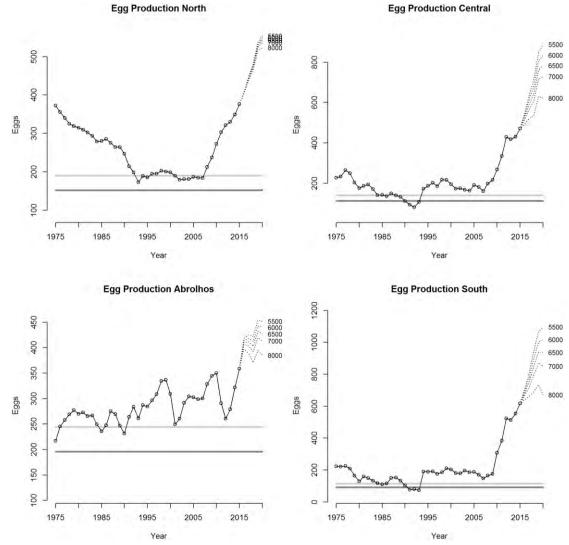

Investigation into the puerulus downturn have identified that when the spawning started early (temperature driven) and was coupled with low numbers of autumn and winter storms, the puerulus settlement was significantly lower and this matched the recent lows. These factors combined were able to explain 70% of the variation in historical puerulus settlement up to 2013/14, including the record low settlement of 2008/09. These environmental factors also explained the above-average settlement in 2013/14.

During late 2014 and 2015 the El Niño conditions continued to develop which then usually results in a lower puerulus settlement occurring due to a weaker Leeuwin Current strength and westerly winds.

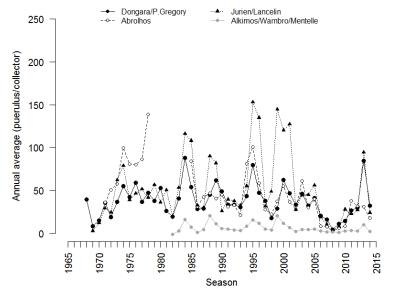
More details on the comprehensive FRDC/Departmentfunded research project are available on the Department's website


http://www.fish.wa.gov.au/Documents/research_reports/frr255.pdf.

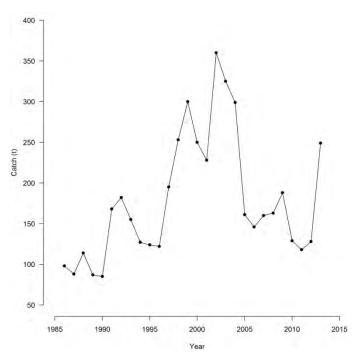
The economic performance of the fishery is strongly affected by the value of the Australian dollar (affecting the beach price of lobsters), fuel and labour costs. In addition to changes in management, WRL's are highly sensitive to environmental conditions, therefore were rated as a high risk to the effects of climate change.


WEST COAST ROCK LOBSTER FIGURE 1

Annual catch (millions of kg - solid line) and nominal fishing effort (millions of pot lifts - dashed line) from fishers' compulsory monthly returns (pre 2010 season) and daily Catch Disposal Records for the West Coast Rock Lobster Managed Fishery from 1975/76 to 2014.


WEST COAST ROCK LOBSTER FIGURE 2

Catch rates (kg/potlift) standardised for fishing location, depth and intra-season month from fishers' compulsory monthly returns (pre 2010 season) and daily Catch Disposal Records for the three zones of the West Coast Rock Lobster Managed Fishery from 1975/76 to 2014.


WEST COAST ROCK LOBSTER FIGURE 3

Egg production in the four Breeding Stock Management Areas of the fishery. Open points and the dotted line represent historic and future levels of mean egg production, respectively, under continued levels of current commercial catch. The horizontal light grey and dark grey lines represents the threshold and limit reference points.

WEST COAST ROCK LOBSTER FIGURE 4

Annual indices of puerulus settlement from 1968/69 to 2014/15 for the four main regions of the fishery.

WEST COAST ROCK LOBSTER FIGURE 5

Estimates of the recreational rock lobster catch since 1986/87 using adjusted mail survey results.

Roe's Abalone Fishery Status Report

A. Hart, J. Brown and J. O'Malley

Main Features			
Status		Current Landings	
Stock level	Adequate	Commercial Catch	
Fishing level	Acceptable	West Coast	32 t
		Other	17 t
		Recreational Catch	
		West Coast	15 - 25 t
		Other	14 t

Fishery Description

The Western Australian Roe's abalone (Haliotis roei) fishery is a dive and wade fishery, operating in shallow coastal waters along WA's western and southern coasts. Roe's abalone are found in commercial quantities from the South Australian border to Shark Bay, although they are not uniformly distributed throughout this range.

The commercial fishery harvest method is a single diver working off a 'hookah' (surface-supplied breathing apparatus) using an abalone 'iron' to prise the shellfish off rocks. Abalone divers operate from small fishery vessels (generally less than 9 metres in length).

The recreational fishery harvest method is primarily wading and snorkelling, with the main area of focus for the fishery being the Perth metropolitan stocks (West Coast Fishery).

Governing legislation/fishing authority

Commercial

Abalone Management Plan 1992

Abalone Managed Fishery Licence

Commonwealth Government Environment Protection and Biodiversity Conservation Act 1999 (Export Exemption)

Recreational

Recreational Abalone Fishing Licence

Consultation process

Commercial

The Department undertakes consultation directly with licensees on operational issues. Industry Annual General Meetings are convened by the West Australian Fishing Industry Council (WAFIC), who are also responsible for statutory management plan consultation under a Service Level Agreement with the Department.

Recreational

Consultation processes are now facilitated by Recfishwest under a Service Level Agreement with the Department, although the Department undertakes direct consultation with the community on specific issues.

Boundaries

Commercial

The Abalone Management Plan covers all Western Australian coastal waters, which are divided into 8 management areas. Commercial fishing for Roe's abalone is managed in 6 separate regions from the South Australian border to Busselton Jetty – Areas 1, 2, 5, 6, 7 and 8 (Roe's Abalone Figure 1).

Recreational

The recreational abalone fishery regulations relate to three zones: the Northern Zone, the West Coast Zone, and the Southern Zone (Roe's Abalone Figure 2). The West Coast Zone is the centre of the fishery and includes the metropolitan fishery.

Management arrangements

Commercial

The commercial Roe's abalone fishery is managed primarily through output controls in the form of Total Allowable Commercial Catches (TACCs), set annually for each area and allocated to licence holders as Individually Transferable Quotas (ITQs).

The overall TACC for 2014 was 87 t whole weight (note this small species is generally landed in the whole condition). Area 8 is still closed as a result of catastrophic mortalities resulting from exceptionally high water temperatures in early 2011 associated with the marine heat wave (Pearce *et al.* 2011)¹. The TACC is administered through 25,180 ITQ units, with a minimum unit holding of 800 units generally applying, although some Roe's abalone licences are permitted to operate below this minimum in recognition of historical fishing practices.

The licence period (fishing year) runs from 1 April to 31 March the following year.

¹ Pearce, A., Lenanton, R., Jackson, G., Moore, J., Feng, M. and Gaughan, D. 2011. The "marine heat wave" off Western Australia during the summer of 2010/11. Fisheries Research Report No. 222. Department of Fisheries, Western Australia. 40 pp.

The legal minimum length for Roe's abalone is 60 mm shell length in most parts of the fishery. However, an industry-initiated commercial minimum length for Area 1 (WA/South Australia border to Point Culver) and Area 7 (Cape Bouvard to Moore River) of 70 mm is applied.

A comprehensive Ecologically Sustainable Development assessment of the commercial fishery has been undertaken to identify any potential sustainability risks requiring direct management under the Commonwealth's EPBC Act requirements for export fisheries. The only issue identified as requiring ongoing management to ensure acceptable performance was the breeding stock levels of Roe's abalone. Boxed text in this status report provides the annual assessment of performance for this issue.

Recreational

The recreational Roe's abalone fishery is managed under a mix of input and output controls. Recreational fishers must purchase a dedicated abalone recreational fishing licence. The West Coast zone (Perth) of the recreational fishery is managed to an average Total Allowable Recreational Catch (TARC) of 40 t, however recent years of low catches indicate this quantity needs reviewing.

The fishing season in the Northern and Southern Zones extends from 1 October to 15 May. However, the Northern Zone has been closed to fishing since 2011 due to large-scale stock mortalities resulting from exceptionally high water temperatures in early 2011(Pearce *et al.* 2011). The West Coast Zone was open for five days in total including the first Sunday of each month from November 2014 to March 2015. The daily allowed fishing time is 60 minutes (between 7.00 a.m. and 8.00 a.m.). Prior to 2006, daily fishing time was 90 minutes. Due to stock abundance concerns, the bag limit in the West Coast Zone was reduced to 15 abalone per person.

These restrictive management controls on the west coast are necessary to ensure the sustainability of an easily accessible (and therefore vulnerable) stock located adjacent to a population in excess of 1.6 million people (including Geraldton).

For Roe's abalone, the minimum legal size is 60 mm shell length, the daily bag limit for the West Coast Zone is 15 Roe's abalone per fisher per day and for the Southern Zone is 20 Roe's abalone per fisher per day. The Roe's possession limit is 20 per fisher, and the household possession limit (the maximum number that may be stored at a person's permanent place of residence) is 80.

Research summary

Commercial

Commercial abalone divers provide daily catch information via statutory returns on the total weight of abalone collected, the hours fished, the date and location of harvest and the name of the person(s) harvesting. These data are used to assist in research, compliance and management matters.

The main abundance index is an annual standardized catch per unit effort (CPUE) model that takes into account diver, sub-area and month of fishing, as well as technological improvements that aid fishing efficiency. The standardized CPUE data are used in a harvest strategy control-rule framework for quota setting for each area of the fishery.

Current research is focused on stock assessment using catch and effort statistics, and fishery-independent surveys of Perth metropolitan stocks. Size and density of Roe's abalone across the near-shore sub-tidal reef habitat is measured annually at 13 indicator sites between Yanchep and Penguin Island. Eleven of these are fished while the other 2 include the Waterman's Reserve Marine Protected Area (MPA), and the Cottesloe Fish Habitat Protection Area (FHPA). These data are being used to predict the abundance of legal-size abalone and assess the effect of spawning stock and environmental conditions on the recruitment of abalone.

Research trials with funding assistance from the Seafood CRC are underway to see whether translocation and restocking can assist the recovery of abalone stocks in the Kalbarri region affected by the marine heat wave in 2011.

Recreational

Current annual recreational catch and effort estimates are derived from an annual field survey (West Coast Zone / Perth metropolitan fishery), and occasional telephone diary surveys covering all licence holders in the state (last completed in 2007).

The field survey estimates the catch and effort from each distinct Roe's abalone stock within the Perth fishery, and estimates are based on average catch (weight and numbers), catch rates (derived from 1,100 interviews in 2014/15), and fisher counts conducted by Fisheries Volunteers and research personnel from shoreline vantage points and aerial surveys. This method provides a comprehensive assessment, but is too resource-intensive to be applied routinely outside of the Perth metropolitan area.

The telephone diary survey estimates the catch of all 3 species on a state-wide basis. In 2007, around 500 licence holders were randomly selected from the licence database, with selection stratified by licence type (abalone or umbrella-which was available at that time) and respondent location (country or Perth metropolitan area). The licence holders were sent a diary to record their fishing activity and were contacted every 3 months by telephone for the duration of the abalone season, or at the end of the season for those only involved in the Perth abalone season.

Research is progressing on an in-season catch prediction model based on environmental conditions, for the Perth metropolitan fishery. This model will assist the Department in managing the summer season.

Retained Species

Commercial production Season 2014:

49 tonnes whole weight

Metro only:

32 tonnes whole weight

The TACC for the 2014 quota year was 87 t whole weight for Roe's abalone. The 2014 catch of 49 t whole weight (Roe's Abalone Table 1) was a 33% drop from 2013 (73 t) and about 56% of the TACC. The catch is the lowest in the 25 year time series. The reductions in catch are driven mostly by economic reasons as there are few economically viable markets for Roe's abalone, and closures. The Area 8 fishery has still not been fished since the 2011 marine heat wave (Roe's Abalone Figure 1) as annual surveys show no recovery in this area.

Recreational catch

Season 2014: Roe's Metro Fishery 15 – 25 tonnes

(Season 2007): Roe's rest of state 14 tonnes

(41% of total catch)

The recreational catch for Roe's abalone from the Perth metropolitan area in 2014 was 20.2 t (Roe's Abalone Table 2). This was almost identical to 2013 but with a daily bag limit reduction in place (from 20 to 15 abalone) and a 7% increase in effort.

Based on the Perth recreational fishery for 2014 (15 - 25 t), and using the 2007 phone diary estimate for the rest of the state (14 t), recreational fishing represented about 41% of the total (commercial and recreational) Roe's abalone catch (83 t) across the state in 2014.

Fishing effort/access level

Commercial

Total effort for dedicated Roe's abalone divers in 2014 was 328 diver days, a 28% decrease in last year's effort of 457 diver days and the lowest effort over 25 years (Roe's Abalone Table 1).

Recreational

For the 2014 season, 16,315 abalone licences were issued which was 2% higher than last year (Roe's Abalone Figure 3). This was the fifth year in which only abalone specific licences were available to those wishing to fish for abalone. Umbrella recreational licences, which allow for the catch of multiple species, have been phased out (Roe's Abalone Figure 3).

Effort in the Perth fishery for 2014 was 9,139 hours, a 7% increase from 2013 effort of 8,512 hours (Roe's Abalone Table 2) and the third lowest in the 14 years of data collection. Lowered catches are primarily due to fishery restrictions; since 1999 the fishery had reduced from a 9 hour fishery to a 5 hour fishery, and bag limits from 20 to 15. Since the introduction of the summer season in 2011/12 the average catch has been 20.3 t, 50% of the allocated TARC. This change to a summer season was part of ongoing adjustments in management as part of the resource sharing process. Since 2006, daily season length has been shortened from 1.5 hours to 1 hour, and number of fishing days from 6 to 5

Effort estimates for recreational abalone fishing from the 2007 telephone diary survey were 13,400 days (10,500 – 16,200 days) in the Perth metropolitan area, 6,300 days (3,800 – 8,800 days) on the west coast (excluding the Perth metropolitan area), and 4,900 days (1,700 – 8,000 days) on the south coast (Roe's Abalone Table 3).

Stock Assessment

Assessment complete: Yes

Assessment level and method:

Level 4 - Catch Rates / Direct Survey

Breeding stock levels: Adequate

CPUE and TACC assessment: The standardised CPUE (SCPUE) for the Roe's abalone fishery is the main

performance indicator for the abundance of legal-sized abalone. This indicator replaces the raw CPUE data used historically, however the raw CPUE data has been retained for comparative purposes.

The SCPUE for dedicated Roe's abalone divers for the 2014/15 fishing season was 24.2 kg/hr, which was the second lowest it has been (Roe's Abalone Table 1). This low SCPUE has been driven primarily by lack of growth in recent years.

Area 8 commercial (Northern Region for recreational) continues to be closed to all fishing to promote stock recovery following an environmentally-induced mass mortality in the marine heat wave in the summer of 2010/11 (Pearce *et al.* 2011).

The catch rate of recreational fishers in the Perth metropolitan fishery of 24 abalone/hour in 2014 was less than the 2013 catch rate of 27 abalone per hour (Roe's Abalone Table 2).

Stock surveys: Densities of sub-legal animals (less than 60 mm in size) on the platform habitat of the fished stocks in 2015 were 21 abalone m⁻², a drop of 1 m⁻² compared with 2014 and a 35% drop since 2011 (Roe's Abalone Table 4). This was the lowest abundance in the 18-year time series. Within the subtidal habitat, densities of sub-legal animals have also decreased and are back to densities recorded in 2008. Densities of legal-sized animals (60+ mm) on the platform habitat (7 m⁻²) in 2015 are the second lowest on record and similar to the previous 4 years (Roe's Abalone Table 4). With the significant decline in recreational catch in the last three years, legal-size densities should begin to recover towards historical levels.

In the subtidal habitat, legal-sized densities were 8 abalone m⁻² in 2015, which is similar to 2014 and close to their long-term average (Roe's Abalone Table 4).

Densities of legal-sized Roe's abalone in the MPA are approximately 3 times the densities in fished stocks, however have also declined significantly since 2009 (Roes Abalone Table 4). For sub-legal animals on the platform habitat, densities have significantly declined between 2010 (59 m⁻²) and 2015 (17 m⁻²) and are now similar to that for fished stocks (21 m⁻²) (Roes Abalone Table 4). In the sub-tidal habitat of the Waterman's Reserve, the major declines in 2014 have continued into 2015 with both legal (10 m⁻²) and sub-legal sized stocks (1 m⁻²) being 50% and 93% lower than in 2012. This is indicative of environmentally-related mortality.

Breeding stocks: Size at sexual maturity (50% of animals mature) of Roe's abalone in the Perth metropolitan area is approximately 40 mm (2 to 3 years of age). Preliminary growth data for these metropolitan Roe's abalone indicate that they have a minimum of 1 year's spawning before reaching 60 mm – the minimum legal size at which Roe's abalone are harvested anywhere in Western Australia.

This is considered to provide adequate protection for the breeding stock under normal environmental conditions, especially since the average size of animals harvested in both sectors is above 70 mm. However the effect of the recent years of low abundance of sub-legal and legal-size abalone, particularly on the platform stocks, on the breeding stock needs to be assessed.

The main performance measure for the fishery relates to the maintenance of adequate breeding stocks in each area of the fishery. This is assessed using a combination of the level of quota achieved and the effort required to achieve the quota, both of which reflect stock abundance.

The total catch indicator was not met in the majority of fisheries, due primarily to poor economic return.

Standardised CPUEs were within the agreed ranges in Areas 2 and 5, but below agreed ranges in Area 6 and 7. Only 10% of catch was taken in Area 6, consequently the SCPUE is unlikely to be representative. In Area 7, a 10% TAC decrease has been undertaken due to the lowered abundance.

Non-Retained Species

Bycatch species impact:

Negligible

Divers have the ability to target abalone of choice (species, sizes and quality of abalone) and do not inadvertently harvest bycatch in their normal fishing activities.

Listed species interaction:

Negligible

The only potential listed species interaction in this fishery would be with the white shark (*Carcharodon carcharias*) while fishing in some of the more open-water locations. Some Roe's abalone divers are adopting the 'shark shield' technology generally used by greenlip/brownlip divers for their personal protection.

Ecosystem Effects

Food chain effects:

Negligible

Commercial abalone diving occurs over a small proportion of the total abalone habitat of the Western Australian coastline. In view of the relatively low exploitation rates and consequent maintenance of a high proportion of the natural biomass of abalone, it is considered unlikely that the fishery has any significant effect on the food chain in the region.

Habitat effects:

Negligible

The fishing activity makes minimal contact with the habitat, which typically consists of hard rock surfaces in a high wave energy environment. As abalone feed on drift algae, their removal is unlikely to result in any changes to the algal growth cover in areas fished.

Social Effects

There are 26 vessels commercially fishing for Roe's abalone, employing approximately 50 people across WA. The dispersed nature of the Roe's abalone fishery means that small coastal towns from Kalbarri to Eucla receive income from the activity of divers.

The recreational fishery provides a major social benefit to those sectors of the community that appreciate the abalone as a delicacy, and 16,315 licences were issued that would have

allowed fishers to participate in the recreational abalone fishery (Roe's Abalone Figure 3).

Economic Effects

Estimated annual value (to fishers) for 2014:

Level 2 - \$1-5 million (\$1.2 million)

The estimated average price for Roe's abalone in 2014 was \$24.80/kg. This value was slightly lower than the value in 2013. On the basis of the average price, the fishery was worth approximately \$1.2 million. Overall, the price of Roe's abalone has dropped by over 50% since 2000, when it was \$55/kg whole weight. This is due largely to the value of the Australian dollar, which increased from \$US0.6 in 2000 to >US\$1.00 in 2011, and has since dropped back to an average of \$0.85 for the 2014 season. The other factor in the decline in prices is competition from abalone produced by aquaculture.

Fishery Governance

Commercial Target SCPUE range:

28 - 33 kg per hour (all areas combined)

Target effort range:

530 - 640 diver days

To assess whether the catch quota set is appropriate (sustainable) relative to the stock available, Roe's abalone catches should be taken within the range of SCPUE recorded over the 1999 – 2006 fishing years (28 – 33 kg per hour; Roes Abalone Table 1). This range reflects the acceptable variation in catch rates due to weather and recruitment cycles. Roes Abalone Table 5 shows performance measures of each individual area.

The effort value of 328 diver days and SCPUE of 24 kg per hour (Roes Abalone Table 1) both fall below the expected effort ranges. In both cases the main reason was poor economic and adverse weather conditions which altered diver behaviour. However abundance of large animals is also considered to have dropped, particularly in the Area 7 fishery.

Recreational (West Coast) Allocated Catch Target range:

5 year moving average - 40 \pm 2 tonnes

The governance range is based on the 3 year moving average of catch in the West Coast Fishery. This range takes in the permitted maximum tolerance of \pm 2 t around the allocation of 40 t.

The 5-year (2010-2014) moving average for 2014 was 25 t. This was outside the governance range, and was caused by significant reductions in effort from 2010 to 2014, due primarily to poor weather conditions and changes in the fishing season (less days, lower bag limit) designed to reduce catch

As a result of reductions in legal-sized density of Roe's abalone on the platform habitats in the West Coast fishery (Roe's Abalone Table 4), the target catch range will be reviewed in this fishery during the 2015/16 season.

New management initiatives (2015/16)

The fourth year of the trial of a summer season for the West Coast Zone of the recreational fishery was undertaken for the 2014/15 summer. The season began on the first Sunday of November 2014 and extended till the first Sunday of March 2015, with fishing taking place between 7 and 8 am on the first Sunday of each month. Evidence from the first three seasons indicates a considerable drop in effort, due primarily to poor weather conditions, but also a reduction in effort, which occurred despite a relatively constant number of licences, averaging around 15,500.

For the 2014/15 season, the same number of fishing days was maintained, however a decrease in daily bag limit from 20 to 15 abalone was adopted. The objective of the bag limit decrease is to maintain low catches so as to promote an increase in density in the platform habitats, which have experienced significant declines in the last decade (Roes Abalone Table 4).

The Northern Zone of the recreational fishery (Roes Abalone Figure 2), and the Area 8 commercial fishery (Roes Abalone Figure 1) have been closed indefinitely since the 2011/12 season. This was to facilitate stock rebuilding following mass mortality from an environmental event (see External Factors).

External Factors

During the summer of 2010/11, the West Coast experienced a marine heat wave with sea surface temperatures of up to 3 degrees above average (Pearce *et al.*2011). This was widespread with fish kills being recorded across many fish species, however the Area 8 Roe's abalone fishery, particularly in the area around Kalbarri, were the most severely impacted. Mortalities on Roe's abalone were estimated at 99.9%+ and a complete closure of the commercial and recreational fisheries was implemented. Research translocation trials are continuing to determine whether they can assist the recovery. The effect of the heat wave on the Perth metropolitan area stock is being evaluated. Roe's abalone were rated a high risk to the effects of climate change as it is highly sensitive to environmental conditions.

The other main external factor influencing the Roe's commercial abalone fishery has been the decline in beach price and overall economic value over the last decade. The small size of Roe's abalone means that, as a fishery product, it is in direct competition with small hatchery-produced greenlip abalone. In the recreational fishery, weather conditions have a significant effect on catch rates and total catch of recreational fishers.

Roe's abalone catch and effort1 by quota period with raw and standardised catch per unit effort (SCPUE)

	.		•	·	
Quota period ²	Roe's TACC kg whole weight ³	Roe's caught kg whole weight	Diver days ⁴ (Roe's divers only)	Raw CPUE (Roe's divers kg per day)	SCPUE (kg per hour)
1990	105,000	116,447	936	112	
1991	101,000	109,489	832	118	
1992/93	105,000	111,341	735	134	27.6
1993/94	128,000	115,281	832	123	29.3
1994/95	125,960	117,835	908	113	26.6
1995/96	125,960	114,501	1,047	98	27.5
1996/97	125,960	118,715	1,004	106	26.9
1997/98	126,790	118,738	855	120	31.9
1998/99	93,9605	86,425	695	108	27.2
1999/006	119,900	112,949	659	149	29.1
2000/01	115,900	107,735	647	144	29.8
2001/02	107,900	99,174	685	126	29.4
2002/03	107,900	100,471	700	125	29.1
2003/04	110,900	96,005	723	118	27.3
2004/05	110,900	107,593	736	126	30.9
2005/06	112,700	96,496	672	131	32.3
2006/07	112,700	98,370	625	136	32.3
2007/08	109,700	90,750	585	132	27.7
2008/09	106,700	93,197	580	133	29.4
2009/10	101,800	92,838	554	140	29.9
2010/11	101,800	91,418	567	134	29.0
2011/12	92,800	81,607	426	157	29.3
2012/13	92,800	67,029	372	147	25.8
2013/14	92,800	73,239	457	133	24.1
2014/15	87,000	48,518	328	129	24.2

Notes

- 1. Data source: quota returns.
- 2. The length of quota period has varied with management changes and, for simplicity, has been recorded against the nearest calendar year.
- 3. Standard conversion factors for meat weight to whole weight for Roe's abalone were 2.5 prior to 2000 and 3.0 from 2000.
- 4. Effort (diver days) for dedicated Roe's divers only.
- 5. Reduced quota for a 6-month season.
- 6. In 1999, fishing restrictions (100 kg daily catch limit) in the Perth metropolitan area were lifted. This had the immediate effect of doubling the catch rate (kg/day) in that area.

Summary of effort (fisher hours), catch rate (abalone per hour), average catch per fisher, catch (number of abalone and tonnes whole weight) and mean whole weight (g) for the Perth recreational Roe's abalone fishery, from annual field surveys.

			Field Survey			
Year	Effort (hours)	Catch rate	Catch per fisher	Catch (number)	Catch (tonnes)	Mean weight (g)
1999	16,449	23	17.4	383,600	35.3	92
2000	15,818	21	16.7	330,300	30.2	91
2001	17,727	27	18.8	481,300	44.1	92
2002	18,127	22	17.9	401,500	36.0	90
2003	17,963	26	18.6	442,400	42.6	96
2004	14,614	24	19.0	342,900	31.7	93
2005	12,328	21	17.8	262,700	24.3	92
2006	10,435	29	18.9	297,000	30.2	101
2007	12,433	28	18.4	338,000	34.4	102
2008	14,490	29	18.2	420,000	44.4	106
2009	19,718	27	17.8	517,000	48.6	94
2010	18,010	26	18.7	468,000	43.9	94
2011	11,396	23	17.0	266,000	22.4	84
2012	7,972	25	17.9	205,500	18.6	90
2013	8,512	27	17.4	226,100	20.1	89
2014	9,139	24	14.4	220,400	20.2	92

ROE'S ABALONE TABLE 3

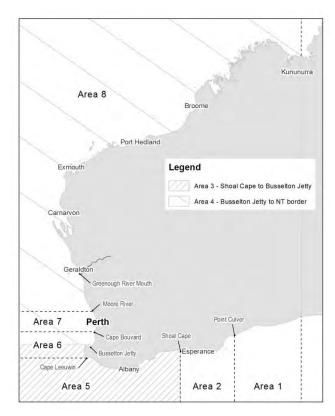
Summary of telephone diary surveys of effort (fisher days), catch rate (abalone per fisher day) and catch (tonnes whole weight) for the Roe's abalone recreational fisheries in 2004, 2006, and 2007.

Location	Year	Effort	R	Roe's		
Location	Tear	Elloit	Catch Rate	Catch (tonnes)		
	2004	17,200 (14,000 - 20,500)	17.8	28 (25 - 31)		
Perth Metro1	2006	12,600 (9,900 - 15,500)	18.2	23 (20 - 26)		
	2007	13,400 (10,500 - 16,200)	17.6	24 (19 - 29)		
	2004	10,100 (6,500 - 13,600)	11.0	10 (7 - 14)		
West Coast ¹ (excluding Metro)	2006	8,000 (4,700 - 11,300)	14.7	12 (7 - 17)		
	2007	6,300 (3,800 - 8,800)	14.1	9 (6 - 12)		
	2004	2,700 (1,700 - 3,700)	6.2	2 (1 - 3)		
South Coast ²	2006	2,800 (1,600 - 3,900)	6.3	2 (1 - 2)		
	2007	4,900 (1,700 - 8,000)	10.8	5 (1 - 9)		

^{1.} Both areas are within the West Coast Bioregion.

^{2.} Survey area is South Coast Bioregion (i.e. east of Black Point).

Mean densities& (abalone/m²) of sub-legal (<60 mm shell length) and legal-sized Roe's abalone (60 mm and over) from 13 monitoring sites (fished stocks) and the Marine Protected Area (MPA) in the Perth fishery. The platform habitat is primarily the recreational fishery, while the sub-tidal habitat is primarily the commercial fishery. Data has been standardised by a GLM (Generalized Linear Models) analysis, as the sites are not the same for all years.

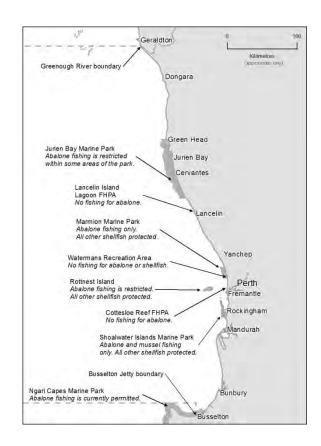

Platform habitat					Sub-tidal habitat			
Year	Fished	d stocks	Waterman's	Reserve (MPA)	Fished	stocks	Waterman's F	Reserve (MPA)
	<60	60+	<60	60+	<60	60+	<60	60+
1998	39.0	20.2	31.6	21.0	3.2	7.8	7.3	31.3
1999	42.1	20.6	31.3	25.9	2.7	4.6	8.6	19.8
2000	41.1	18.2	17.6	18.2	2.0	6.5	8.4	23.3
2001	38.7	18.6	23.7	27.4	2.8	7.0	6.0	22.2
2002	30.9	21.7	27.8	29.8	2.3	6.3	4.7	22.3
2003	22.7	18.3	22.6	29.2	2.9	7.4	3.3	19.9
2004	21.9	13.9	21.0	41.5	2.5	6.1	3.4	14.1
2005	21.1	12.2	30.8	31.5	3.5	6.5	6.6	16.3
2006	18.8	10.9	36.1	30.0	4.3	6.8	4.2	13.3
2007	22.9	11.1	25.1	28.9	3.6	7.6	5.5	16.3
2008	23.4	12.5	51.0	31.1	4.2	8.1	4.4	13.7
2009	29.0	11.2	50.6	34.8	5.0	7.8	7.4	17.5
2010	31.7	9.3	59.2	28.6	6.4	8.7	5.8	17.5
2011	31.9	7.5	45.8	24.7	5.3	8.1	4.9	16.9
2012	33.7	7.2	40.0	15.3	5.9	7.5	7.5	18.3
2013	28.3	8.5	19.7	17.1	5.6	8.8	3.6	12.9
2014	22.0	7.7	16.9	21.7	4.7	8.2	0.9	10.2
2015	20.7	7.3	16.6	17.6	4.0	7.9	0.5	9.9

[&]amp; Note that the GLM model used to estimate density in this report has changed from previous years. The overall trends in density have not altered, however values may vary from year to year.

Assessment against agreed performance measures for 2014.

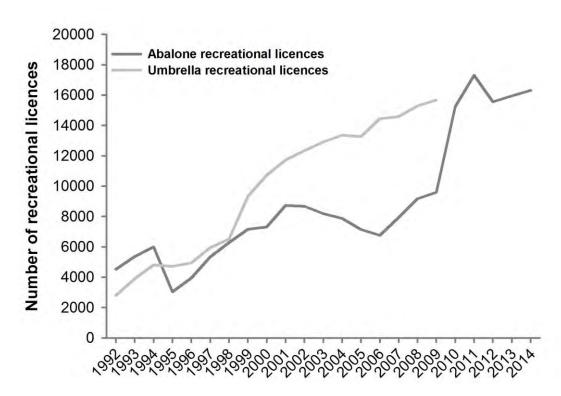
Performance Indicator	Performance Measure ¹	2014 Values	Assessment/Comments
Area 1			
Total catch (TACC)	5,000 kg	0 kg	Exploratory quota – No fishing in 2014.
Effort range (Diver days)	14 - 43	0	See above.
Area 2			
Total catch (TACC)	18,000 kg	11,105	Not met – 62% of quota caught.
Standardised CPUE	18 - 27	22	Met.
Area 5			
Total catch (TACC)	20,000kg	4,150	Not met – 21% of quota caught.
Standardised CPUE	16 - 24	22	Met.
Area 6			
Total catch (TACC)	12,000 kg	1,204	Not met – 10% of quota caught.
Standardised CPUE	19 - 28	11	Not met.
Area 7			
Total catch (TACC)	32,000 kg	32,000	Met – 100% of quota caught.
Standardised CPUE	29 - 42	28	Not met.
Area 8			
Total catch (TACC)	0 kg		Not assessed – fishery closed.
Standardised CPUE	16 - 24		Not assessed – fishery closed.

1. The range in SCPUE represents the Target (upper) and Limit (lower) biological reference points as developed in Fisheries Research Report No. 1851.



ROE'S ABALONE FIGURE 1

Map showing the management areas used to set quotas for the Roe's abalone commercial fishery in Western Australia.


¹ Hart A, Fabris F, Caputi N (2009). Performance indicators, biological reference points and decision rules for Western Australian abalone fisheries (Haliotis sp.): (1) Standardised catch per unit effort. Fisheries Research Report No. 185. Department of Fisheries, Western Australia. 32p.

ROE'S ABALONE FIGURE 2

Maps showing (a) the recreational fishing boundaries for abalone, and (b) the West Coast (Perth Fishery) zone, showing conservation areas within this zone.

ROE'S ABALONE FIGURE 3

The number of licences issued in the recreational abalone fishery, by licence type, for the period since 1992. Umbrella licences were discontinued in 2010.

Abrolhos Islands and Mid West, South West Trawl Managed Fisheries and South Coast Trawl Fishery Status Report

E. Sporer, M. Kangas, S. Wilkin, N. Blay and L. Pickles

Main Features	3		
Status		Current Landings	
Stock level	AIMWTMF - Environ. Limited	AIMWTMF:	Scallops nil (whole weight)
Fishing level	Acceptable	SWTMF:	Scallops nil (whole weight)
			Prawns 3 t
		SCTF:	Scallops 437 t (whole weight)

Fishery Description

The Abrolhos Islands and Mid West Trawl Managed Fishery (AIMWTMF) is based on the take of saucer scallops (*Amusium balloti*), with a small component targeting the western king prawn (*Penaeus latisulcatus*) in the Port Gregory area.

The South West Trawl Managed Fishery (SWTMF) includes two of the State's smaller scallop fishing grounds – Fremantle and north of Geographe Bay and is a multispecies fishery.

The South Coast Trawl Fishery (SCTF) principally targets scallops (*A. balloti*) and associated byproduct. Scallop landings for the fishery have varied dramatically over the years, depending primarily on the strength of recruitment. While the boundaries of the fishery covers a large section of the south coast, the operations of the fleet are effectively restricted to very small areas of higher scallop abundance.

Each of these fisheries operates using low opening otter trawl systems.

Governing legislation/ fishing authority

Abrolhos Islands and Mid West Trawl Managed Fishery Management Plan 1993

Abrolhos Islands and Mid West Trawl Managed Fishery Licence

South West Trawl Management Plan 1989

South West Trawl Managed Fishery Licence

Trawling Prohibition (Whole of State) Notice 1992

Surface Trawl Net Fishery (South Coast) Notice 1992

Trawling for Scallops (South Coast) Notice 1992

Commonwealth Government *Environment Protection and Biodiversity Conservation Act 1999* (Export Exemption) for AIMWTMF and SCTF.

Exemptions under Section 7 of the Fish Resources

Management Act 1994

Consultation process

The Department undertakes consultation directly with licensees on operational issues. Industry Annual Management Meetings are convened on behalf of the Department by the Industry Consultative Unit (ICU) within the West Australian Fishing Industry Council. The ICU, is also responsible for statutory management plan and special purpose consultation under a Service Level Agreement with the Department.

Boundaries

AIMWTMF: 'all the waters of the Indian Ocean adjacent to Western Australia between 27°51' south latitude and 29°03' south latitude on the landward side of the 200 m isobath'.

SWTMF: 'all the waters of the Indian Ocean adjacent to Western Australia between 31°43.38′27″ south latitude and 115°08.08′ east longitude where it intersects the high water mark at Cape Leeuwin, and on the landward side of the 200 m isobath'.

The area is further divided into four management zones, with a limited number of operators (indicated in brackets) permitted access to fish within each zone as follows:

Zone A	from 31°43′27″ S to 32°16′ S	(3 MFL's)
Zone B	South of 32°16′ S to west of 115°08′ E	(7 MFL's)
Zone C	North-east of Cape Naturaliste	(0 MFL's Closed to trawling)
Zone D	Comet Bay off	(0 MFL's)

SCTF: An exemption provides for the use of trawl gear to fish for scallops and certain demersal scalefish within the specified waters off the South Coast of the State between 115°30' east longitude and 125° 00' east longitude on the landward side of the 200 m isobath.

Management arrangements

AIMWTMF

The AIMWTMF (including the Port Gregory prawn trawl area) operates under an input control and constant escapement based management system. There is a maximum total net headrope capacity restriction, specified net mesh size, along with seasonal closures and significant spatial closures protecting all near-shore waters and sensitive reef areas. Bycatch reduction devices (grids) to release large species are fully implemented in the AIMWTMF as a licence condition. The fishery operates to a catch rate threshold level of 250 kg meat weight per 24 hours trawling to cease fishing.

Because the AIMWTMF area is fished by the rock lobster and the scallop fishing sectors of the fishing industry, the fishery is spatially separated for the scallop sector into two parts: the traditional parts of the fishery, which are divided into nine fishing grounds; and non-traditional areas. The traditional parts of the fishery contain known scallop grounds and these are the grounds historically fished by the scallop fleet. The non-traditional areas comprise parts of the fishery where scallops are not commonly found and have not been traditionally fished by the scallop fleet. Trawl fishing can be undertaken in these areas but there are guidelines for exploratory fishing before any commercial trawl fishing can be undertaken.

The Commonwealth Government's Department of the Environment (DotE), has assessed the AIMWTMF under the provisions of the *Environment Protection and Biodiversity Conservation Act 1999*. A delegate of the Minister for Environment granted a further 10-year export approval for the fishery until 2025.

SWTMF

The SWTMF is a gear-based managed fishery that operates under an input control system that limits boat numbers, gear sizes and fishing areas. There are a total of 10 MFLs, in this fishery, however, three boats that have access to Zone A (one of which has dual access to Zone B) and seven boats are also permitted to operate in Zone B. The fishing season operates between 1 January and 15 November in Zone A and Northern Zone B as described in item 2 (a) of Schedule 2 in the Management Plan. There were three licences in Zone D, however these were removed from the fishery through a VFAS in 2014 and access to Zone D ceased, while access to Zone C ceased in 2002. The management plan also includes large permanent closures to protect sensitive coastal habitats (including seagrass beds) and nursery areas such as Cockburn Sound, Warnbro Sound, and inshore Geographe Bay. For the 2014 season voluntary temporal closures were in place in Zone A from 01 January 2014 until 28 February 2014, and in the Geographe Bay region of Zone B from 01 to 31 January 2014.

SCTF

The SCTF is managed primarily by limited entry with only four licences permitted to operate in the fishery. Additional management arrangements for the SCTF are set by conditions within the Instrument of Exemption and are aimed at ensuring the stock and environment are protected via gear restrictions, seasonal and spatial closures.

The Department's vessel monitoring system (VMS) monitors the activities of all boats including compliance with the spatial closures.

DotE has assessed the SCTF under the provisions of the EPBC Act and granted a 3-year export approval for the fishery until 6 May 2016.

Research summary

Research monitoring of the scallop stocks for all these fisheries is undertaken using mandatory daily logbooks validated by processor returns. Advice on the status of stocks and appropriate season opening and closing dates is provided to industry and management. In the AIMWTMF there is an annual pre-season survey that provides the information required for assessing the fishery. This pre-season survey is undertaken in the traditional fish grounds and provides scallop abundance information for each fish ground and an overall catch prediction for the fishery. Some pre-season surveys are also conducted by industry at Rottnest Island (as part of the SWTMF) and the South Coast to assess the abundance of scallops. A pilot project (jointly funded by the Department and Industry) has been implemented in 2014/15 to assess the cause of the decline in recruitment and examine the feasibility of restocking to assist the recovery. A funding application to FRDC for 2015/16 was submitted to extend this pilot project.

Retained Species

Commercial landings (season 2014)

AIMWTMF: Scallops Nil
SWTMF: Scallops Nil

Prawns 3 tonnes

SCTF: Scallops 437 tonnes (t) whole weight

AIMWTMF

No scallop fishing occurred in this fishery during 2014 because the annual pre-season scallop survey showed scallop abundance below the limit reference level of the harvest strategy to commence fishing (West and South Coast Scallop Figure 1).

SWTMF

For 2014 the SWTMF was a 2 boat fishery. Early in the year the vessel fishing Zone D gave up its licences to the Voluntary Fishery Adjustment Scheme (VFAS), and Zone D ceased to be fished and low landings of prawns (3 t) were reported as landed. Being a multi species fishery, other reported product retained were blue swimmer crabs and mixed finfish with a combined total of < 2t. The vessel fishing Zones A and B chose not to fish due to poor scallop recruitment for the 2014 fishing season.

SCTE

The South Coast trawl fishery is principally a scallop fishery with a relatively small amount of mixed finfish landings\recorded. The scallop catch has been increasing over the past eight years with a total annual catch of 87.4 t meat weight (437.2 t whole weight), the third highest catch on record, however, it is significantly less than the 544 t meat weight landed in 2000. Retained by-product was negligible with <0.1 t of bugs. (West and South Coast Scallop Figure 3).

Recreational catch: Nil

Fishing effort/access level

AIMWTMF

In 2014, the AIMWTMF including the Port Gregory area was not opened for scallop fishing for the third consecutive year, due to low scallop abundance triggered by low recruitment due to unfavourable environmental conditions and very low breeding stock levels. (West and South Coast Scallop Figure 4).

SWTMF

A total of 27 boat days were fished in the SWTMF in 2014. This is very low compared to the effort levels of previous years, especially the period between 1990 and 2003, where typically 400 or more boat days were recorded per year. The effort (days fished) in 2014 has also declined significantly from previous years (80 in 2013 and 166 in 2012). This low effort reflects the cessation of fishing in Zone D and the lack of scallop recruitment in Zone A. However, if scallop recruitment improves there is potential for a commensurate increase in actual fishing effort in Zone A. (West and South Coast Scallop Figure 5).

SCIE

For the 2014 season, three boats fished for scallops between January and July, recording a total of 201 boat days (West and South Coast Scallop Figure 6). The effort expended each season in the SCTF is mostly affected by scallop recruitment levels. As a consequence, the level of effort utilised each year closely follows stock abundance and catch levels.

Stock Assessment

Assessment complete:

AIMWTMF: Yes

SWTMF and SCTF: Not assessed

Assessment method:

AIMWTMF: Level 4 - Direct survey, catch rate

Breeding stock levels:

AIMWTMF: Inadequate

SWTMF and SCTF: Not assessed

Projected catch range next season (2015)

AIMWTMF: Scallops Nil tonnes

The annual fishing season arrangements in the AIMWTMF are set so that the majority of the mature scallops are able to spawn before fishing occurs. Breeding stocks are therefore protected to ensure that recruitment is dependent mainly on environmental conditions each year. This fishery is highly variable; being dependent on sporadic recruitment which appears to be strongly influenced by environmental conditions, e.g. the Leeuwin Current, water temperature. A pre-season survey is undertaken annually with very low recruitment since 2011. The 2014 recruitment survey abundance remains extremely low, which is believed to be due to environmental conditions such as the La Niña climate pattern, strong Leeuwin Current which are associated with high water temperatures as well as the spawning stock due to the low recruitment the previous year. This low recruitment resulted in predicted landings that were less that the target range (95-1830 t whole weight) and therefore, the fishery was not opened for 2014. The predicted landings for 2015 were again below the target range so the fishery will not open. It may take a number of years of good environmental conditions for the spawning stock and recruitment to improve.

The main performance measure for the AIMWTM Fishery relates to maintaining breeding stocks of scallops. This is done in two ways; by setting the season fishing period according to the catch prediction and by closing the fishery at a threshold catch rate level.

The 2014 fishing season was not fished due to the low stock available, which was all left as breeding stock.

Bycatch species impact:

Negligible

Generally, the AIMWTMF trawl fleet operates over a small portion of the licensed fishing area, focusing on scallop aggregations in several different areas or fish grounds. Fishing activity is largely dependent on how widespread settlement is each season, with scallops settling on relatively bare sand habitats. The overall extent of the fishery is 3808 square nautical miles, with 2420 square miles (64% of the overall extent) being the permitted trawl area. No fishing was undertaken in 2014.

In the SWTMF trawling for scallops is focused on a few small offshore areas (at times with large-mesh (100 mm) trawl gear when focusing of scallops), while the prawn catch is mainly taken from Comet Bay (Zone D). Only 26 days of fishing (over two months) occurred in Zone D in 2014. Access to Zone D ceased during 2015.

The large-mesh (100 mm) trawl gear used in the SCTF results in minimal bycatch. The areas trawled by the boats for scallops (primarily in waters near Bremer Bay, the Recherche Archipelago and Israelite Bay) represent a very small percentage of the fishing area within the SCTF waters, therefore bycatch species impact is considered to be minimal.

Listed species interaction:

Negligible

While turtles do occur in the Abrolhos Islands, it is towards the southern extent of their range, and they do not breed in the Abrolhos Islands area because water temperatures are generally too low. Consequently, interactions with turtles were always minimal and their capture should be negligible now that grids are compulsory in the fishery. Aside from migrating humpback whales that usually avoid trawl boats; and occasional white sharks, few other endangered, threatened and protected species are sighted in this area. In the SWTMF (limited effort) and the SCTF endangered, threatened and protected species do not occur regularly in the fishing areas, despite frequenting the surrounding waters. Only 1 to 2 % of the allowable trawl area in the SW trawl Fishery and 2 to 3% in the South Coast Fishery is actually fished. There were no recorded captures of listed species in 2014 for either of these fisheries.

Ecosystem Effects

Food chain effects: Low

The total biomass taken by these fisheries is generally very small. Moreover, due to the high natural variability of scallop stock abundance it is unlikely that any predators are highly dependent on this species.

Habitat effects: Low

The fishers generally operate over a very small proportion of the licensed area and therefore the total area impacted by trawling is small. Trawling is not extensive and is confined to trawl grounds where fishable scallop abundance is significant.

The areas associated with scallops are sandy habitats and trawling activity does not impact these significantly.

Social Effects

The estimated employment of crew for the year 2014 was nil in the AIMWTMF, 6 in the SWTMF and 16 in the SCTF.

Economic Effects

Estimated annual value (to fishers) for year 2014:

AIMWTMF Level 0 - \$ Nil

SWTMF: Level 1 - \$< 1 million

SCTF: Level 2 - \$3.1 million

For the SWTMF and the SCTF the estimated value of the scallop catch is based on the wholesale price per kilogram (beach price) obtained from these fisheries, which is \$7.00/kg whole weight. The South West trawl is a niche fishery resulting in the king prawn price being higher value than the major fisheries and was deemed to be \$16.00/kg.

Fishery Governance

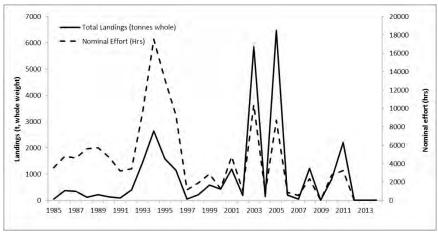
Target catch range:

AIMWTMF: 95 – 1,830 tonnes whole weight

Current fishing level:

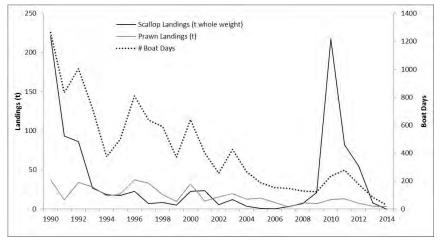
N/A

Except for a small number of years (see External Factors for details), the historic catch range for this fishery is 95 - 1,830 tonnes whole weight. No fishing was undertaken in 2014.

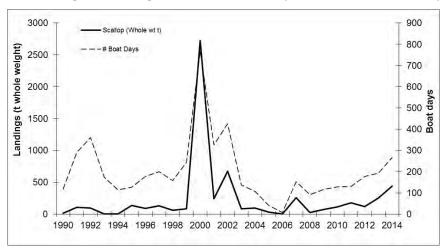

New management initiatives (2015)

Pre-assessment phase for the Marine Stewardship Council approval system was completed in 2014 for all three fisheries. The Department is currently working with licensees regarding the outcomes and recommendations of the Pre-Assessments.

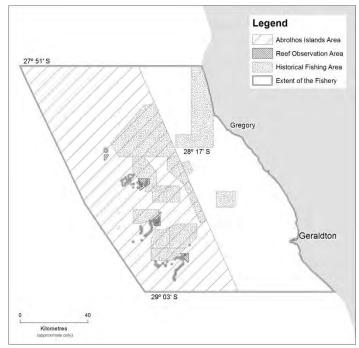
The Department is continuing to progress a management plan amendment in consultation with licensees to incorporate changes to boundaries of the fishery, gear arrangements and administrative changes in the SWTMF.


External Factors

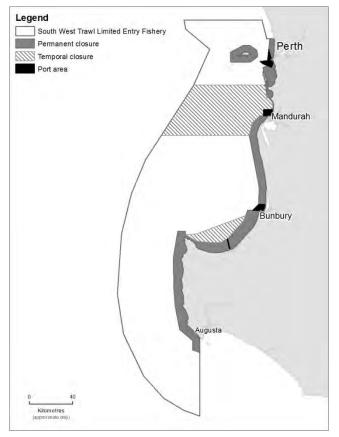
High variability in the level of recruitment highlights the dependence of recruitment success upon environmental conditions, such as the Leeuwin Current and temperature, rather than spawning stock levels. The relationship between environmental factors and recruitment success is being evaluated for all these regions. The low 2011 recruitment is believed to be mainly due to environmental conditions such as the La Niña climate pattern and strong Leeuwin Current. This very low recruitment would have resulted in subsequent low breeding stock in 2011/12. The low 2012, 2013 and 2014 recruitments were probably influenced by environmental conditions as well as the continuance of low breeding stock from the previous year. This high variability in recruitment results in a variable level of fishing activity and quantity of catch. Additionally, the high cost of fishing in recent times, as well as the importance of meat quality and size (for marketing purposes) in the current economic climate also factor in determining the amount of effort expended in these fisheries.


WEST AND SOUTH COAST SCALLOP FIGURE 1

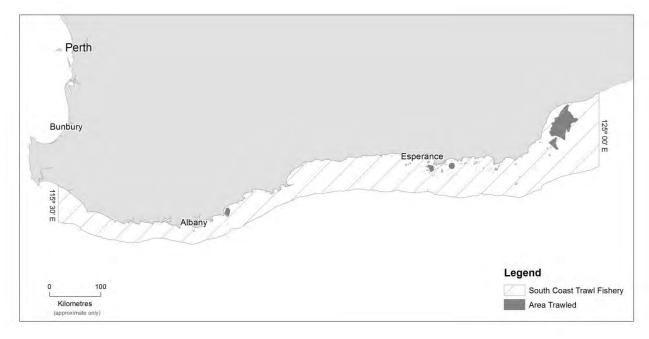
Annual Scallop Landings (t whole weight) and Nominal Effort for the Abrolhos Islands and Mid West Trawl Managed Fishery, 1985 – 2011. Note no fishing in 2012-2014.


WEST AND SOUTH COAST SCALLOP FIGURE 2

Annual Scallop and Prawn Landings (t whole weight) and number of boat days for South West Trawl Fishery, 1990 - 2014.


WEST AND SOUTH COAST SCALLOP FIGURE 3

Annual Scallop Landings (t whole weight) and number of boat days for South Coast Fishery, 1990 - 2014.


WEST AND SOUTH COAST SCALLOP FIGURE 4

Boundaries of the Abrolhos Islands and Mid West Trawl Managed Fishery, extent of fishery, Port Gregory area, Kidney patch and reef observation areas. Note there was no fishing in 2014.

WEST AND SOUTH COAST SCALLOP FIGURE 5

Boundaries of the South Coast Trawl Fishery.

WEST AND SOUTH COAST SCALLOP FIGURE 6

Boundaries of the South Coast Trawl Fishery and extent of fishing in 2014.

West Coast Blue Swimmer Crab Fishery Status Report

D. Johnston, R. Evans, M. Foster, R. Oliver and N. Blay

Main Features			
Status		Current Landings	
Stock Level		Total commercial catch (2013/14)	163 t
Cockburn Sound	Environmentally Limited	Cockburn Sound	25 t
Peel-Harvey Estuary	Acceptable	Peel-Harvey Estuary	105 t
Fishing Level		Catch by other commercial fisheries	33 t
Cockburn Sound	Acceptable	Total recreational catch	
Peel-Harvey Estuary	Acceptable	West Coast Bioregion (boat-based) (May 13 - Apr 14) 50 – 66 t
		Peel-Harvey Estuary (boat and shore)	
		(Nov 07 - Oct 08)	107 - 193 t

Fishery Description

The blue swimmer crab (*Portunus armatus*) is found along the entire Western Australian coast, in a wide range of inshore and continental shelf areas, from the inter-tidal zone to at least 50 metres in depth. However, the majority of the commercially and recreationally fished stock is concentrated in the coastal embayments between Geographe Bay (in the south) and Port Hedland (in the north).

The commercial blue swimmer crab fisheries within the West Coast Bioregion are the Cockburn Sound Crab Managed Fishery, the Warnbro Sound Crab Managed Fishery, Area 1 (the Swan-Canning Estuary) and Area 2 (the Peel-Harvey Estuary) of the West Coast Estuarine Managed Fishery and Area 1 (Comet Bay) and Area 2 (Mandurah to Bunbury) of the Mandurah to Bunbury Developing Crab Fishery. Originally, commercial crab fishers in WA used set (gill) nets or drop nets, but most have now converted to purposedesigned crab traps. Blue swimmer crabs are occasionally retained as by-product by trawlers operating in the waters from Fremantle to Cape Naturaliste (Zone B of the South West Trawl Managed Fishery). In 2014 the 3 licences held by one operator in Zone D of the South West Trawl Managed Fishery (Comet Bay) were given up to a Voluntary Fishery Adjustment Scheme (VFAS), as the ongoing rise in fishing costs had resulted in this zone becoming uneconomic to fish. There are now no Zone D licence holders operating in this fishery.

Recreational crabbing in the West Coast Bioregion is centred largely on the estuaries and coastal embayments from Geographe Bay north to the Swan River and Cockburn Sound. Blue swimmer crabs represent the most important recreationally fished inshore species in the southwest of WA in terms of participation rate. While the majority of recreational fishers use either drop nets or scoop nets, diving for crabs is becoming increasingly popular.

There are separate reports for crab fisheries in the Gascoyne and North Coast Bioregions.

Governing legislation/fishing authority

West Coast Estuarine Managed Fishery Management Plan 2014

Cockburn Sound Crab Managed Fishery Management Plan
1995

Warnbro Sound (Crab) Managed Fishery Management Plan 1995

South West Trawl Management Plan 1989

Prohibition on Fishing for Crabs (Cockburn Sound) Order 2014

Exceptions to the Fish Traps Prohibition Notice 1994 and Fish Trap Restrictions Notice 1990

Exemptions under Section 7 of the Fish Resources

Management Act 1994

Consultation process

Commercial

The Department undertakes consultation directly with licensees on operational issues and processes and is responsible for the statutory management plan consultation. Industry Annual Management Meetings are convened by the Western Australian Fishing Industry Council (WAFIC), who are also responsible for statutory management plan consultation under a Service Level Agreement with the Department.

Recreational

Consultation processes are now facilitated by Recfishwest under a Service Level Agreement although the Department undertakes direct consultation with the community on specific issues.

Boundaries

The Cockburn Sound Crab Managed Fishery encompasses the inner waters of Cockburn Sound, from South Mole at

Fremantle to Stragglers Rocks, through Mewstone to Carnac Island and Garden Island, along the eastern shore of Garden Island, and back to John Point on the mainland.

The Warnbro Sound Crab Managed Fishery includes Warnbro Sound itself and adjacent waters, extending from Becher Point to John Point.

The West Coast Estuarine Fishery encompasses the waters of the Swan and Canning Rivers (Area 1), the waters of the Peel Inlet and Harvey Estuary, together with the Murray, Serpentine, Harvey and Dandalup Rivers (Area 2) and waters of the Hardy Inlet (Area 3).

The Mandurah to Bunbury Developing Crab Fishery covers the waters south of the Shoalwater Islands Marine Park (32°22′40″ S) to Point McKenna near Bunbury (33°16′ S), and offshore to 115°30′ E. The fishery is further divided into two zones. A single northern zone (Area 1) 80-pot exemption authorises crab fishing in a specified area of Comet Bay between 32°22′40″ S and 32°30′ S. A single southern zone (Area 2) 120-pot exemption authorises crab fishing in the waters between Cape Bouvard and the southern boundary of the fishery. The area separating the two zones (waters between 32°30′ S and Cape Bouvard) is closed to commercial crab fishing.

The Geographe Bay fishery was officially closed on 21 January 2005 to address conflict between the commercial and recreational fishing sectors and commercial fishing in the Leschenault Estuary at Australiand ceased in 2000.

Management arrangements

Commercial access to blue swimmer crab stocks in WA is governed by a series of separate management arrangements provided for under the legislative framework of *the Fish Resources Management Act 1994*. Individual fisheries are managed under an input control system, primarily through the regulation of vessel and trap numbers. Supplementary controls cover retainable species and associated minimum size limits, gear specifications and seasonal and daily time restrictions.

The principal management tool employed to ensure adequate breeding stock in the commercial crab fisheries involves maintaining minimum size limits well above the size at sexual maturity. Blue swimmer crabs become sexually mature below 100 mm carapace width. The legal minimum size range varies between 127 – 130 mm carapace width in the fisheries of the West Coast Bioregion— well above the size at sexual maturity (86-97 mm carapace width depending on the fishery) (West Coast Blue Swimmer Crab Table 1).

Recreational fishing for blue swimmer crabs in Western Australia is managed through a series of input and output controls. As with commercial fishing, the principal management tool employed to sustain an adequate breeding stock involves maintaining minimum size limits well above the size at sexual maturity. A minimum legal size limit of 127 mm carapace width applies in State waters, along with a bag limit of 10 crabs per person or 20 crabs per boat. A Recreational Fishing from Boat Licence was introduced in March 2010 that restricts catch to 20 crabs per powered boat when there are two or more people on-board holding Recreational Fishing from Boat Licences and 10 crabs if there is only one person on-board holding a Recreational

Fishing from Boat Licence regardless of the number of fishers aboard.

Restrictions also govern gear types that can be used to take blue swimmer crabs, along with localised spatial and temporal closures. Management measures were introduced in August 2007 to include a seasonal closure to both commercial and recreational fishers in the Peel-Harvey Estuary for the months of September and October to protect pre-spawning female crabs.

In 2006, the Cockburn Sound Crab Managed Fishery was closed to protect crab stocks that were significantly depleted due to fishing pressures and environmental conditions that resulted in poor recruitment. Commercial fishers were prohibited from taking crabs in all waters of the Cockburn Sound Crab Managed Fishery, while recreational fishers were prohibited from taking crabs south of a line from Woodman Point across to Garden Island. The closure remained in place for the 2006/07, 2007/08 and 2008/09 season.

Following a rebuilding of the Cockburn Sound crab stock, the fishery was re-opened on 15 December 2009. A precautionary management approach has been adopted since re-opening the fishery with several changes being made over the past few years (see previous volumes).

There was slight easing of commercial fishing arrangements for the 2012/13 season, with a decrease in minimum size of females to 130 mm CW (all other season arrangements remained the same as 2011/12 season).

The following management controls were implemented:

- a commercial size limit of 130 mm for male crabs and 130 mm for female crabs;
- a recreational size limit of 127 mm;
- a limited commercial season from 15 December 2012 to 15 June 2013; and
- a limited recreational season from 15 December 2012 to 31 August 2013.

In October 2013, a review of the stock status of the crab stock in the Fishery was conducted. The review highlighted a number of concerns with the crab stock, including a low level of recruitment a decrease in the breeding stock and overall abundance of crabs. In response to these concerns an adaptive management approach was introduced at the start of the 2013/14 season. This management approach involved conducting regular on-board monitoring surveys, as well as collecting monthly catch and effort information from the commercial fishery. An additional review of the data from these surveys was conducted in March 2014 resulting in an early closure to the fishery. Commercial fishers voluntarily ceased fishing on 16 April 2014 and a closure to recreational fishing was implemented on 14 May 2014.

Research summary

Data for the assessment of blue swimmer crab stocks in the West Coast Bioregion are obtained from a variety of sources. Commercial catch and effort is assessed using fishers' compulsory monthly catch and effort returns and data from on-board catch monitoring conducted by the Department of Fisheries' research staff in each of the West Coast Bioregion's commercial crab fisheries provides information on stock size structure and sex ratios.

In addition, fishery-independent direct surveys generating recruit (0+ year), residual (1+) and breeding stock indices, along with data on the general crab population, have been conducted in Cockburn Sound for approximately 12 years and in the Peel-Harvey for 7 years. The biological indices of abundance have been used in the stock assessment and management of the Cockburn Sound Crab Managed Fishery for many years. An internal review of the egg production index and the subsequent stock-recruitment-environment relationship is currently underway. In addition, biological parameters such as growth and maturity are under review, and an integrated model will be developed in the future to incorporate the abundance indices along with biological information.

Biological indices of abundance for recruit (catch rate of juveniles as defined by size at maturity males <87.1 mm CW and females <86.9 mm CW) and breeding stock (catch rate of sexually mature females) are being developed for the Peel-Harvey crab fishery for the future stock assessment of this fishery.

Following the closure of the Cockburn Sound Crab Managed Fishery in December 2006, research funding (from the Development and Better Interest Fund) was granted to assess the reasons for the stock collapse and monitor the recovery of the fishery. The causes of the collapse and description of the recovery have been described in the scientific paper (Johnston et al., 2011a). The stock status of the Cockburn Sound crab fishery, a description of the stock-recruitmentenvironment relationship for the Cockburn Sound crab stock, and a summary of the crab fisheries in Warnbro Sound and the Swan River have been presented (Johnston et al., 2011b). Reports on the population status of the Peel-Harvey Estuary crab stock, and the 2007/08 recreational crabbing survey in the Peel-Harvey Estuary, have been finalised (Johnston et al., 2014). The latest summary of the stock status, current research and stock assessment analyses of crab fisheries in the Swan River, Cockburn Sound, Peel-Harvey, Warnbro Sound, Mandurah-Bunbury and Comet Bay is presented in stock assessment reports generated for the Marine Stewardship Council pre-assessment process. The Peel-Harvey crab fishery is currently undergoing full MSC assessment.

A new 3-year project funded through the Recreational Fishing Initiatives Fund commenced in July 2013 to obtain data on recreational catch and effort and crab stocks in the important recreational fisheries of Swan-Canning River, Geographe Bay and Leschenault Estuary. This project incorporates a logbook program for recreational fishers in each area and through fishery-independent surveys is investigating recruitment and breeding stock in the three areas.

Retained Species

Commercial landings (season 2013/14):

Total 163 tonnes

Cockburn Sound 25 tonnes

Peel-Harvey Estuary 105 tonnes

Other west coast commercial fisheries 33 tonnes

The total commercial catch from the West Coast Bioregion in 2013/14 was 163 t, representing a 25% decrease on the 215 t taken in 2012/13. This decrease was primarily due to significant decreases in crab catch from Cockburn Sound and the Mandurah to Bunbury Developing Crab Fishery (Area 1 and Area 2). The West Coast catch accounted for 29% of the state commercial blue swimmer crab catch of 552 t for 2013/14 (West Coast Blue Swimmer Crab Figure 1).

The commercial catch from the Cockburn Sound Crab Managed Fishery for 2013/14 was 25 t, a 59% decrease from the 62 t caught during the 2012/13 season (West Coast Blue Swimmer Crab Figure 2).

The commercial catch from the Peel-Harvey Estuary (Area 2 of the West Coast Estuarine Managed Fishery) for 2013/14 was 105 t. This represents a 2% increase on the 102 t landed in 2012/13 and is the highest catch recorded since the conversion to crab traps (West Coast Blue Swimmer Crab Figure 3).

The Mandurah to Bunbury Developing Crab Fishery (Area 1 and Area 2) reported a total annual catch for 2013/14 of 6 t, representing an 60% decrease on the 15 t reported for the 2012/13 (West Coast Blue Swimmer Crab Figure 4). The trap fishery accounted for 5.3 t thus providing the majority of the Mandurah-Bunbury catch with only 0.8 t being taken by the South West Trawl Fishery.

Recreational catch estimate:

West Coast Bioregion (boat-based)

(May 13 - Apr 14) 50 - 66 tonnes

Peel-Harvey Estuary (boat and shore)

(Nov 07 - Oct 08) 107 - 193 tonnes

Most of the recreational blue swimmer crab fishing in Western Australia occurs in the West Coast Bioregion, with 88% of the recreational crab catch reported in a statewide survey of boat-based recreational fishing in 2013/14 coming from this area (Ryan *et al.* 2015¹). The survey was conducted between 1 May 2013 and 30 April 2014. Approximately 3,000 fishers from the "Recreational Fishing from Boat" licence database participated in a 12 month phone-diary survey. Catch data were recorded in numbers of crabs, and have been converted to weight for this report using a mean statewide estimate of 254 g/crab (based on 346 crabs weighed during boat ramp surveys). The statewide boat-based recreational estimate of retained blue swimmer crabs for the 12-month period was 72 t (S.E.±4.8 t). The boat-based estimate for the West Coast Bioregion was 50 - 66 t.

A 12-month recreational catch and effort survey in the Peel-Harvey Estuary was completed in October 2008. This survey covered fishing from boats, shore, canals, and houseboats. Recreational catch for the Peel-Harvey Estuary from November 2007 to October 2008 was estimated to be between 107-193 t, compared to the recreational catch

¹ Ryan, K.L., Hall, N.G., Lai, E.K., Smallwood, C.B., Taylor, S.M., Wise, B.S. 2015. State-wide survey of boat-based recreational fishing in Western Australia 2013/14. Fisheries Research Report No. 268, Department of Fisheries, Western Australia. 208pp.

estimate of 251-377 t from the last survey undertaken in 1998/99 (Lai *et al.* In, Johnston *et al.*, 2014¹).

Within Cockburn Sound, recreational crabbing surveys in 1996/97 and 2001/02, and in the 2002, 2003 and 2004 calendar years, produced relatively consistent recreational catch estimates of 24 t, 25 t, 18 t, 23 t and 18 t respectively (Sumner and Williamson 1999²; Sumner and Malseed 2004³; Bellchambers *et al.* 2005⁴). However, the recreational catch for the 2005/06 financial year was estimated to be just 4 t (Sumner and Lai 2012⁵). It should be noted that these figures are likely to under-estimate the total recreational blue swimmer crab catch in each of these years, as the surveys commenced at various times between 7am and 9am and finished between 4pm and 8pm so missed any crabbing activity that potentially occurred before or after the survey began or finished.

The portion of Cockburn Sound south of a line drawn between Woodman Point and the northern end of Garden Island was closed to recreational crabbing in 2006 to protect crab stocks that were significantly depleted due to fishing pressures and environmental conditions that resulted in poor recruitment. The whole of Cockburn Sound was re-opened to commercial and recreational crabbing for the 2009/10 season from 15 December 2009 to 31 March 2010. A survey quantifying recreational catch and effort in the West Coast Bioregion was conducted over a two-year period between July 2008 and June 2010. The survey provided a recreational catch estimate for the 3½ months of the 2009/10 season of 15.4 t (S.E.±3.3 t) of blue swimmer crabs, for an area covering Cockburn Sound (south of latitude 32°05'S), Shoalwater Bay and the northern half of Warnbro Sound (north of latitude 32°20'S). However, the survey covered only the period during the day between 9am and 5pm. As there is a significant level of early morning recreational crabbing in Cockburn and Warnbro Sounds, an additional survey was conducted between 5.30 am and 9am during the 2009/10 crabbing season. This survey provided an additional recreational catch estimate for this area of 18.8 t (S.E.±5.5 t) of blue swimmer crabs for the 31/2 months of the 2009/10 season resulting in a total recreational catch estimate of 34 t. All of Cockburn Sound was again re-opened to recreational crabbing for the 2010/11 season from 15 December 2010 to 30 April 2011.

A 12-month survey of recreational fishing in the Swan-Canning Estuary Basin between August 1998 and July 1999 estimated the total annual boat-based recreational fishing effort as 22,265 fisher days, with 44% of this effort targeting blue swimmer crabs (Sumner and Malseed 2001⁶). The total annual shore-based recreational fishing effort was estimated to be 8,073 fisher days, with only 9% of this effort targeting blue swimmer crabs. The estimated total recreational blue swimmer crab catch between August 1998 and July 1999 was 7.3 t, which compares with a commercial catch during the 1998/99 financial year of 24 t. In subsequent years, commercial catches have ranged between 10 t and 20 t, but no further recreational surveys have been undertaken specifically in the Swan-Canning Estuary.

Both the Leschenault Inlet and Geographe Bay are now exclusively for recreational use. Previous surveys have found the annual recreational blue swimmer crab catch from Geographe Bay to be between 7 - 11 t per year.

Fishing effort/access level

Commercial fishers in Cockburn Sound reported a total of 38,602 trap lifts for the 2013/14 season, a 51% decrease on the 78,515 trap lifts during the 2012/13 season (West Coast Blue Swimmer Crab Figure 2). In response to concerns over the stocks within the Cockburn Sound fishery commercial fishers voluntarily ceased fishing on 16 April 2014 and a closure to recreational fishing was implemented on 1 May.

Commercial fishers in the Peel-Harvey Estuary reported 72,229 trap lifts during the 2013/14 season – representing a 5% increase on the 68,646 trap lifts in the previous year and the second highest on record (West Coast Blue Swimmer Crab Figure 3).

Commercial effort in Area 1 and Area 2 of the Mandurah to Bunbury Developing Crab Fishery decreased by a further 48% in 2013/14, with a total of 8,960 trap lifts reported compared to 17,178 trap lifts the previous year (West Coast Blue Swimmer Crab Figure 5), primarily due to the decrease in fishing effort in Comet Bay.

Stock Assessment

Assessment complete: Yes

Assessment method and level:

Cockburn Sound

Level 4 - Direct survey

Peel-Harvey

Level 2 - Catch rate

Other West Coast fisheries

Level 2 - Catch rate

Breeding stock levels:

Cockburn Sound Environmentally limited
Peel-Harvey Adequate

Other West Coast fisheries Adequate

Catch rates from fisheries within the West Coast Bioregion generally provide an index of abundance that can be used to assess individual fishery performance from year-to-year. In addition, direct surveys generating recruit, residual and breeding stock indices, along with data on the general crab population, have been conducted in Cockburn Sound for

¹Johnston, D., Chandrapavan, A., Wise, B. and Caputi N. 2014. Assessment of blue swimmer crab recruitment and breeding stock levels in the Peel-Harvey Estuary and status of the Mandurah to Bunbury developing crab fishery. Fisheries Research Report No. 258.

² Sumner , N.R. and Williamson, P.C. 1999. A 12-month survey of coastal recreational boat fishing between Augusta and Kalbarri on the west coast of Western Australia during 1996-97. Fisheries Research Report No. 117. Department of Fisheries, Western Australia. 52 pp.

³ Sumner, N. R. and Malseed, B. E. 2004. Quantification of changes in recreational catch and effort on blue swimmer crabs in Cockburn Sound and Geographe Bay. Final Report on FRDC Project No. 2001/067. Fisheries Research Report No. 147. Department of Fisheries, Western Australia.

⁴ Bellchambers, L., Sumner, N. and Melville-Smith, R. 2005. Development of stock allocation and assessment techniques in Western Australia blue swimmer crab fisheries. Final Report to the Fisheries Research and Development Corporation on Project No. 2001/068. Department of Fisheries. Western Australia. 205 pp.

⁵ Sumner, N. and Lai, E. (2012). Boat-based Recreational Fishing Catch and Effort in Cockburn Sound and Owen Anchorage during 1996/97, 2001/02 and 2005/06. Fisheries Research Contract Report No. 23. Department of Fisheries, Western Australia. 16p.

⁶ Sumner, N. R. and Malseed, B. E. 2001. A 12-month survey of recreational fishing in the Peel-Harvey Estuary of Western Australia during 1998-99. Fisheries Research Report No. 127. Department of Fisheries, Western Australia. 52p.

approximately twelve years and in the Peel-Harvey for seven years.

Cockburn Sound: Historically, natural variations in stock abundance have resulted in large fluctuations in the annual commercial blue swimmer crab catch from Cockburn Sound. This fluctuation relates largely to variable recruitment dependent on environmental conditions, although the shift by commercial fishers from set nets to crab traps in the mid-1990s initiated a marked increase in effective effort and mean annual crab landings.

Adequate protection of the breeding stock of blue swimmer crabs in Cockburn Sound had been assumed to occur if the minimum legal size was set well above the size at sexual maturity, which would allow female crabs to spawn at least once before entering the fishery. While this is a common strategy for this species, a combination of biological, environmental and fishery-dependent factors contributed to the collapse in 2006 and include: 1) vulnerability to environmental fluctuations as this species is at the southern extreme of its temperature tolerance, 2) a life cycle contained within an embayment and is self-recruiting, 3) a change in fishing method from gillnets to traps which increased fishing pressure on pre-spawning females in winter and reduced egg production to one age class, 4) four consecutive years of cooler water temperatures during winter/spring resulting in poor recruitment and 5) continued high fishing pressure during years of low recruitment resulting in low breeding stock.

Fishery-independent trawl and commercial monitoring surveys conducted during 2009 suggested the strength of both recruitment and breeding stock in Cockburn Sound had improved sufficiently to partially re-open the crab fishery for the 2009/10 fishing season and the following seasons were fished under a conservative management regime of a 20 % trap reduction to 640 traps, restricted season length and temporary increase in minimum size to 140 mm CW.

The juvenile abundance (0+) in 2013 was very low despite the egg production being at a reasonable level indicating that environmental conditions may have been the main reason for the low juvenile abundance. The residual abundance (1+) was also high in 2013 as a result of conservative management in recent years. The low juvenile abundance was confirmed with a catch rate in 2013/14 that was considerably lower than the previous year's catch rate, and resulted in the early closure of the fishery on 16 April 2014 for the commercial sector and 14 May 2014 for the recreational sector.

Nominal CPUE at the beginning of the 2013/14 season ranged between 0.7 and 0.8 kg/traplift from December to February and decreased to 0.5 kg/traplift in April and May. These low values of monthly CPUE were similar to those observed in the years immediately preceding the closure of this fishery in 2005 and 2006 indicating that stock levels were very low and similar to those in 2005 and 2006. The overall nominal catch rate for 2013/14 was 0.7 kg/traplift for this fishery.

A preliminary harvest strategy has been determined for the Cockburn Sound Crab Fishery where the primary performance indicators are the juvenile index and egg production index. A weight of evidence approach is used for the stock assessment where the indices, in addition to commercial catch rates and the proportion of females in the

commercial catch, are taken into account to assess stock status.

Juvenile index: Based on the juvenile (0+) catches sampled in research trawls, the recruitment of juvenile crabs within Cockburn Sound in 2013 was very low and below the limit of 0.4 juveniles/1000m² trawled. The juvenile index for 2014 of 0.02 juveniles/1000m² trawled was also below the limit and considerably lower than the past seven years (2007-2013), and lower than the level observed when the fishery was closed in 2006 (West Coast Blue Swimmer Crab Figure 6).

Egg Production index: The egg production (breeding stock) index during 2012/13 was just below the threshold of 1.3. A review was triggered and as the juvenile index was below the limit for 2013, an adaptive management approach was taken during the 2013/14 season and stocks were monitored very closely. The egg production index of 0.4 for 2013/14 was well below the limit of 0.9 and similar to the low levels (0.3) that resulted in recruitment failure in 2004/05. The very low levels of juvenile abundance observed in 2014, confirmed that the spawning potential of the breeding stock in the latter half of 2013 and early 2014 may have been impaired and were at very low levels (West Coast Blue Swimmer Crab Figure 7).

As the juvenile and egg production indices were well below the limit and the commercial catch rate dropped to 0.5 kg/traplift in March-April, with a high proportion of females in the catch, the fishery was closed early to both commercial (15 April) and recreational (14 May) sectors in 2014. The stock is currently at unsustainable levels and considered to be environmentally limited. Reasons for the stock decline are currently being investigated, including potential changes in growth rates and the proportion of berried females.

The total number of sexually mature females (>87 mm CW) observed during commercial monitoring surveys between September 2012 and January 2013 and on the Research Vessel Naturaliste survey (October - December 2013) were within historical range. However, the proportion of berried females observed during commercial monitoring surveys between September 2012 and January 2013 was low compared with historical surveys, and at its lowest level (31%) for Naturaliste surveys undertaken between October and December since sampling began in 2007. Significantly, the cohort with the lowest relative numbers of berried females was just above size at maturity (>87 mm CW) which would be spawning for the first time. Scaling the nominal egg production index using the proportion of berried females generated a substantially lower effective egg production index in 2012/13, which was consistent with the very low subsequent recruitment observed in 2013. The very low proportion of berried females in 2013/14 also contributed to the low recruitment in 2014. The cause of low proportion of berried females is being investigated, particularly the effect of the lack growth to legal-size observed in the previous

Peel Harvey: Annual commercial catches of blue swimmer crabs in the PHEF since 2000/01 have fluctuated between 45 t from 895 fisher days in 2002/03 and 105 t from 1717 fisher days in 2013/14. Crab catches have remained high in recent years, with 2013/14 reporting the highest recorded catch since the conversion to crab traps in 2000/01 (West Coast Blue Swimmer Crab Figure 3).

Since this complete gear conversion from nets to traps in 2000/01, annual commercial catch rates have fluctuated between 0.8 and 1.5 kg/trap lift, but have generally remained above 1 kg/trap lift. The nominal annual catch rate for 2013/14 in the Peel-Harvey Estuary was 1.45 kg/trap lift (West Coast Blue Swimmer Crab Figure 3). This catch rate is slightly lower than the 2012/13 and 2011/12 catch rate of 1.49 and 1.54 kg/traplift, respectively, which represented the highest catch rates since the fishery converted to crab traps.

A recreational survey conducted in the Peel-Harvey Estuary during 2007/08 estimated that the recreational take accounted for approximately 60 % of the total catch therefore the trends in the recreational fishery can affect the stock status. This highlights the importance of having fishery-independent surveys to complement the commercial logbook and monitoring data.

A preliminary harvest strategy has been determined for the Peel-Harvey Crab Fishery where the primary performance indicator is standardised annual catch rate (taking into account factors of year, month and vessel) (West Coast Blue Swimmer Crab Figure 8). The reference period is between 2000/01 and 2011/12 as defined by when the fishery became trap only. As there is a season for this fishery the harvest strategy is based on fishing season (1 November – 31 August). The standardised catch rate of 1.2 kg/traplift for the 2013/14 fishing season was well above the threshold of 0.7 kg/traplift, so currently the risk to sustainability is low. Fishery-independent indices for recruitment and breeding stock are currently being investigated for this fishery, given its assessment for Marine Stewardship Certification.

Mandurah to Bunbury: Mean annual trap catch rates (kg/traplift) in Area 1 and Area 2 of the Mandurah to Bunbury Developing Crab Fishery have increased steadily since the commencement of exploratory fishing along the coast south of Mandurah to Bunbury in 2002. This increase reflects more efficient fishing of the region as the commercial operators' knowledge of the spatial and temporal distribution of resident stocks and localized environmental influences increased over time. The catch rate did decrease in 2010/11 but has remained relatively steady since, with a mean catch rate for 2013/14 of 0.59 kg/trap lift – a 26% decrease on the 2012/13 catch rate of 0.79 kg/trap lift (West Coast Blue Swimmer Crab Figure 5).

Monthly monitoring surveys conducted aboard commercial vessels in the Mandurah to Bunbury fishery have indicated a high percentage of female crabs in the catch from this fishery, especially during the peak period of commercial fishing from April to August, however the level of fishing is relatively low on this stock. This will need to be closely monitored to ensure overfishing the breeding stock does not occur.

A preliminary harvest strategy has been determined for Area 1 and Area 2 of the Mandurah to Bunbury Developing Crab Fishery where the primary performance indicator is nominal annual catch rate. The reference period for Area 1 Comet Bay is between 2005/06 and 2011/12 as defined by when the developing fishery status commenced and the operator commenced fishing. The reference period for Area 2 Mandurah-Bunbury is between 2004/05 and 2011/12 as defined by when the developing fishery status commenced and the operator commenced fishing. The harvest strategy is based on financial year. Nominal catch rate in 2013/14 for Comet Bay was above the threshold of 0.5 kg/traplift so

stocks were considered sustainable for that year. Nominal catch rate in 2013/14 for Mandurah-Bunbury fell below the limit of 0.7 kg/traplift, so currently the risk to sustainability is high. This fishery is currently under review and has not been fished during 2014/15. The review also includes the adjacent stocks in Comet Bay and Warnbro Sound.

Non-Retained Species

Bycatch species impact:

Negligible

The shift from using set nets to traps in most blue swimmer crab fisheries has resulted in a substantial reduction in bycatch from dedicated crab fishing. Pots are purposedesigned to minimise the capture of non-target species and are therefore an inefficient way to capture fish, the majority of which are able to escape through the entrance gaps when the pot is soaking or being hauled.

Small numbers of fish are infrequently captured in crab pots, but the fishers are not permitted to retain them. The low number of fish caught and returned by crab fishers is considered to pose a negligible risk to these stocks.

Discarded bycatch from trawl fisheries taking crabs as a byproduct is dealt with in the status reports that are specific to each trawl fishery.

Listed species interaction:

Negligible

The crab trap longline system used in the targeted crab fisheries has little possibility of interacting with listed species. The fishery is conducted in a manner that avoids mortality of, or injuries to, endangered, threatened or protected species and avoids or minimises impacts on threatened ecological communities.

Ecosystem Effects

Food chain effects:

Low

As the commercial take of crabs represents a relatively small portion of the biomass, which is effectively renewed annually and subject to high levels of natural variation in abundance, secondary food chain effects are likely to be minimal in these fisheries.

Habitat effects:

Negligible

Fishing with traps results in limited habitat disturbance, with only minor dragging of traps on the bottom occurring during trap retrieval. Sand and associated biota do not get brought to the surface in commercial blue swimmer crab traps, as the mesh used on traps is sufficiently large to allow the escape of any sand-dwelling macro-benthos.

Although seagrasses are occasionally brought to the surface with the trap, the infrequent nature of this occurrence, and the small amount of living seagrass removed, results in minimal habitat damage.

There may however be some impacts of wading on near shore habitats by the action of scoop netting recreational fishers in the Peel-Harvey Estuary.

Social Effects

During 2013/14, approximately 28 people were employed as skippers and crew on vessels targeting blue swimmer crabs in the West Coast Bioregion.

Blue swimmer crabs also provide a highly popular recreational fishery, particularly in the Swan River, Cockburn Sound, Warnbro Sound, the Peel-Harvey Estuary and the Geographe Bay region, where they dominate the inshore recreational catch.

Economic Effects

Estimated annual value (to fishers) for year

2013/14:

Level 1 - < \$1 million

The commercial blue swimmer crab catch in the West Coast Bioregion for 2013/14 was valued at approximately \$0.85 million, a decrease on the \$2 million generated in 2012/13. Most of the catch from the West Coast Bioregion was sold through local markets. Price data was generated by collecting monthly returns recording prices paid to fishers by fish processors, a weighted average price is then calculated for the financial year from the monthly data collected. Calculations for 2013/14 were set at \$5.24 per kg for blue swimmer crabs in Western Australia.

The economic value of the total commercial blue swimmer crab catch for the State of Western Australia for the 2013/14 financial year was estimated to be \$2.9 million – a 13% increase on the estimated \$2.56 million generated in 2012/13.

Fishery Governance

Current fishing level

Cockburn Sound: Under review

Peel Harvey: 45 - 105 tonnes

Other West Coast fisheries: Under review

A catch range for Cockburn Sound crabs will need to be developed when the management arrangements and stock levels have stabilised. The acceptable catch range for Peel Harvey is now determined to be within the last 10 years of catch values. The other west coast crab fisheries are yet to develop a sufficiently stable catch history or set of management arrangements to develop a definitive catch range.

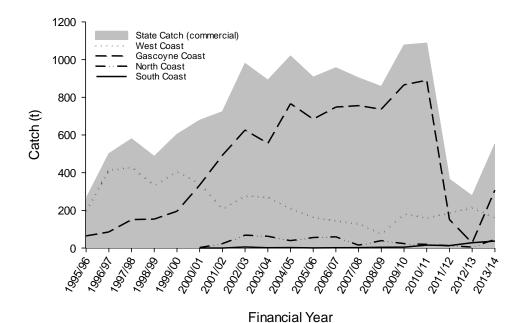
New management initiatives (2014/15)

On 1 July 2014, the West Coast Estuarine Fishery transitioned from an interim managed fishery to a managed fishery under the new *West Coast Estuarine Managed Fishery Management Plan 2014*. The new management plan increases the scope of the Fishery to incorporate Hardy Inlet and the sole fisher into the managed fishery. The licence holder in the Hardy Inlet has previously operated under an exemption to the Closed Waters Professional Netting (Rivers, Estuaries, Inlets and Lakes South of 23°) and has not operated in the West Coast Estuarine Interim Fishery. The new management plan formalises fishery management

arrangements and strengthens access rights for licence holders in the Fishery.

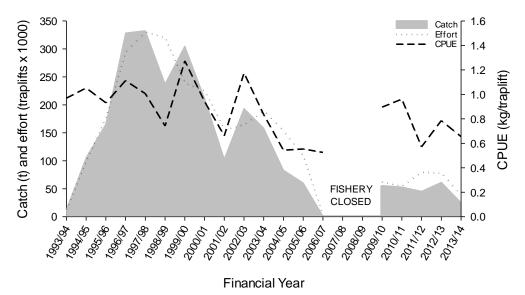
In response to concerns over the stock within the Cockburn Sound Crab Managed Fishery commercial fishers voluntarily ceased fishing on 16 April 2014 and a closure to recreational fishing was implemented on 14 May 2014. Noting that the stock is still at low levels, the closure remains in place for both the commercial and recreational sector.

On account of increasing blue swimmer crab catches by fishers operating in the South Coast Estuarine Managed Fishery, the Wilson and Irwin Inlet Crab Pot Trial commenced on 18 February 2015 by exemption, and allows the commercial take of blue swimmer crabs by nominated South Coast Estuarine Managed Fishery licence holders. Eight fishers have been authorised to use a restricted number of crab traps in a two year trial. A combined total of 199 traps has been authorised to be deployed across Wilson and Irwin Inlets, although in practice less than this number may be deployed at any one time. The trial seeks to test alternative methods of catching blue swimmer crabs, to determine if fishers can more efficiently target the species, resulting in better catch-care, improved market prices and reduced bycatch of finfish species. The Department is monitoring the catch rates of blue swimmer crabs through the trial, with fishers required to fill in log-books for research purposes. The exemption period extends until 28 February 2017, with a 12 month review scheduled within this time frame.

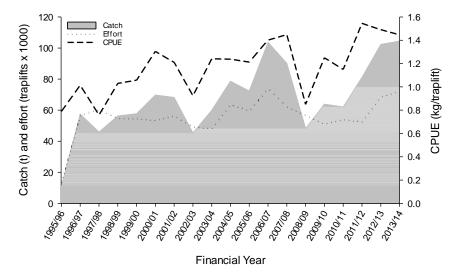

External Factors

Levels of recruitment to many of the crab fisheries fluctuate considerably. While the causes of these variations are not fully understood, it is considered most likely due to environmental influences (e.g. water temperature) both on spawning success and larval survival through to recruitment. The relationship between environmental factors, recruitment and catch is being further evaluated as data becomes available. The climate change implications associated with these environmental variables are also under consideration. The effect of the heat wave in the summer of 2010/11 and above average water temperatures on the following two summers on the spawning and juvenile phase of the crabs will be investigated for Cockburn Sound (and adjacent coastal areas), as well as the cause of the low proportion of berried females in the 2012/13. These temperature changes have also resulted in the increased abundance of crabs in the South Coast estuaries. Blue swimmer crabs were rated a high risk to climate change due to their sensitivity to water temperature changes.

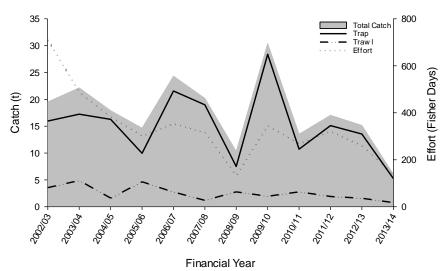
WEST COAST BLUE SWIMMER CRAB TABLE 1


Minimum legal size (carapace width) for the West Coast Bioregion blue swimmer crab fisheries.

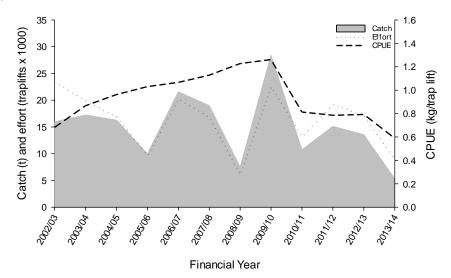
West Coast Bioregion Fishery	Minimum Legal Carapace Width
Area 1 of West Coast Estuarine Fishery (Swan-Canning Estuary)	127 mm
Area 2 of the West Coast Estuarine Fishery (Peel-Harvey Estuary)	127 mm
Cockburn Sound (Crab) Managed Fishery	130 mm
Warnbro Sound (Crab) Managed Fishery	127 mm
Mandurah to Bunbury Developing Crab Fishery (Area 1 - Comet Bay; Area 2 - Mandurah to Bunbury)	128 mm


WEST COAST BLUE SWIMMER CRAB FIGURE 1

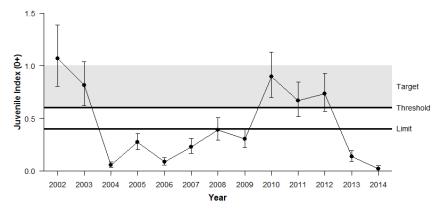
State and bior


WEST COAST BLUE SWIMMER CRAB FIGURE 2

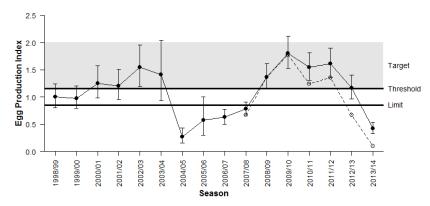
Blue swimmer crab catch (t), effort (traplifts x 1000) and catch per unit effort (kg/traplift) in the Cockburn Sound (Crab) Managed Fishery using crab traps since 1993/94.


WEST COAST BLUE SWIMMER CRAB FIGURE 3

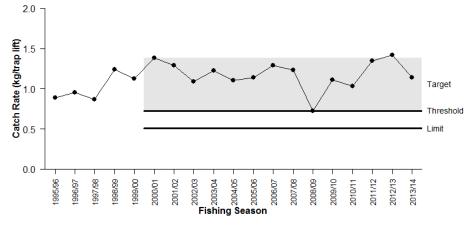
Blue swimmer crab catch (t). effort (traplifts x 1000) and catch per unit effort (kg/traplift) in Area 2 of the West Coast Estuarine Managed Fishery (Pe


WEST COAST BLUE SWIMMER CRAB FIGURE 4

Blue swimmer crab total commercial catch (t), distinguishing between trap and trawl methods and total effort (fisher days) in Area 1 and Area 2 of


WEST COAST BLUE SWIMMER CRAB FIGURE 5

Blue swimmer crab trap catch (t), effort (traplifts x 1000) and catch per unit effort (kg/traplift) in Area 1 and Area 2 of the Mandurah to Bunbury Developing Crab Fishery since 2002/03.


WEST COAST BLUE SWIMMER CRAB FIGURE 6

Annual standardised index of juvenile (0+) blue swimmer crabs in Cockburn Sound calculated using data from juvenile research trawl conducted in April, May and June of each year. The index units are numbers of juveniles/1000m² trawled. The associated reference points (target, threshold and limit) for the preliminary harvest strategy and the 95% confidence intervals are shown.

WEST COAST BLUE SWIMMER CRAB FIGURE 7

Annual standardised breeding stock (egg production) index based on female crabs caught during all trawl surveys aboard the *RV Naturaliste* (2001-2014) and all catch monitoring surveys aboard commercial crab vessels in Cockburn Sound (1998/99-2013/14). This nominal Egg Production Index (EPI) is based on a size-fecundity relationship which assumes all sexually mature females will contribute to egg production (berried). Effective egg production index (dotted line) was obtained by scaling the nominal egg production index by the proportion of berried females relative to a reference year (2008/09 when the proportion of berried was at a maximum of 55%) for years berried data was available. The associated reference points (target, threshold and limit) for the preliminary harvest strategy and the 95% confidence intervals are shown.

WEST COAST BLUE SWIMMER CRAB FIGURE 8

Annual standardised commercial catch rate (kg/traplift) of blue swimmer crabs in the Peel-Harvey crab fishery relative to the associated reference points (target, threshold and limit) for the preliminary harvest strategy. The reference period is from 2000/01 to 2011/12; defined as the period where the fishery was operating with traps only and during which time the threshold (lowest historical catch rate), limit (20% below the lowest catch rate) and target (range between the threshold and highest historical catch rate) were set . Fishing season is defined as 1 November to 31 August.

West Coast Nearshore and Estuarine Finfish Resources Status Report

K. Smith, A. Quinn and M. Holtz

Main Features			
Status		Current Landings (2014)	
Stock level:		Commercial total	377 t (finfish only)
Australian herring	Inadequate	South West Coast Salmon Fishery	60 t (salmon only)
Southern school whiting	Adequate	West Coast Beach Bait & South West	Beach Seine Fisheries 63 t (whitebait only)
Tailor	Adequate	West Coast Estuarine Fishery	145 t (finfish only)
Southern garfish	Inadequate	Other commercial	108 t (finfish only)
King George whiting	Adequate	Boat-based recreational catch range To	(2013/14) op 10 species 69 - 87 t
Sea mullet	Adequate		
Whitebait	Environmentally Limited		
Black bream (Swan-Canning)	Adequate		
Cobbler (Peel-Harvey)	Adequate		
Fishing level:			
Australian herring	Unacceptable		
Whitebait	Unacceptable		
Garfish (Cockburn Sound)	Unacceptable		
Other stocks	Acceptable		

Fishery Description

Commercial - Nearshore

Commercial fishers target a large number of finfish species in nearshore waters of the West Coast Bioregion (WCB) using a combination of gill nets and beach seine nets.

The Cockburn Sound (Fish Net) Managed Fishery uses haul nets in Cockburn Sound. The main target species are southern garfish (*Hyporhamphus melanochir*) and Australian herring (*Arripis georgianus*).

The South West Coast Salmon Managed Fishery operates on various beaches south of the metropolitan area. This fishery uses beach seine nets, to take western Australian salmon (*Arripis truttaceus*).

The West Coast Beach Bait Managed Fishery operates on various beaches from Moore River (north of Perth) to Tim's Thicket (south of Mandurah). The South West Beach Seine Fishery operates on various beaches from Tim's Thicket southwards to Port Geographe Bay Marina. These seine net fisheries both target whitebait (*Hyperlophus vittatus*), but blue sprat (*Spratelloides robustus*), sea mullet (*Mugil cephalus*), yellowfin whiting (*Sillago schomburgkii*),

southern garfish and yelloweye mullet (*Aldrichetta forsteri*) are also taken in small quantities.

A number of commercial beach net fishers currently operate outside the metropolitan area under an Exemption that allows them to fish in the waters of the West Coast Demersal Scalefish (Interim) Managed Fishery. These fishers mainly use beach seine nets to target sea mullet Australian herring, yellowfin whiting and southern garfish.

Commercial - Estuarine

The West Coast Estuarine Managed Fishery (WCEF) operates in the Swan/Canning and Peel/Harvey estuaries, and in the Hardy Inlet. It is a multi-species fishery targeting blue swimmer crabs (*Portunus armatus*) and numerous finfish species. The blue swimmer crab component of the fishery is reported in the West Coast Blue Swimmer Crab Fishery status report. The finfish component is described in this report. The methods used by commercial fishers to target finfish in WCB estuaries are gill nets and seine nets.

Seven operators have a condition on their Fishing Boat Licence to operate in the Vasse/Wonnerup Estuary and Toby Inlet. The latter estuary system is only occasionally fished, yielding small quantities of sea mullet. These estuaries are not included in the WCEF management plan.

Recreational

Most finfish caught recreationally in WCB estuaries and nearshore waters are taken by shore or boat-based line fishing. The most commonly targeted recreational species include Australian herring, tailor (*Pomatomus saltatrix*), southern school whiting (*Sillago bassensis*), southern garfish, silver trevally (*Pseudocaranx* sp.) and black bream (*Acanthopagrus butcheri*) (estuaries only).

A relatively small amount of recreational net fishing occurs in the WCB, mainly to target sea mullet.

Governing legislation/fishing authority

Commercial

West Coast Estuarine Fishery Management Plan 2014

West Coast Estuarine Managed Fishery Permit

Cockburn Sound (Fish Net) Management Plan 1995

Cockburn Sound Fish Net Managed Fishery Licence

Cockburn Sound (Line and Pot) Management Plan 1995

West Coast Demersal Scalefish Fishery (Interim) Management Plan 2007

West Coast Demersal Scalefish (Interim) Managed Fishery Permit

West Coast (Beach Bait Fish Net) Management Plan 1995

West Coast (Beach Bait Fish Net) Managed Fishery Licence

South-West Coast Salmon Fishery Management Plan 1982

South-West Coast Salmon Managed Fishery Licence

Proclaimed Fishing Zone Notice (South-West Coast) 1975

Salmon Block Net Prohibition Notice 1996

Closed waters and Permitted Gear Orders under Section 43 of the Fish Resources Management Act 1994

Condition 19 on a Fishing Boat Licence

Condition 65 and 66 on a Fishing Boat Licence

Condition 68 on a Fishing Boat Licence

Condition 84 on a Fishing Boat Licence

Condition 17 on a Commercial Fishing Licence

Salmon and Snapper Purse Seining Prohibition Notice 1987

Directions to Licensing Officers

Recreational

Fish Resources Management Act 1994; Fish Resources Management Regulations 1995 and other subsidiary legislation

Recreational Net Fishing Licence

Recreational Fishing from Boat Licence

Consultation processes

Commercial

The Department undertakes consultation directly with licensees on operational issues. Industry Annual Management Meetings are convened by the West Australian Fishing

Industry Council (WAFIC), who are also responsible for statutory management plan consultation under a Service Level Agreement with the Department.

Recreational

Consultation processes are now facilitated by Recfishwest under a Service Level Agreement with the Department, although the Department undertakes direct consultation with the community on specific issues.

Boundaries

Commercial - Estuarine

WCEF: The management plan encompasses all estuaries in the WCB between 27° S and 34° 22.715′ S. Complex closures exist for both the Swan/Canning and Peel/Harvey commercial fisheries (refer to management plans, related legislation and regulations). Waters of Hardy Inlet and the Blackwood River are open to commercial fishing upstream from a line connecting Point Irwin to the Irwin Street boat ramp to a line drawn across the river from the eastern boundary of Sussex Location 133 (approximately Great North Road).

Leschenault Estuary is closed to commercial fishing. The waters of the Vasse/Wonnerup Estuary and Toby's Inlet and all estuaries and canals located in between are open to commercial fishing.

Commercial - Nearshore

Cockburn Sound (Fish Net) Managed Fishery and Cockburn Sound (Line & Pot) Managed Fishery operates within Cockburn Sound.

West Coast Beach Bait Managed Fishery covers WA waters from Moore River (north of Perth) to Tim's Thicket (south of Mandurah).

South West Beach Seine Fishery covers WA waters from Tim's Thicket south to Port Geographe marina.

South-West Coast Salmon Managed Fishery includes all WA waters north of Cape Beaufort except Geographe Bay.

Recreational

Recreational line fishing is permitted in most areas within estuaries and nearshore waters of the WCB. Some spatial closures exist, including closures in marine reserves and around industrial structures.

A small number of areas within estuaries and nearshore waters of the WCB are open to recreational netting. Recreational net fishers must hold a licence. Recreational net fishing regulations are complex – refer to the 'Recreational Net Fishing Guide¹' for details.

Management arrangements

Commercial

The WCB nearshore and estuarine commercial fisheries are managed primarily through input controls in the form of limited entry and gear restrictions, as well as seasonal and time closures, area closures and size limits. Finfish fishing methods are gill nets, seine nets and haul nets.

¹ http://www.fish.wa.gov.au/Documents/recreational_fishing/licences/ rec_licence_netting.pdf

Recreational

Recreational fishers in WCB nearshore and estuarine waters take a diverse array of finfish species. Size and possession limits apply to these species when caught recreationally in WA. A Recreational Fishing from Boat Licence is required to undertake any general fishing activity (including crabbing) conducted with the use of a powered boat anywhere in the State

As many recreationally targeted species are also targeted by the commercial sector, resource-sharing issues are a major consideration in future management arrangements.

Indicator species

The Department of Fisheries has selected indicator species for monitoring and assessing the status of the finfish resources in the WCB¹. The list of indicators is periodically reviewed. Australian herring, tailor, southern garfish, southern school whiting, whitebait and sea mullet are indicators for this Bioregion's nearshore finfish suite and black bream, Perth herring (*Nematalosa vlaminghi*) and cobbler (*Cnidoglanis macrocephalus*) are indicators for the estuarine finfish suite. Although not an indicator, the status of King George whiting (*Sillaginodes punctata*) is also reported here because it is a significant component of nearshore fishery landings in this Bioregion.

Research summary

The status of the fish resources in nearshore and estuarine waters of the WCB is assessed by monitoring the status of indicator species¹. Level 2 assessments of indicators are based on trends in commercial catch and effort obtained from statutory monthly fisher returns, trends in recreational catch and effort obtained from voluntary fisher logbooks (the 'Research Angler Program') and recreational fishing surveys, and trends in juvenile recruitment obtained from fisheryindependent surveys. Level 3 assessments of indicators include all of the above information plus information about rates of fishing mortality (F) estimated from the age composition of the stock. Fish collected from commercial and recreational fishers are generally used to determine age structure. Where available, archived biological samples are used to estimate historical F levels to provide information on trends in fishing mortality.

A WA NRM-funded research project designed to provide more rigorous monitoring and assessment of the status of WCB nearshore indicator species (Australian herring, tailor, whiting species and southern garfish) was completed in 2012/13. Stock assessments were completed for all species (see 'Stock Assessments' below). In this project, the species composition of 'whiting' (*Sillago* spp.) landings within the WCB was investigated. The vast majority (~90%) of whiting (excluding King George whiting) taken recreationally were found to be southern school whiting, while the majority of whiting taken commercially were found to be yellowfin whiting.

In 2010-2012, a project undertaken by Murdoch University researchers, in collaboration with the Department of Fisheries, conducted level 3 assessments of King George whiting and silver trevally (*Pseudocaranx georgianus*)

1 Department of Fisheries (2011) Resource Assessment Framework for Finfish Resources in Western Australia. Fisheries Occasional Publication. No. 85. 24 pp. populations in the Perth metropolitan area. Results of this project were considered in determining the stock status of King George whiting (see 'Stock Assessments' below).

A tagging study of tailor involving volunteer recreational fishers commenced in 2012 and is ongoing. Recaptures will provide information about tailor movement and stock structure in WA.

Retained Species

Total commercial finfish landings (2014):

231 tonnes in nearshore waters

145 tonnes in estuarine waters

Commercial landings by fishery (2014):

South West Coast Salmon:

60 tonnes (western Australian salmon only)

WC Beach Bait + SW Beach Seine:

63 tonnes (whitebait only)

West Coast Estuarine: 145 tonnes (finfish only)

In 2014, the total commercial catch of finfish by estuarine and beach-based fisheries in the WCB was 377 t and included approximately 27 species. The majority of the catch consisted of sea mullet (33% by weight), whitebait (17%), western Australian salmon (16%) and Australian herring (12%) (West Coast Nearshore and Estuarine Table 1).

Catches are taken by these fisheries using gill nets, haul nets and beach seines. The minor quantities of the same species taken by other methods (e.g. purse seine, demersal gill nets and long-lines) are not included in Table 1, although the total catch by all methods and fisheries is taken into account during stock assessments.

Commercial landings of key finfish species:

Many of the key species listed here have a stock distribution that extends beyond the WCB. Therefore, in addition to the West Coast landings, the catches of each species taken in other Bioregions and/or at a state level are also given here in order to provide information about the total commercial harvest of the stock.

Australian herring: Australian herring comprise a single stock across southern Australian waters. This species is targeted commercially in WA and South Australia (SA). Negligible quantities are also taken commercially in Victoria.

Historically, 80-90% of total annual commercial landings of Australian herring in WA have been taken in the South Coast Bioregion (SCB), with the remaining 10-20% taken in the WCB. In 2014, 69% of landings were taken in the SCB, and the remaining 31% was taken in the WCB. The majority of landings in the SCB were taken by the ocean beach-based herring trap net fishery. In 2014, the trap net fishery reported 55% of the total commercial herring catch in WA and 79% of the total commercial herring catch in the SCB. In 2014, the remainder of the South Coast commercial catch was taken in estuaries (16%) and in nearshore ocean waters (4%).

Within the WCB in 2014, 43% of Australian herring commercial landings were taken in Cockburn Sound, 43%

taken in the Geographe Bay/Bunbury area and 7% taken in the Peel-Harvey Estuary.

In the SCB, the total annual commercial catch of Australian herring reached an historical peak of 1,427 t in 1991 and then steadily declined to an historical low of 104 t in 2014 (West Coast Nearshore and Estuarine Figure 1). Recent low catches in the SCB reflect declining catches by the trap net fishery due to a combination of factors – reduced availability of fish from declining stock level and multiple recent years of low recruitment, plus lack of targeting in response to low market demand

In the WCB, the total annual commercial catch of Australian herring reached an historical peak of 211 t in 1988 and attained a similar level of 191 t in 1992 (West Coast Nearshore and Estuarine Figure 1). Annual landings steadily declined to reach an historical low of 28 t in 2012. The downward trend in the WCB mainly reflected declining catches by the south west beach seine fishery in the Geographe Bay/Bunbury area, where the majority of West Coast landings are taken. These declines were partly due to a substantial decline in fishing effort (i.e. decline in targeting) in response to the reduced availability of fish. In 2014, the West Coast total catch was 47 t.

Nationally, commercial landings of Australian herring peaked at approximately 1,800 t per year in the late 1980s and early 1990s and steadily declined thereafter. National landings were approximately 262 t in 2012, the lowest level since the start of reliable catch records in 1950. Commercial landings within WA and in SA each followed this downward trend. In WA, landings peaked at 1,537 t in 1991 and reached an historical low of 147 t in 2011. In 2014, total WA landings were 150 t. In SA, landings peaked at 498 t in 1987/88 and reached an historical low of 99 t in 2011/12. In 2013/14, SA landings were 143 t¹.

The proportion of total commercial landings taken in South Australia was relatively constant, typically 20-30% per year, from the early 1970s until 2008. However, since 2008, SA annual landings have comprised about 40% of the national catch. In 2014, SA landings were 49% of the national catch.

Whiting: The vast majority of 'whiting' (*Sillago* spp.; i.e. excluding King George whiting) landed by commercial fishers in this Bioregion are yellowfin whiting. The commercial catch of 'whiting' in the WCB was 37 t in 2014. The majority (66%) of this catch was taken in the Peel-Harvey Estuary.

Tailor: In WA, tailor is found in coastal waters from Onslow to Esperance and is likely to constitute a single stock over this range. Incomplete records prior to 1976 suggest the total WA annual commercial catch of tailor probably peaked in 1965 at approximately 90 t. Since 1976, annual landings have fluctuated between 19 and 59 t but with an overall stable trend (West Coast Nearshore and Estuarine Figure 2). In 2014, the total WA commercial catch of tailor was 20 t. Approximately half of this catch was taken in the WCB (51% by weight), with the remainder from the Gascoyne Coast Bioregion (38%) and SCB (11%).

In the Gascoyne Coast Bioregion, total landings of tailor were typically 20-30 t per year during the period 1976-1990. Annual landings were markedly higher (>30 t per year) during the period 1990-2000, including an historical peak of 49 t in 1999. Elevated catches in this period probably reflect a higher availability of fish due to strong recruitment. Since 2000, annual landings have gradually declined. In 2014, the Gascoyne catch was 7.8 t, almost all of which was taken by the Shark Bay Beach Seine Fishery. This is the lowest annual commercial catch of tailor in Shark Bay since records began in 1956.

In the WCB, the total commercial catch has ranged from 2 t (in 2008) to 42 t (in 1975). The commercial catch in this Bioregion has typically been less than 20 t per year since records commenced in 1912. The catch was 10 t in 2014. The majority (78%) of West Coast landings in 2014 were taken in the Peel-Harvey Estuary.

Southern garfish: In 2014, 42% of total WA commercial landings of southern garfish were taken in the WCB, with the remainder in the SCB. Different breeding stocks are targeted in each Bioregion.

In the WCB, total annual southern garfish landings peaked at 44 t in 1999 (West Coast Nearshore and Estuarine Figure 3). Subsequently, annual landings have followed a downward trend. An historic minimum catch of 4 t was taken in 2013 and remained similarly low (5 t) in 2014. Since 1995, 84% of total commercial landings of southern garfish in the WCB have been taken in Cockburn Sound. The historical peak in annual landings within Cockburn Sound was 37 t in 1999. Since 1999, annual landings of garfish in Cockburn Sound have followed the same downward trend as total WCB landings, reaching historic minimum levels in 2013 and 2014.

The long-term decline in Cockburn Sound catch was partly due to a reduction in commercial effort. However, annual effort levels have been stable since 2003. The recent catch decline reflects a stock decline due to overfishing and environmental factors.

King George whiting: King George whiting occurs in coastal waters in the West Coast and South Coast Bioregions with majority of landings occurring in estuaries. There is likely to be high connectivity between Bioregions due to adult migration and larval dispersal, but additional research is required to determine whether King George whiting should be managed as a single WA stock.

Annual landings of King George whiting are typically highly variable, mainly reflecting variations in juvenile recruitment due to environmental factors. In 2014, the total commercial catch of King George whiting in WA was 16 t (West Coast Nearshore and Estuarine Figure 4). Less than 1 t was taken in the WCB in 2014, representing 6% of the total annual commercial catch in WA. The remainder was taken in the SCB.

Sea mullet: Sea mullet occurs in coastal waters in all WA Bioregions with high connectivity due to adult migration and larval dispersal. There may also be connectivity between sea mullet along the south coast of WA and in SA.

The total WA annual catch of sea mullet peaked at 694 t in 1988 but has gradually declined mainly due to widespread reductions in commercial fishing effort in nearshore and estuarine waters. In 2014, the WA total catch was 205 t. In

¹ Fowler A.J., McGarvey R., Steer M.A. & Feenstra J.E. (2014). The South Australian Marine Scalefish Fishery Status Report - Analysis of Fishery Statistics for 2013/14. Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2007/000565-9. SARDI Research Report Series No. 816. 44 pp.

2014, 60% of the total WA catch was taken in the WCB, 26% in the Gascoyne Coast Bioregion and 14% in the SCB.

In the WCB, commercial landings of sea mullet were highest during the 1970 and 1980s, including an historical peak of 429 t in 1988 (West Coast Nearshore and Estuarine Figure 5). After 1988, the total annual catch in the WCB gradually declined. The relatively steep decline during 1988-2004 was attributable to an ongoing reduction in commercial effort in estuarine and nearshore waters as a result of VFAS (licence buy-backs) operating since 1990. Minor variations in the catch since 2004 are likely to be due to annual changes in targeted effort. In 2014, total WCB landings were 123 t. In 2014, 61% of total commercial landings of sea mullet in the WCB were taken in the Peel-Harvey Estuary and the majority of the remainder taken from ocean waters near Jurien Bay (latitude 30-31°S).

In the Gascoyne Coast Bioregion, the vast majority (>90% per year) of commercial sea mullet landings are typically taken by the Shark Bay Beach Seine and Mesh Net Managed Fishery. (Refer to the *Inner Shark Bay Scalefish Fishery Status Report* for details of the catch and effort in this fishery).

In the SCB, commercial landings of sea mullet have been stable for decades, with an average annual catch of 33 t since 1976 (range 11-92 t per year). In 2014, the catch was 28 t (West Coast Nearshore and Estuarine Figure 5). The vast majority (>90%) of annual landings of sea mullet in the SCB have historically been from estuaries. In 2014, 60% of total commercial landings of sea mullet in the SCB were taken in Wilson Inlet, 18% in Oyster Harbour, 8% in Irwin Inlet, 4% in Princess Royal Harbour and 3% in Stokes Inlet. Minor sea mullet landings were also reported in 3 other estuaries in 2014

Whitebait: In WA, whitebait occurs from Kalbarri southwards but is relatively rare along the south coast. All commercial landings of whitebait in WA are taken in the WCB, between Perth and Busselton. The majority of landings are taken during December-March. Fishing has historically occurred in two areas: Area 1 (Tim's Thicket to Busselton) is fished by the South West Beach Seine Fishery and Area 2 (Perth to Tim's Thicket) is fished by the West Coast Beach Bait Managed Fishery. Total landings have declined since the 1990s when an historic peak of 302 t occurred in 1996/97 (West Coast Nearshore and Estuarine Figure 6). The decline in total landings mainly reflects declines in Area 2. In 2013/14, the total catch was 12 t, all of which was landed in Area 1. This is the lowest whitebait catch since the commencement of the fishery in the early 1970s.

In Area 2, declines in landings since the 1990s were partly due to effort reductions, particularly between 2002/03 and 2003/04 when the number of vessels operating in this area declined from 8 to 2 per year. Since 2003/04, low (or zero) catch levels in Area 2 are attributed to a low availability of fish.

Since 2003/04, virtually all (98%) whitebait landings have been in Area 1. Annual landings in this Area followed a relatively stable trend (i.e. non-directional over the long term) from the late 1980s until 2009/10. Since 2010/11, historically low catches have been reported from Area 1, likely due to low stock abundance. Record high sea

temperatures in recent years may have been unfavourable for whitebait recruitment, resulting in low abundances.

Perth herring: Perth herring is endemic to the WCB of WA and constitutes a single stock over this range¹. Historically, the majority of landings of this species were caught in the Swan-Canning Estuary. Commercial targeting of Perth herring in this estuary ceased in 2007. The minor quantities taken in subsequent years were from the Peel-Harvey Estuary. Since 2000, <3 t of Perth herring per year has been reported from the Peel-Harvey Estuary.

Recent landings of Perth herring are very low compared to historical landings. Total WCB landings peaked at 239 t in 1978. From the late 1970s to the early 1990s, Perth herring was captured by various netting fisheries in ocean and estuarine waters (including purse seine, gill and haul net fisheries). The species is now infrequently caught in ocean waters. From 1963 to 1988, annual commercial catches of Perth herring in the Swan-Canning Estuary were consistently >40 t, including a historical peak of 178 t in 1968. Declining landings were partly due to an ongoing reduction in commercial effort in estuarine and nearshore waters as a result of VFAS (licence buy-backs) operating since 1990. However, deteriorating environmental conditions in WCB estuaries and historical overfishing are believed to be the main factors contributing to the current low stock level.

Cobbler: In WA, commercial targeting of cobbler is restricted to estuaries. Each estuary hosts a discrete stock of cobbler, which is genetically distinct to other estuarine populations and also distinct to cobbler populations in adjacent ocean waters. Since 2000, 95% of commercial landings of cobbler have been caught in estuaries of the SCB, with most of the remaining 5%, in estuaries of the WCB. Virtually all West Coast landings over this period were in the Peel-Harvey Estuary.

Historically, commercial catches of cobbler in WCB estuaries were much higher. Landings peaked at 298 t in 1961 in the Peel-Harvey Estuary, at 158 t in 1958 in Leschenault Estuary and at 56 t in 1960 in the Swan-Canning Estuary. Landings in the Hardy Inlet have always been relatively low.

In the Peel-Harvey Estuary, annual landings during the 1950s, 1960s and 1970s were frequently >100 t. Landings in the 1970s (1970-79) averaged 127 t per year. However, annual landings fell dramatically from 233 t to 49 t between 1980 and 1982. From 1983 to 1996, annual landings ranged from 3 to 74 t. Since 1996, annual landings have ranged from <1 t to 10 t. In 2014, less than 200 kg of cobbler was reported from this estuary.

In the Swan-Canning Estuary, annual cobbler landings during the 1960s and 1970s were frequently >20 t (average catch 31 t per year for period 1959-1977). However, landings fell dramatically from 76 t to 7 t between 1976 and 1978. From 1978 to 1996, annual landings ranged from 1 to 10 t. After 1997, annual catches in the Swan-Canning Estuary were <800 kg. A prohibition on catching cobbler in the Swan-Canning Estuary was introduced on 6 July 2007 and is in effect until 2017 in order to protect the stock.

In the Leschenault Estuary, a period of relatively high cobbler landings occurred from 1955 to 1965 (average 45 t per year, 1955-65). Landings declined from 17 t in 1978 to 2

^{1 &#}x27;Perth herring' previously reported from the Gascoyne Coast Bioregion are now believed to be a different species.

t in 1979. From 1979 until the closure of the commercial fishery in 2000/01, annual landings of cobbler ranged from <1 t to 6 t.

Declining landings were partly due to an ongoing reduction in commercial effort in WCB estuaries since 1990. However, deteriorating environmental conditions in estuaries and historical overfishing are believed to be the main factors contributing to the current low stock levels.

Black bream: Black bream is a true estuarine species, spending its entire life cycle in these waters. Each estuary hosts a discrete stock of black bream, which is genetically distinct to other estuarine populations. Most estuaries and coastal lagoons in south-western WA host a black bream population. In 2014, 98% of commercial landings of black bream were in the SCB, with the remaining 2% from the WCB.

In the WCB, commercial landings of black bream have always been relatively low compared to landings of other estuarine target species. Historically, the Swan-Canning Estuary and Hardy Inlet contributed the vast majority of commercial black bream landings. Landings peaked at 8 t in 1996 in the Swan-Canning Estuary and peaked at 4 t in 1983 in Hardy Inlet. Occasional landings were taken in the Leschenault Estuary (<2 t per year), prior to the closure of that fishery. Annual landings of black bream in the Peel-Harvey Estuary have always been negligible. Commercial targeting of black bream in the Swan-Canning Estuary has been negligible since 2007, resulting in the Hardy Inlet now being the only (albeit minor) commercial black bream fishery in the WCB. Since 2000, total WCB commercial landings of black bream have ranged from <1 to 5 t per year.

Recreational catch estimate (2013/14): N/A Boat-based 2013/14: 69 - 87 tonnes

State-wide surveys of boat-based recreational fishing were conducted in 2011/12 and 2013/14^{1,2}. During these surveys, nearshore and estuarine species (including whiting species, Australian herring, silver trevally, tailor, southern garfish, black bream, and mullet species) comprised over 80% of all finfish retained by boat-based fishers in the WCB (West Coast Nearshore and Estuarine Table 2).

The top 10 nearshore and estuarine species (or species groupings) in 2013-14 represented 95% of the total catch (by numbers kept) in the West Coast Bioregion. The estimated recreational catch for nearshore and estuarine species, particularly those harvested with high proportions of shore-based effort, will be underestimated. Comparison of estimated recreational catches of the top 10 nearshore and estuarine species in the West Coast Bioregion between 2011/12 and 2013/14 indicated estimated catches decreased from 111 t (95% confidence intervals from 99—123) to 78 t (95% confidence intervals from 69—87).

State-wide surveys are scheduled to be repeated at regular intervals in future. Catches from shore-based fishers, who take the majority of nearshore species, are not currently estimated.

Boat-based recreational fishing in the WCB was surveyed in 1996/97, 2005/06, 2008/09 and 2009/10 and is now included in the state-wide surveys which have occurred in 2011/12 and 2013/14.

Recreational catch share

The recreational catch share of total finfish landings in nearshore and estuarine waters of the WCB cannot be determined for the current year.

Fishing effort/access level

Commercial

Since the early 1990s, the number of licences in nearshore and estuarine commercial fisheries has been substantially reduced via Voluntary Fishery Adjustment Schemes. The removal of licences has eliminated a significant amount of latent effort (inactive licences) that previously existed in these fisheries.

Fishing effort in nearshore and estuarine fisheries is usually calculated as the number of days fished by each method. Fishing effort is sometimes reported as the number of units of access (vessels, licensees, teams, etc). This measure is sometimes the only type of effort data available throughout the history of the fishery and provides a general indication of effort changes over time.

Licence holders in the WCB estuaries that are open to commercial fishing are permitted to fish a single estuary system only.

Peel-Harvey Estuary: A substantial proportion of fishing effort in this estuary is directed towards the capture of blue swimmer crabs. In 2014, 68% of method days were spent targeting crabs (i.e. using crab traps). The remainder of effort (32% of method days) was spent targeting finfish using gill and haul nets. Since 2000, the effort spent targeting finfish in this estuary (i.e. days spent gill and haul netting) has been stable, fluctuating between 600 and 1,200 method days per year. There are currently eleven licences entitled to operate in this estuary. Ten licensees targeted finfish in 2014.

Swan-Canning Estuary: There is a single licensee entitled to operate in this estuary. The mean number of active fishing units per month declined from about 25 in the mid-1970s to 1 in 2009 and subsequent years. All commercial effort in 2014 was targeted towards blue swimmer crabs.

Hardy Inlet: There is a single licensee entitled to operate in this estuary. The mean monthly number of fishing units declined from 3 in the 1970s to 1 in 2000 and subsequent years. Virtually all commercial effort in recent years has been spent targeting a limited number of finfish species.

Cockburn Sound (Fish Net) fishery: Since the early 1990s, there has been a progressive decline in the number of commercial licences operating in Cockburn Sound as a result of VFAS. In the Cockburn Sound (Fish Net) fishery, the number of licences fell from 6 in the early 1990s to 1 in 2003 and subsequent years. All effort by this fishery is spent targeting finfish.

¹ Ryan K.L., Wise B.S., Hall N.G., Pollock K.H., Sulin E.H. & Gaughan D.J. (2013). An integrated system to survey boat-based recreational fishing in Western Australia 2011/12. Fisheries Research Report No. 249, Department of Fisheries, Western Australia. 162 pp.

² Ryan, K.L., Hall, N.G., Lai, E.K., Smallwood, C.B., Taylor, S.M., Wise, B.S. 2015. State-wide survey of boat-based recreational fishing in Western Australia 2013/14. Fisheries Research Report No. 268, Department of Fisheries, Western Australia. 208pp.

Lancelin to Kalbarri: The total number of method days fished in this region by shore-based net fishers (gill nets, haul nets and beach seines only) in 2014 was 475. In 2014, 7 licensees reported finfish landings by netting methods in this region.

South West Coast Salmon Fishery: From 1997 to 2005, there were 15 licences in the South West Coast Salmon Managed Fishery. This number was reduced via VFAS to 12 in 2006 and then to 8 in 2010 and subsequent years. Only 2 of the 8 licensees reported salmon catches in 2014.

West Coast Beach Bait and South West Beach Seine Fisheries: There is a single licensee in the West Coast Beach Bait Managed Fishery. There are 9 fishing units entitled to operate in the south west beach seine fishery. All licensees in these fisheries were active in 2014.

Recreational

Current estimates of total recreational effort expended on targeting nearshore or estuarine finfish in the WCB are unavailable.

State-wide surveys of boat-based recreational fishing were conducted in 2011/12 and 2013/14. These surveys estimated the total effort expended by boat-based recreational fishers in the WCB, including effort expended on all species. In 2011/12, 52% of total annual boat-based fishing effort (boat days) in the WCB was estimated to have occurred in nearshore habitats (i.e. bottom depth <20m) and 18% in estuaries. In 2013/14, 57% of total boat-based effort was in nearshore habitats and 17% in estuaries.

Stock Assessments

Assessments complete: Yes

Assessment level and method:

Level 3 - Fishing mortality

Breeding stock levels:

Australian herring Inadequate
Southern school whiting Adequate
Southern garfish (Cockburn Sound) Inadequate
Assessment level and method: Level 2 - Catch rates
Breeding stock levels:

Tailor Adequate
King George whiting Adequate
Sea mullet Adequate
Whitebait Environmentally Limited
Black bream (Swan-Canning) Adequate
Cobbler (Peel-Harvey) Uncertain
Perth herring Not assessed

Indicator species - nearshore

Australian herring: A level 3 assessment of the stock was completed in 2012¹. The assessment found evidence of a

substantial decline in stock abundance since the late 1990s and a steady increase in fishing mortality (F) over the same period. The F level estimated from data collected in 2009/10 and 2010/11 was well above the limit reference point for this species. Relatively low annual recruitment was also observed in most years over the previous decade. The fishery was found to be catching predominantly young fish, with >50% of total landings (commercial and recreational) comprised of young fish that are yet to spawn for the first time. An independent review of this assessment was conducted, and supported the conclusion that the stock level is currently inadequate². The assessment recommended a reduction of at least 50% in the total catch of Australian herring.

In 2013, another level 3 assessment of the stock was completed, based on age structure data collected in 2011/12 and 2012/13. This assessment estimated that the F level remained above the limit reference point (and the 95% confidence intervals were entirely above the threshold level), indicating that the stock status had not changed significantly since the previous assessment.

Low recruitment over the past decade may partly be a consequence of the declining breeding stock level due to overfishing but is also likely to be partly due to environmental factors, including ocean warming and the fluctuations in the strength of the Leeuwin Current.

Southern school whiting: This is one of the most common species retained by recreational fishers in the West Coast and South Coast Bioregions. A level 3 assessment of the WCB component of the stock was completed in 2012³. The stock level was assessed as adequate. The rate of fishing mortality (F) was estimated from the age structure of recreational landings in the WCB during 2011. The estimated F was around the target reference level for this species. The majority (>90%) of the recreational catch is comprised of mature fish.

Tailor: A level 2 assessment of the stock was completed in 2012⁴. An independent review of this assessment was conducted, and supported the conclusion that the stock level is currently adequate (Department of Fisheries 2013). Tailor in Shark Bay are believed to be part of the same breeding stock as those within the WCB.

Catch rates from a volunteer fishing program in the Swan-Canning Estuary have provided an indicator of the strength of annual recruitment by juvenile tailor to the WCB since 1996. Annual recruitment fluctuates in response to environmental factors. Recruitment was relatively strong from 2006/07 to 2011/12 (West Coast Nearshore and Estuarine Figure 7). Increased recreational catch rates of adult tailor throughout the WCB recently are consistent with this period of higher

¹ Smith K., Brown J., Lewis P., Dowling C., Howard A., Lenanton R. & Molony B. (2013a). Status of nearshore finfish stocks in south-western Western Australia. Part 1:

Australian herring. Final NRM Report - Project No. 09003. Fisheries Research Report No. 246. Department of Fisheries, Western Australia.

² Jones K. (2013). Review of report on the "Status of nearshore finfish stocks in south-western Western Australia: Australian herring and tailor" prepared by Keith Jones, Sillago Research Pty Ltd for the Department of Fisheries, Western Australia. Fisheries Occasional Publication No. 116. Department of Fisheries, Western Australia. 52 pp.

³ Brown J., Dowling C., Hesp A., Smith K. & Molony B. (2013). Status of nearshore finfish stocks in south-western Western Australia. Part 3: Whiting. Final NRM Report - Project No. 09003. Fisheries Research Report No. 248. Department of Fisheries Western Australia. Perth.

⁴ Smith K., Brown J., Lewis P., Dowling C., Howard A., Lenanton R. & Molony B. (2013b). Status of nearshore finfish stocks in south-western Western Australia. Part 2: Tailor. Final NRM Report - Project No. 09003. Fisheries Research Report No. 247. Department of Fisheries Western Australia. Perth.

recruitment. Catch and catch rates of tailor in the main commercial fishery, the Shark Bay Beach Seine and Mesh Net Fishery, were below their target ranges in 2014, but this is attributed to lack of targeting rather than low stock abundance (see *Inner Shark Bay Scalefish Fishery Status Report*).

Southern garfish: Southern garfish are distributed across southern Australia from Kalbarri (WA) to Eden (NSW), and Tasmania. Southern garfish populations on the west and south coasts of WA are genetically distinct¹ and are managed as separate stocks. Population structuring at finer scales has not been examined in WA, but evidence from elsewhere indicate that garfish populations are comprised of numerous sub-populations which are separated by small (<60 km) distances^{2, 3}. On this evidence, garfish caught in Cockburn Sound are assumed to belong to a distinct sub-population and treated as a discrete management unit.

Cockburn Sound provides the majority of commercial landings of southern garfish. Recreational landings in this area are also believed to be substantial, although the total recreational catch is unknown due to the limited data from the shore-based component of the fishery. Southern garfish are dependent on seagrass and other marine vegetation for reproduction and feeding. Seagrass area in Cockburn Sound has declined by around 80% since the 1950s and continues to be under threat due to ongoing development (e.g. dredging)⁴. For these reasons, the sustainability of garfish in Cockburn Sound is at higher risk than other populations in WA.

A level 3 assessment of the Cockburn Sound stock was completed in 2013⁵. The rate of fishing mortality (F) was estimated from the age structure of commercial landings during 2010 and 2011. The estimated F and 95% confidence intervals were well above the limit reference point for this stock. Other available evidence also suggests the stock level is currently inadequate. Commercial catch rates suggest the abundance of garfish in Cockburn Sound has been declining gradually since 1996 (West Coast Nearshore and Estuarine Figure 8). Recreational catch rates in the Perth region, available since 2006, also indicate a decline (West Coast Nearshore and Estuarine Figure 9). Catch rates dropped sharply between 2011 and 2012, which suggested a strong negative impact arising from the 2011 'heatwave' event. Catch rates declined further in 2013 and 2014. During 2010 and 2011, the majority (~95%) of the Cockburn Sound garfish catch (commercial and recreational) was comprised of mature fish. However, the average size of fish in the commercial catch had declined since the late 1990s (the trend in the recreational catch is unknown).

King George whiting: A level 2 assessment of the stock was completed in 2012⁶ and a Level 3 assessment completed in 2014⁷. The rate of fishing mortality (F) was estimated from the age structure of fishery landings during 2010-2012. F estimates indicated that the stock was not experiencing overfishing. Presently, limited targeting in offshore waters is allowing the stock level to be maintained at an acceptable level. An increase in targeting of King George whiting in offshore waters would be a risk to the sustainability of the stock

Juvenile King George whiting occur in inshore marine waters, whereas adults mainly occur in offshore waters. A high proportion of immature fish in current landings reflects the predominantly inshore distribution of current fishing effort spent targeting this species. The majority (79%) of King George whiting taken recreationally in the WCB (and 94% in the SCB) are immature fish that are yet to spawn¹. The majority (>95%) of the commercial catch in both Bioregions also consists of immature fish.

Sea mullet: Adult sea mullet typically occur in estuaries, except in winter when they migrate to ocean waters to spawn. Juveniles recruit to estuaries, where they remain until maturity. Given this behaviour, trends in catch rates of sea mullet in the Peel-Harvey Estuary and Oyster Harbour, which are both permanently open to the sea, are assumed to be indicative of abundance trends in the West Coast and South Coast Bioregions, respectively. Catch rates of sea mullet in seasonally closed estuaries are not suitable for this purpose because they can vary according to the extent of connectivity to the sea (i.e. sand bar openings) rather than regional abundance.

The annual commercial catch rate of sea mullet in the Peel-Harvey Estuary suggests a stable long-term trend in the availability of sea mullet in the WCB since 1980 (West Coast Nearshore and Estuarine Figure 10). The annual commercial catch rate in Oyster Harbour suggests an increase in the availability of sea mullet in the SCB since 2000. This increase coincides with a period of ocean warming around south-western Australia, including a strong spike in abundance after the 2011 heatwave event. In the Gascoyne Coast Bioregion, catch rates in Shark Bay are used as an index of local sea mullet abundance. Shark Bay abundance appears to have declined after 2011. Refer to the *Inner Shark* Bay Scalefish Fishery Status Report for details of the catch rate in this fishery. Overall, the bioregional trends in abundance suggest a southwards range shift by sea mullet in WA in response to ocean warming.

Whitebalt: The WA stock of whitebait is primarily located in the lower WCB (i.e. between Perth and Busselton). Highly variable annual catches and catch rates are characteristic of the commercial whitebait fishery. Variations in catch level were historically correlated with the strength of the Leeuwin Current in the previous year and with rainfall⁸. However, these factors have not been strongly correlated with catches in recent years.

¹ Donnellan S., Haigh L., Elphinstone M., McGlennon D. & Ye Q. (2002). Genetic discrimination between southern sea garfish (*Hyporhamphus melanochir*) stocks of Western Australia South Australia, Victoria and Tasmania. In: Fisheries Biology and Habitat Ecology of Southern Sea Garfish (*Hyporhamphus melanochir*) in Southern Australia (Jones GK, Ye Q, Ayvazian S & Coutin P, eds), pp. 9-34. FRDC Project 97/133. Canberra: Fisheries Research and Development Corporation.

² Steer M., Fowler A.J. & Gillanders B.M. (2009). Age-related movement patterns and population structuring in southern garfish, *Hyporhamphus melanochir*, inferred from otolith chemistry. Fisheries Management and Ecology. 16:265–278.

³ Steer M., Halverson G.P., Fowler A.J. & Gillanders B.M. (2010). Stock discrimination of Southern Garfish (Hyporhamphus melanochir) by stable isotope ratio analysis of otolith aragonite. Environmental Biology of Fishes 89:369–381.

⁴ Cockburn Sound Management Council. (2005). Environmental Management Plan for Cockburn Sound and its Catchment. Department of Environment, Perth.

⁵ Smith K, Dowling C., Mountford S., Hesp A., Howard A. & Brown J. (in prep.) Status of nearshore finfish stocks in south-western Western Australia. Part 4: Southern garfish. Fisheries Research Report. Department of Fisheries, Western Australia.

⁶ See footnote 3, previous page

⁷ Fisher E.A., Hesp S.A., Hall N.G. & Sulin E.H. (2014). Predicting the impacts of shifting recreational fishing effort towards inshore species. FRDC Project No. 2010/001. Fisheries Research and Development Corporation.

⁸ Gaughan D., Fletcher W.J., Tregonning R.J., & Goh J. (1996). Aspects of the biology an stock assessment of the whitebait, *Hyperophus vittatus*, in south western Australia. Fisheries Research Report No. 108. Department of Fisheries, Western Australia. 127pp.

Since 2003/04, almost all landings of whitebait have occurred within Area 1 (Bunbury), with negligible landings in Area 2 (Perth/Mandurah). Anecdotal reports and fishery-independent recruitment surveys by the Department in the Perth area are in agreement with commercial catch and catch rate trends, all suggesting persistent low abundance of whitebait in the Perth area in recent years due to poor juvenile recruitment. Until recently, the annual catch and catch rate trends in the Bunbury area suggested a relatively stable long term abundance of whitebait in this area (West Coast Nearshore and Estuarine Figure 11). However, recent catch and catch rates suggest sharply declining stock abundance over the past 4 years in the Bunbury area.

Recent commercial catches of 13 t in 2012/13 and 12 t in 2013/14 were the lowest since the commencement of the commercial whitebait fishery in the early 1970s (West Coast Nearshore and Estuarine Figure 11). The 2012/13 and 2013/14 catch rates were also the lowest recorded (West Coast Nearshore and Estuarine Figure 12).

Whitebait has a lifespan of only 3-4 years, and so trends in stock level (and catches) are strongly linked to recruitment variability. The onset of the decline coincided with a 'heatwave' event along the west coast in autumn 2011¹. It is possible that this event contributed to spawning failure by whitebait in winter 2011, which (when accompanied by fishing mortality) could explain the sharp decline in stock level.

All evidence suggests that the whitebait stock was previously distributed from Perth to Busselton, but that this range has contracted over the past decade and the stock is now mainly located around Busselton. Furthermore, declining catch rates suggest that stock abundance has gradually decreased over the past decade and is currently at an historically low level.

Indicator species - estuarine

Black bream (Swan-Canning only): In the Swan-Canning Estuary, commercial and recreational catch rates suggested an increase in black bream availability between 1990 and 2000, followed by a slight decline from 2000 to 2006². Voluntary recreational logbook fisher catch rates suggest stable availability of black bream in this estuary from 2004 to 2014 (West Coast Nearshore and Estuarine Figure 12). Black bream in other West Coast estuaries are not assessed.

Cobbler (Peel-Harvey only): Commercial catch rates suggest fluctuating availability of cobbler in the Peel-Harvey Estuary since 1990. The long term trend from 1990 to 2014 was stable (i.e. non-directional) (West Coast Nearshore and Estuarine Figure 13). In 2014, the catch of cobbler in the Peel-Harvey Estuary was negligible and the catch rate was the lowest since 1990. It is unclear whether this reflects low stock abundance or a shift in targeting by the fishery.

Cobbler in the Swan-Canning Estuary was assessed via catch rate trends until a fishing ban was imposed in 2007. Anecdotal information suggests ongoing low abundance of the estuarine stock. Cobbler reported from the lower part of

the Swan-Canning Estuary are likely to belong to a separate oceanic stock. Cobbler in Leschenault Estuary has not been assessed since the commercial fishery closure in 2000.

Perth herring (Not assessed): Perth herring was assessed via commercial catch rate trends in the Swan-Canning Estuary until cessation of fishing for this species in 2007. Catch rates suggested a major decline in the availability of Perth herring after 1980. A single breeding stock of Perth herring occurs in the WCB. Swan-Canning catch rates were assumed to be representative of regional availability. Limited fishery-independent evidence suggests regional abundance remains relatively low compared to historical levels. However, insufficient information is available to assess current stock status. The development of fishery-independent monitoring methods is required for this species. Perth herring is anadromous (i.e. spawns in rivers then migrates back to ocean waters after spawning). Low spawning success due to environmental degradation in the upper reaches of West Coast estuaries and low rainfall are believed to be the main causes of low stock abundance.

Non-Retained Species

Bycatch species impact:

Low

The small-scale commercial finfish fisheries in nearshore and estuarine waters mainly use gill, seine and haul nets that are deployed in a targeted manner. Few non-target species are taken. Mesh size regulations ensure that target species caught by these methods are within an appropriate size range. Minimal discarding occurs because virtually all fish taken can be retained and marketed.

Recreational fishers mainly use line-based methods in nearshore and estuarine waters. This method can result in the capture and release of a significant number of non-target species and undersized fish. The risks associated with post-release mortality vary considerably among species. In general, fish in nearshore and estuarine waters are captured from shallow depths and suffer less barotrauma-related injuries than deep water species.

Listed species interaction:

Negligible

Interactions with protected species by the fishing gear used in these commercial fisheries are negligible. Estuarine birds have been known to interact with fishing nets, but none have been reported in recent years and the risk to their populations is negligible. Commercial fishers are required to report all interactions with protected species.

Recreational fishers using line-fishing methods are unlikely to capture protected species. Interactions are expected to be minimal.

Ecosystem Effects

Food chain effects:

Low

Current levels of commercial effort are relatively low. Excessive removal by commercial and recreational fisheries of certain species, such as whitebait, Australian herring or salmon, from the food chain could potentially impact on prey

¹ Pearce A., Lenanton R., Jackson G., Moore J., Feng M. & Gaughan D. (2011). The 'marine heat wave' off Western Australia during the summer of 2010/11. Fisheries Research Report No. 222. Department of Fisheries, Western Australia. 40 pp.

² Smith K.A. (2006). Review of fishery resources and status of key fishery stocks in the Swan-Canning Estuary Fisheries Research Report 156. Department of Fisheries,

and predator species including larger fish, cetaceans and seabirds.

The current low abundance of whitebait in the Perth area is believed to be primarily due to environmental factors. Whitebait in Warnbro Sound is an important source of food for the local colony of little penguins (*Eudyptula minor*). Low abundance of whitebait is believed to have partly contributed to poor breeding success by these penguins in recent years¹.

Habitat effects: Low

The operation of gill nets and haul nets over predominantly sand and mud bottoms is unlikely to have any impact on these habitats in estuaries and nearshore waters. Similarly, the line fishing methods used by recreational fishers have a negligible impact on the bottom substrates. Anchoring by recreational fishing vessels may have localised impacts on habitats such as seagrass and reefs.

Social Effects

Commercial - nearshore

In 2014, there was only 1 licensee operating in the Cockburn Sound (Fish Net) Managed Fishery employing 2 fishers per month. Landings from this fishery are used to supply restaurant and retail sectors in the Perth metropolitan area.

In 2014, there were 2 licensees operating within the West Coast Salmon Fishery, employing approximately 12 crew. There were 8-35 commercial fishers per month employed in various fisheries targeting Australian herring during 2014. Australian herring and western Australian salmon fishers in the WCB supply local bait and human consumption markets.

Commercial - estuarine

In 2014, there was an average of 19 commercial fishers operating per month in estuaries of the WCB, largely supplying fresh fish to meet demand for locally-caught product.

Recreational

The nearshore and estuarine waters of the WCB are key areas for recreational fishing and other leisure activities such as snorkelling. Therefore nearshore and estuarine environments have a high social value in the region.

Economic Effects

Estimated annual value (to fishers) for 2014:

Level 2: \$1 to 5 million (finfish only)

Fishery Governance

Commercial
Current Fishing (or Effort) Level:

West Coast Estuarine Fishery

Acceptable

Cockburn Sound (Fish Net) Fishery Not Acceptable

South West Salmon Fishery Under review

West Coast Australian herring fisheries Under review

Whitebait (West Coast Beach Bait + South West

Beach Seine Fisheries) Not Acceptable

Target commercial catch range:

West Coast Estuaries (Peel/Harvey only)

75 - 220 tonnes (finfish only)

Cockburn Sound (Fish Net) Fishery

30 - 112 tonnes (finfish only)

Salmon (South West + South Coast Fisheries)

1200 - 2800 tonnes

West Coast Australian herring fisheries

70 - 185 tonnes

Whitebait fisheries

60 - 275 tonnes

With the completion of the State NRM funded research into the assessment and status of nearshore finfish species in the West Coast in 2013, and MSC pre-assessments for all West Coast and South Coast Bioregion fisheries in 2014, management arrangements, governance, and catch ranges are being reviewed. However, the 2014 catches are reported (below) against their existing governance arrangements.

In the West Coast Estuarine Managed Fishery, the commercial catch of finfish in the Peel-Harvey Estuary in 2014 was 130 t, which was within the target range. In 2015, the 'total commercial catch range' for the Peel-Harvey Estuary will be replaced with other performance indicators, outlined in the new Harvest Strategy for this fishery (see 'New management initiatives').

In the Cockburn Sound Fish Net Fishery the total catch of finfish in 2014 was below the target range. The Cockburn Sound finfish catch has been below the target range for 7 of the past 9 years. New governance arrangements are needed for this fishery.

The total catch of western Australian salmon (West Coast and South Coast landings combined) in 2014 (364 t) was well below the target range. The catch has now been below the target range for 7 consecutive years. New governance arrangements are needed for this fishery.

The West Coast herring catch by all fisheries in 2014 (47 t) was below the target range. The West Coast herring catch has been below the target range for 10 of the past 11 years (similar to the trend in the South Coast herring catch, which has been below the target range for 12 consecutive years). Recent research outcomes regarding stock status were used as a basis for new management arrangements introduced in 2014/15 to ensure the sustainability of this iconic species (see 'New management initiatives'). A formal Recovery Strategy for the Australian herring stock is being developed.

In 2013/14, the commercial catch of whitebait (12 t) was well below the target range. The catch has now been below the target range for 3 of the past 4 years. New governance arrangements are needed for this fishery.

¹ Cannell B.L., Chambers L.E., Wooller R.D. & Bradley J.S. (2012). Poorer breeding by little penguins near Perth, Western Australia is correlated with above average sea surface temperatures and a stronger Leeuwin Current. Marine and Freshwater Research 63:914-925.

Recreational Current Fishing (or Effort) Level

NA

Target catch range:

Not developed

New management initiatives

A Harvest Strategy for the finfish resources of the Peel-Harvey estuary was developed in 2014/15¹. The Strategy will remain in place for five years and then be subject to a full review. The Strategy includes performance measures, based on catch and/or catch rate, for each key finfish species and for other retained finfish. The sea mullet component of the catch from the Peel-Harvey Estuary is in the process of seeking full Marine Stewardship Council accreditation.

On 1 March 2015 the recreational fishing daily bag limit for Australian herring was reduced from 30 to 12 and commercial fishing using herring (G) trap nets was prohibited.

These management measures have been implemented to reduce the total statewide catch of herring by at least 50% following a recent stock assessment indicating an unacceptably high risk to the sustainability of the stock.

All West Coast Nearshore and Estuarine Finfish fisheries underwent pre-assessment for Marine Stewardship Certification (MSC) in 2014. Currently the Peel-Harvey sea mullet and blue swimmer crab fishery is undergoing full MSC assessment for both the commercial and recreational sectors. If successful, this will be the world's first recreational fishery to be MSC certified.

External Factors

Climate change is expected to have impacts on nearshore and estuarine ecosystems. Changes in environmental variables such as ocean temperature, currents, winds, nutrient supply, rainfall, ocean chemistry and extreme weather conditions are expected to have major impacts on marine ecosystems². These impacts are expected to create both difficulties and opportunities for fisheries.

Many nearshore species are known to have their abundance levels affected by annual variation in coastal currents (particularly the Leeuwin and Capes Currents). These currents appear to influence the recruitment patterns of larvae of species such as whitebait, tailor, Australian herring and western Australian salmon and thus their subsequent recruitment into each fishery³.

In 2011, a very strong Leeuwin Current resulted in unusually warm ocean temperatures in coastal waters of the southern WCB and the western SCB. This 'heatwave' event caused widespread fish kills in the WCB. During and after this event there were reports of atypical distributions of various species (e.g. tropical species occurring in temperate waters) and

unusual fish behaviour. The event altered the distribution and behaviour (eg. spawning activity, migration) of many nearshore finfish species, which appears to have affected the catch levels of these species in 2011 and in subsequent years. Trends in catch and catch rates suggest that the distribution and abundance of southern garfish, whitebait, Australian herring, western Australian salmon and sea mullet were affected by the 2011 heatwave.

The abundance of nearshore and estuarine species is likely to be affected by the quantity and quality of habitats that are available for spawning, feeding and/or nursery areas. Habitat loss is ongoing due to coastal development in the WCB and this is likely to result in further reductions in the abundance of nearshore and estuarine species. For example, loss of seagrass in Cockburn Sound is likely to have reduced garfish abundance. Since the 1950s, approximately 80% of the seagrass meadows in Cockburn Sound have been lost as a result of environmental degradation⁴. Juveniles of King George whiting are also strongly associated with seagrass and so may be impacted by habitat loss in Cockburn Sound.

WCB estuaries are highly modified, and often degraded, environments. In these estuaries, the impacts of environmental factors on stock abundances are likely to be at least as important as fishing pressure. Anecdotal reports suggest that habitat and climatic changes have altered the composition and abundance of fish communities in WCB estuaries, although lack of historical monitoring makes many of these changes difficult to quantify. However, in the Swan-Canning Estuary, abundant fishery data provides evidence of marked declines in fish abundance since 1990 or earlier⁵. Stock declines in WCB estuaries are most pronounced among 'estuarine-dependent' species, i.e. those that rely on estuarine habitats for spawning, feeding and/or nursery areas (e.g. cobbler, Perth herring, black bream). Whilst not strictly estuarine-dependent, sea mullet and yelloweye mullet exhibit a strong preference for estuarine habitats when available. The status of these species may also be affected by the availability and quality of estuarine habitats. A variety of barriers to fish passage occur in estuaries (e.g. weirs, dredge plumes) which can disrupt the life cycle of migratory species (e.g. mullet, Perth herring).

Fluctuating market demand is a significant factor affecting the annual commercial catch level of many species.

Finfish Resources of the Peel-Harvey Estuary Harvest Strategy 2015-2020. Version
 1.0. West Coast Estuarine Managed Fishery (Area 2). Fisheries Management Paper No. 274. Department of Fisheries, Perth.

² Hobday A.J., Poloczanska E.S. & Matear R.J. (eds). (2008). Implications of Climate Change for Australian Fisheries and Aquaculture: a preliminary assessment. Report to the Department of Climate Change. Canberra. Australia. August 2008.

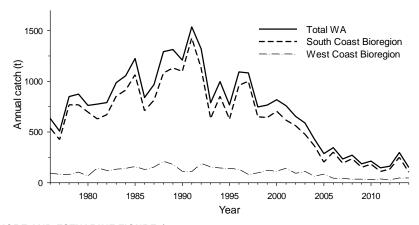
³ Lenanton R.C., Caputi N., Kangas M. & Craine M. (2009). The ongoing influence of the Leeuwin Current on economically important fish and invertebrates off temperate Western Australia – has it changed? Journal of the Royal Society of Western Australia 92: 111–127.

⁴ Cockburn Sound Management Council. (2005). Environmental Management Plan for Cockburn Sound and its Catchment. Department of Environment, Perth.

⁵ See footnote 2, page 73

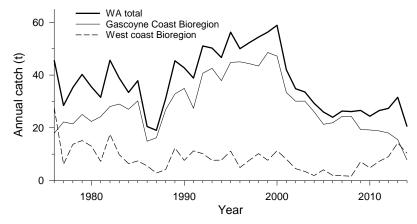
WEST COAST BIOREGION

WEST COAST NEARSHORE AND ESTUARINE TABLE 1


Total annual catches of finfish from the estuarine and beach-based nearshore commercial fisheries in the West Coast Bioregion, 2010 to 2014.

Species	Scientific name	Catch (tonnes)				
Species	Scientific name	2010	2011	2012	2013	2014
Australian salmon	Arripis truttaceus	69.0	6.3	47.1	92.7	60.1
Whitebait	Hyperlophus vittatus	100.6	34.8	65.7	18.6	63.5
Sea mullet	Mugil cephalus	102.1	77.7	103.0	100.1	123
Australian herring	Arripis georgianus	30.6	36.3	28.4	47.1	46.6
Yellow-eye mullet	Aldrichetta forsteri	24.7	16.2	22.5	18.6	19.3
Whiting species	Sillago spp.	22.5	24.6	19.6	25.8	37.2
Southern sea garfish	Hyporhamphus melanochir	15.8	19.2	5.8	4.3	4.8
Cobbler	Cnidoglanis macrocephalus	5.4	7.4	5.2	1.8	0.2
Perth herring	Nematalosa vlahmingi	0.1	0.4	1	1.5	2.1
Tailor	Pomatomus saltatrix	4.8	7.2	8.8	14.2	10.3
Hardyheads/Silversides	Atherinidae	4.1	4.7	3.5	1.2	-
Scaly mackerel	Sardinella lemura	0.9	-	3	5.7	-
Trumpeters/Grunters	Teraponidae	0.5	1	1.6	2.8	2.6
King George whiting	Sillaginodes punctata	5.9	5.1	3.7	2	0.9
Trevally	Carangidae	3.5	2.4	2.3	2.8	2.2
Yellowtail scad	Trachurus novaezelandiae	0.9	1.2	0.9	1.5	-
Black bream	Acanthopagrus butcheri	2.6	0.7	1.4	1.3	0.8
Blue sprat	Spratelloides robustus	0.1	0.3	0.3	0.8	1.7
Other finfish	Teleostei	0.2	0.3	0.1	3.4	0.7
TOTAL		394.3	245.8	323.9	346.2	376.7

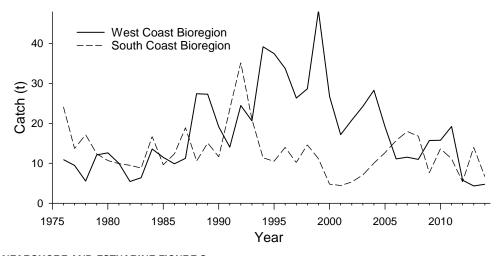
WEST COAST NEARSHORE AND ESTUARINE TABLE 2


Annual catches of key nearshore finfish species in the West Coast Bioregion by boat-based recreational fishers, estimated by surveys conducted by the Department of Fisheries in 2011/12 and 2013/14. The percentage of the total boat-based finfish catch represented by each species is also shown. 1, 2

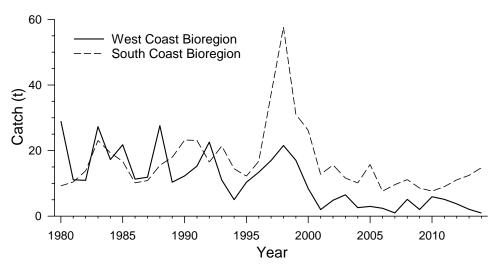
Common name Species		Catch (no. of fish)		% of total finfish catch	
Common name	Species	2011/12	2013/14	2011/12	2013/14
School whiting	Sillago spp.	238,411	253,064	45.4	32.2
Australian herring	Arripis georgianus	183,940	102,053	18.3	24.9
Silver trevally	Pseudocaranx spp.	54,573	29,251	5.2	7.4
King George whiting	Sillaginodes punctatus	48,678	27,599	4.9	6.6
Tailor	Pomatomus saltatrix	21,092	7,400	1.3	2.9
Southern garfish	Hyporamphus melanochir	16,168	1,628	0.3	2.2
Black bream	Acanthopagrus butcheri	9,996	4,493	0.8	1.4
Sea mullet	Mugil cephalus	7,372	12,590	2.3	1.0
Yelloweye mullet	Aldrichetta forsteri	5,417	2,609	0.5	0.7
All other finfish		154,221	117,078	21.0	20.8

WEST COAST NEARSHORE AND ESTUARINE FIGURE 1

Annual commercial catches of Australian herring, by Bioregion, 1976 -2014.

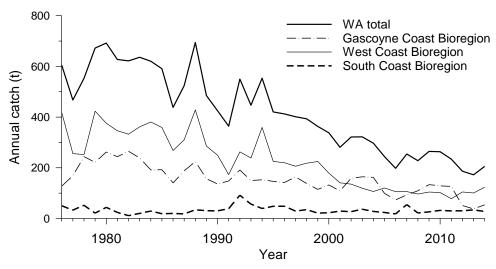


WEST COAST NEARSHORE AND ESTUARINE FIGURE 2

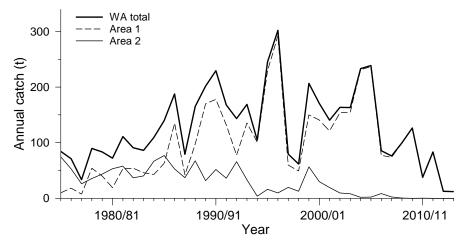

Annual commercial catches of tailor, by Bioregion, 1976 –2014. Minor catches in South Coast Bioregion are not shown, but are included in WA total.

¹ See footnote 1, page 70.

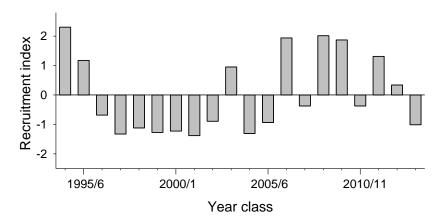
² See footnote 2, page 70.



Annual commercial catches of southern garfish, by Bioregion, 1976 -2014.

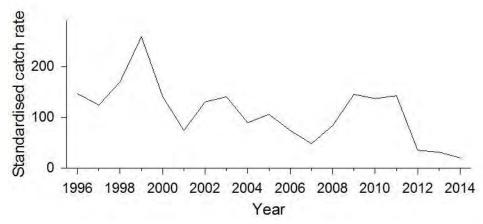

WEST COAST NEARSHORE AND ESTUARINE FIGURE 4

Annual commercial catches of King George whiting, by Bioregion, 1980 –2014.

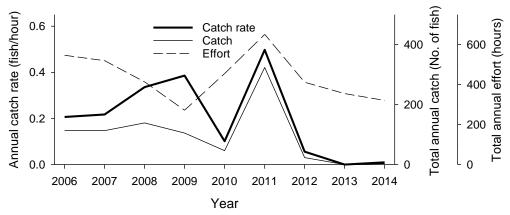


WEST COAST NEARSHORE AND ESTUARINE FIGURE 5

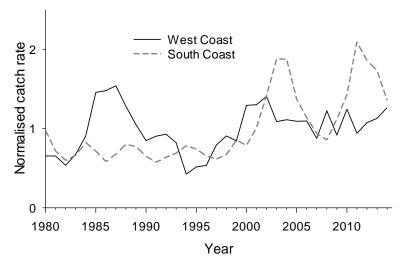
Annual commercial catches of sea mullet, by Bioregion, 1976 -2014.



Annual commercial catches of whitebait in West Coast Bioregion, by fishing area, 1975/76 - 2013/14. Area 1 = Bunbury; Area 2 = Perth/Mandurah.

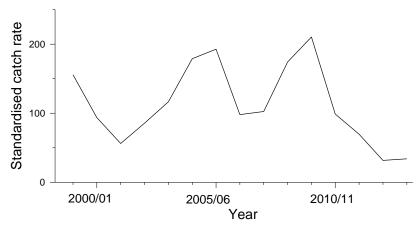

WEST COAST NEARSHORE AND ESTUARINE FIGURE 7

Annual recruitment index for tailor in the West Coast Bioregion, 1994/95 – 2013/14, derived from volunteer fisher catch rates of age 0+ juveniles in the Swan-Canning Estuary. Data represent annual deviations from the long-term average. e.g. bars above the line Indicate better than average number of recruits.

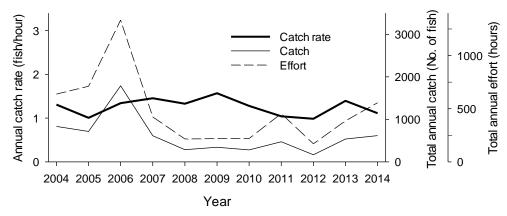


WEST COAST NEARSHORE AND ESTUARINE FIGURE 8

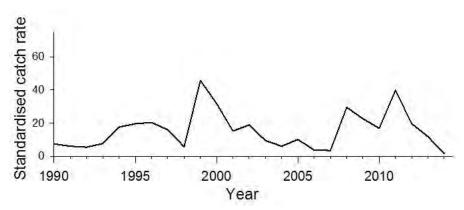
Annual commercial catch rate of southern garfish in Cockburn Sound, 1996 - 2014.



Total annual catch, effort and catch rate of southern garfish by shore-based voluntary recreational logbook fishers in the Perth metropolitan area, 2006 – 2014.


WEST COAST NEARSHORE AND ESTUARINE FIGURE 10

Annual commercial catch rates used as indices of sea mullet abundance in West Coast and South Coast Bioregions, 1980 – 2014 (catch rates are standardised and normalised;3-point moving average applied).



WEST COAST NEARSHORE AND ESTUARINE FIGURE 11

Annual commercial catch rate of whitebait in Area 1 (Bunbury) 1999/2000 - 2013/2014.

Total annual catch, effort and catch rate of black bream by voluntary recreational logbook fishers in the Swan-Canning Estuary, 2004 – 2014.

WEST COAST NEARSHORE AND ESTUARINE FIGURE 13

Annual commercial catch rate of cobbler in the Peel-Harvey Estuary, 1990 - 2014.

West Coast Purse Seine Fishery Report: Statistics Only

G. Jackson, S. Turner and E. Smith

Fishery Description

The West Coast Purse Seine Fishery (WCPSF) is based on the capture of sardine (pilchards, Sardinops sagax) and tropical sardine (scaly mackerel or sardinella, Sardinella lemuru) by purse seine in the West Coast Bioregion. The West Coast Purse Seine Limited Entry Fishery Notice 1989 also permits the take of small quantities of Perth herring (Nematalosa vlaminghi), yellowtail scad (Trachurus novaezelandiae), Australian anchovy (Engraulis australis), and maray (Etrumeus teres).

Boundaries

The WCPSF incorporates three separate fisheries that operate in defined zones as follows (West Coast Purse Seine Figure 1):

 Perth Metropolitan Zone – waters between 31° 00' S and 33° 00' S;

- Southern Development Zone waters between 33° 00' S and Cape Leeuwin;
- Northern Development Zone waters between 22° 00' S and 31° 00' S.

Management arrangements

The WCPSF is managed through a combination of input and output controls incorporating limited entry, capacity setting and gear controls.

Access to the Perth Metropolitan Zone is limited to 12 licences with pilchards and sardinella the primary target species. There are three Fishing Boat Licences (FBL) with a specific condition that permits the taking of fish by purse seine net hauled by power block within specific waters of the Southern Development Zone. Two of those FBLs can also retain pilchards. A further three FBLs permit the taking of fish using a purse seine hauled by power block in the

Northern Development Zone where sardinella is the primary target species.

Currently, a notional combined Total Allowable Catch (TAC), covering both the Perth metropolitan fishery and the Southern Development Zone, is set for pilchards and another for other small pelagic species. For the 2013/14 licence period (1 April 2013 – 31 March 2014) a notional TAC of 2,328 t for pilchards and a separate TAC of 672 t for other small pelagic species (including sardinella) was in place. The notional TAC for pilchards has been in operation since 2006/07 and is assumed to represent approximately 10% of the west coast pilchard stock. Reaching or exceeding the notional TACs will trigger a management response.

The fishery underwent MSC pre-assessment in 2014.

Landings and Effort

Commercial Landings: 1,065 tonnes

For the 2014 reporting year, catches from all zones of the WCPSF are reported. Fishery effort and catches cannot be reported separately for each zone as fewer than three vessels fished in any single zone. Effort and catch levels reported here therefore reflect the total effort and total catches.

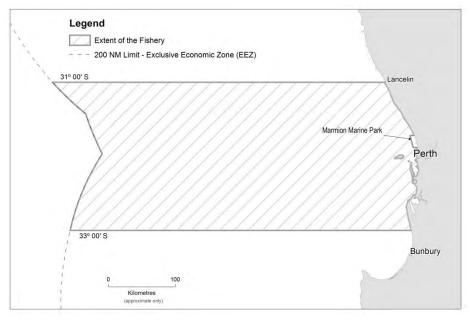
Effort levels increased slightly in 2014 to 480 fishing days undertaken by seven vessels. The total catch of pilchards and sardinella was 1,065 t in 2014, the highest reported since 2006 but still well below catches in the late 1990s and early 2000s (West Coast Purse Seine Figure 2). Recent catch rates have been around the long term average and there are no concerns for stock sustainability

Catches were dominated by sardinella (scaly mackerel, 1,051 t) with approximately 14 t of pilchards landed.

Approximately 10 t of other species were landed, mainly blue mackerel

Fishery Governance

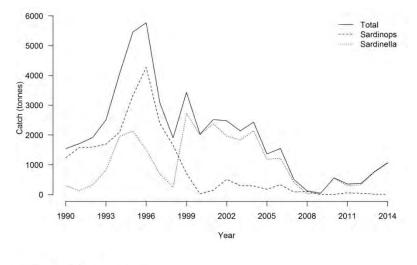
Target commercial catch range: 0 - 3,000 tonnes

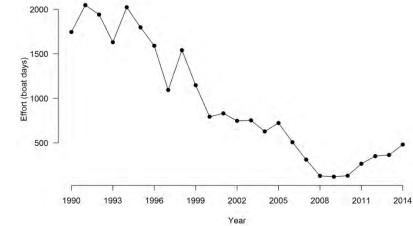

Current Fishing (or Effort) Level: Acceptable

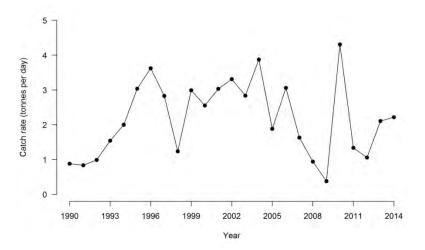
Total effort and catch have been relatively low in recent years due to factors other than stock size (e.g. demand, economics). In addition, fishers have reported that the presence of schools is not as predictable as in previous years, possibly related to changing oceanic conditions. No surveys to estimate pilchard spawning biomass are scheduled for the West Coast stocks. The most recent pilchard spawning biomass estimate (2004) indicated that pilchard stocks on the west coast had recovered to pre-virus levels of approximately 20,000 – 30,000 tonnes. A recent national assessment (Ward *et al.* 2012¹) concluded that the stock was being fished at sustainable levels with current exploitation rates being very low. Less information is available for the sardinella stock but it too has been fished at very low levels in recent years.

New management initiatives (2014/15)

The implementation of a formal quota system with tradeable, Individually Transferable Quota (ITQ) units and a TAC has been a consideration for this fishery for more than ten years. However the implementation of quota for this fishery is considered to be on hold indefinitely, given that catch of pilchards is very low and the effort expended in this fishery has not returned to historic levels since the second pilchard mass mortality event in 1999.


Subject to priorities, the Department may in the future develop a new management plan for this fishery which will formally incorporate the Southern and Northern Development zones with the Perth metropolitan fishery and establish a single consolidated West Coast Purse Seine Fishery.




WEST COAST PURSE SEINE FIGURE 1

Map of the extent of the West Coast Purse Seine Managed Fishery.

¹ Ward, T., Molony, B., Stewart, J., Andrews, J. and Moore, A. (2012). Australian sardine Sardinops sagax, in M. Flood, I. Stobutzki, J. Andrews, G. Begg, W. Fletcher, C. Gardiner, J. Kemp, A. Moore, A. O'Brien, R. Quinn, J. Roach, K. Rowling, K. Sainsbury, T. Saunders, T. Ward & M. Winning (eds), Status of key Australian fish stocks reports 2012, Fisheries Research and Development Corporation, Canberra, pp 272-279.

WEST COAST PURSE SEINE FIGURE 2

Total annual catch of pilchards (Sardinops) and sardinella (upper panel), total effort (days) (middle panel) and nominal catch rate (tonnes per day) (lower panel) in the West Coast Purse Seine Fishery, 1990–2014.

West Coast Demersal Scalefish Resource Status Report

D. Fairclough, E. Lai and M. Holtz.

Main Features				
Status		Current Landings		
Stock level	Recovering	Commercial sector		
Fishing Level		All scalefish:		
Commercial:	Not Acceptable (Pink snapper)	WCDSIMF (2014)		334 t
Recreational:	Acceptable	Demersal suite:		
		WCDSIMF (2014)		309 t
		Other (TDGDLF, WCRLF, CS	SLPF, SWTMF;	; 2014 or 2013/14) 87 t
		Total demersal suite		396 t
			WCDSIMF	Other
		Indicator species	(2014)	(2014 or 2013/14)
		West Australian dhufish	48 t	14 t
		Pink snapper	140 t	45 t
		Baldchin groper	9 t	4 t
		Redthroat emperor	51 t	4 t
		Bight redfish	18 t	< 1 t
		Boat-based recreational fishers (2013/14)		
		Top 15 species:		139 - 166 t
		Indicator species:		
		West Australian dhufish		75 – 87 t
		Pink snapper		28 - 33 t
		Baldchin groper		19 - 22 t
		Redthroat emperor		2 t
		Bight redfish		1 - 2 t
		Charter fishers (2013/14)		
		Top 15 species		43 t
		Indicator species:		
		West Australian dhufish		13 t
		Pink snapper		11 t
		Baldchin groper		10 t
		Redthroat emperor		< 1 t
		Bight redfish		< 1 t

Fishery Description

The West Coast Demersal Scalefish Resource comprises inshore and offshore suites of demersal scalefish species that are exploited by different commercial fisheries and recreational and charter fishers that operate in the West Coast Bioregion (WCB). The West Coast Inshore Demersal suite occurs in waters 20-250 m deep with approximately 100 species of this suite caught by these fisheries. The most important species are West Australian dhufish (Glaucosoma hebraicum) and Pink snapper (Chrysophrys auratus) with other species captured including Redthroat emperor (Lethrinus miniatus), Bight redfish (Centroberyx gerrardi) and Baldchin groper (Choerodon rubescens). The West Coast Offshore Demersal suite, which occurs in waters > 250 m deep, includes Eightbar grouper Hyporthodus octofasciatus, Hapuku Polyprion oxygeneios, Blue-eye trevalla Hyperoglyphe antarctica and Ruby snapper Etelis carbunculus

Commercial

The West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) is a handline and drop line fishery and it is the main commercial fishery that targets demersal species in the WCB. The West Coast Demersal Gillnet and Demersal Longline (Interim) Managed Fishery (WCDGDLF) and Zone 1 of the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed Fishery (JASDGDLF), referred to collectively as the Temperate Demersal Gillnet and Demersal Longline Fisheries (TDGDLF), target sharks and rays but also retain demersal scalefish. Other commercial fisheries that may take a small amount of demersal species in the WCB under exceptions to the West Coast Demersal Scalefish (Interim) Management Plan 2007 include the West Coast Rock Lobster Managed Fishery (WCRLF), the Cockburn Sound Line and Pot Managed Fishery (CSLPF) and the South-West Trawl Managed Fishery (SWTMF). The Commonwealth Western Deepwater Trawl Fishery and the Great Australian Bight Trawl Sector of the Southern and Eastern Scalefish and Shark Fishery, which operate in waters of the WCB deeper than 200 metres, also catch demersal species.

Fishing and Aquatic Tour Industry (Charter)

Demersal scalefish are targeted by the fishing activities of the charter boat industry in the WCB. Line fishing is the main method used by operators licensed to fish in that sector. A small number of fishing tour operators also cater for recreational diving charters.

Recreational

Recreational fishers who target demersal species in the WCB are almost exclusively boat-based. Line fishing is the main method used by recreational fishers, although spear fishing also occurs, but mainly in shallow waters, i.e. < 20 m deep.

Note - The WCDSIMF and the charter and recreational sectors in the WCB are collectively referred to as the West Coast Demersal Scalefish Fishery (WCDSF).

Governing legislation/fishing authority

Commercial

West Coast Demersal Scalefish (Interim) Management Plan 2007

West Coast Demersal Interim Managed Fishery Permit

West Coast Demersal Gillnet and Demersal Longline Interim Management Plan 1997

West Coast Demersal Gillnet and Demersal Longline Interim Managed Fishery Permit

Joint Authority Southern Demersal Gillnet and Demersal Longline Management Plan 1992

Joint Authority Southern Demersal Gillnet and Demersal Longline Managed Fishery Licence

Cockburn Sound (Line and Pot) Management Plan 1995
Cockburn Sound (Line and Pot) Managed Fishery Licence

South West Trawl Management Plan 1989

South West Trawl Managed Fishery Licence

Recreational

Fish Resources Management Act 1994; Fish Resources Management Regulations 1995 and other subsidiary legislation.

Consultation process

Commercial

The Department undertakes consultation directly with permit holders on operational issues. Industry Annual Management Meetings are convened by the West Australian Fishing Industry Council (WAFIC), who are also responsible for statutory management plan consultation under a Service Level Agreement with the Department.

Recreational

Consultation processes are now facilitated by Recfishwest under a Service Level Agreement with the Department, although the Department undertakes direct consultation with the community on specific issues.

Boundaries

Commercial fishery

The WCDSIMF encompasses the waters of the Indian Ocean just south of Shark Bay (at 26°30'S) to just east of Augusta (at 115°30'E) and extends seaward to the 200 nm boundary of the Australian Fishing Zone (AFZ).

Until 1 January 2015 the commercial fishery was divided into five management areas comprising four inshore areas and one offshore area. The inshore areas, i.e. Kalbarri, Mid-West, Metropolitan and South-West, extended outwards from the shore to the 250 m depth contour, while the Offshore Area extended the entire length of the fishery from the 250 m depth contour to the 200 nm boundary of the AFZ (West Coast Demersal Scalefish Figure 1). The Metropolitan Inshore Area was closed to commercial operators in the WCDSIMF and TDGDLF in November 2007 (West Coast Demersal Scalefish Figure 1).

On 1 January 2015 the boundaries of the fishery were amended as described in the section 'New Management Initiatives (2014/15)'.

The boundaries of each of the other fisheries that catch demersal species in the WCB are given in their separate sections of this Status Reports of the Fisheries and Aquatic Resources of Western Australia.

Fishing and Aquatic Tour Industry (Charter) and Recreational fishery

The boundaries applicable to the charter and recreational sectors in the WCB encompass the waters of the Indian Ocean just south of Shark Bay (at 27°S) to just east of Augusta (at 115°30'E) and extend seaward to the 200 nm boundary of the AFZ (West Coast Demersal Scalefish Figure 1).

Management arrangements

Commercial

The WCDSIMF was established in January 2008, following the introduction of the *West Coast Demersal Scalefish* (*Interim*) *Management Plan 2007*. Permit holders are permitted to retain all scalefish (other than a number of species that are under specific State or Commonwealth management) and are not permitted to take sharks and rays.

Access to the Fishery is restricted to 59 Interim Managed Fishery Permit holders. Gear and other restrictions apply (in the form of maximum numbers of lines and hooks and arrangements regulating the carriage of lines and fish) and boats are monitored under the Vessel Monitoring System (VMS).

Each of the management areas is allocated a maximum number of hours of fishing time that may be fished on an annual basis, with the Metropolitan Area currently allocated zero hours. Units are allocated to permits and provide entitlement in "hours" of fishing time. The use of VMS allows fishing effort (hours spent in the Fishery) to be monitored and entitlement use acquitted accordingly. The total capacity of the Fishery restricts fishing effort at a level to ensure that catches of all scalefish and also of the suite of demersal species do not exceed catch objectives (see below). The capacity can be adjusted as required.

The current management objective for the WCDSIMF is to maintain the catches of all scalefish and of demersal species at or below 50 % of those recorded in the WCB during 2005/06 to reduce fishing mortality to a level that will enable recovery of all of these stocks. The status of the three indicator species (Pink snapper, West Australian Dhufish and Baldchin Groper) is used to indicate the status of the entire West Coast Inshore Demersal Suite of scalefish species.

The catch in each management area should also not exceed 50 % of the 2005/06 catch in that area. The annual catch for each indicator species in the WCDSIMF and in each of the areas where they are an indicator should also remain at or below 50 % of their 2005/06 level.

The other commercial fisheries that take demersal scalefish in the WCB (TDGDLF, WCRLF, CSLPF and SWTMF) are subject to limited entry and input and/or output controls and the same management objective of maintaining catches of the suite of demersal species at or below 50 % of those recorded by those fisheries during 2005/06. These other fisheries land only a small percentage (~10%) of the overall catches of demersal scalefish in the WCB.

The detailed management arrangements for each of the other fisheries that catch demersal species in the WCB are given in their separate sections of this Status Reports of the Fisheries and Aquatic Resources of Western Australia.

Since August 2013, fishers in the WCRLF have been permitted exceptions to prohibitions in the WCDSIMF Management Plan to retain and transport demersal scalefish caught in rock lobster pots for personal consumption only, (i.e. not permitted to be sold or retained for a commercial purpose).

Fishing and Aquatic Tour Industry (Charter)

There are two types of fishing tour licence categories.

Fishing Tour Operators Licence: The focus of a tour is on fishing activities, after which fish can be taken home.

Restricted Fishing Tour Operators Licence: The focus is on eco-tourism activities, such as snorkelling or scuba diving, with fishing only allowed for the purpose of a meal eaten during the course of the tour. No fish can be taken home at the end of the tour and any fishing for a meal must be done with a handline. Fishing rods are not permitted on this tour category.

Within each category, there is the provision for a boat-based operation (boat size larger than 7.5 m), a combination land/aircraft/boat (boat size less than 7.5 m) based operation and a land-based operation. Except where extraordinary circumstances can be demonstrated by the applicant, new Fishing Tour Operators Licences are no longer granted. Applications for Restricted Fishing Tour Operators Licences are still considered. Currently, the consideration of any Tour Operator's Licence Application is carried out in accordance with Regulation 128J of the *Fish Resources Management Regulations 1995* and Ministerial Policy Guideline No. 12 'Assessment of Applications for the Granting, Renewal or Transfer of Fishing Tour Operators Licences and Aquatic Eco-Tourism Operators Licences'.

All fishing is subject to recreational fishing regulations (see below), however passengers onboard a fishing tour are not required to hold an individual Recreational Fishing from Boat Licence.

Recreational

The recreational fishery for demersal scalefish in the WCB is managed using input (e.g. size limits, seasonal closures and spatial closures) and output controls (e.g. daily bag limits, boat limits and possession limits).

A suite of new management arrangements was introduced during 2009/10 aimed at reducing the recreational take of demersal scalefish in the WCB by at least 50 % from 2005/06 levels. These arrangements included changes to bag, boat and size limits for demersal scalefish species, a requirement to carry a release weight (to assist in minimising the effects of barotrauma) and the implementation of a closure prohibiting fishing for "high risk" demersal scalefish for two months between 15 October and 15 December.

Since 2 March 2010, all persons fishing from a powered boat anywhere in the State have been required to hold a Recreational Fishing from Boat Licence or fish in the company of a licence holder. The Recreational Fishing from Boat Licence provides a state-wide database of recreational boat fishers for survey purposes.

Research summary

Research on demersal species in the WCB focuses on monitoring the catch levels and stock status of indicator species. Level 3 stock assessments based on a weight of evidence approach, which now incorporate estimation of fishing mortality rates and spawning potential ratios, are conducted at periodic intervals for each of the indicator species within the West Coast Inshore Demersal Suite. Along with the existing indicator species for that suite (West Australian dhufish, Pink snapper and Baldchin groper), the next level 3 assessment will include Redthroat emperor and Bight redfish. Annual Level 1 assessments of catch are also used to monitor these species and the indicator species for the West Coast Demersal Offshore Suite (Hapuku, Blue-eye trevalla, Bass groper). To enable the Level 3 assessments, fish frames of the indicator species are collected from commercial and recreational fishers across the different areas of the WCB (West Coast Demersal Scalefish Figure 1). Otoliths obtained from these frames are used to determine age compositions for species in relevant management areas, from which estimates of fishing mortality are calculated and stock status determined. The last stock assessment of West Australian dhufish, Pink snapper and Baldchin groper was completed in 2013 (see Fisheries Management Paper 262¹ and Fairclough et al., 2014²).

Catch and effort data both for the WCDSIMF and charter fisheries are obtained annually from fishers' daily/trip logbooks, which provide fine-scale data from $10~\text{nm} \times 10~\text{nm}$ and $5~\text{nm} \times 5~\text{nm}$ blocks, respectively. Estimates of the catch of demersal species in this Bioregion by other commercial fisheries (TDGDLF, WCRLF, CSLPF, SWTMF) are determined annually from compulsory logbook data. Full details are reported in the relevant fisheries reports.

The second integrated survey of boat-based recreational fishing in WA was conducted during 2013/14, providing estimates of catch and effort for demersal species in the WCB (Ryan *et al.*, 2015³). Studies are being conducted to determine the comparability of these data with those from previous boat ramp surveys (i.e. creel surveys).

Surveys of the numbers of Pink snapper eggs present in Cockburn Sound during the annual spawning aggregations may in the future be capable of producing estimates of spawning stock biomass for this embayment using a daily egg production model (DEPM). A molecular study demonstrated variable success in the visual identification of snapper eggs (given visually similar eggs of other species are present in this region). Thus, routine molecular validation may be required if this approach to estimating spawning stock biomass was to be adopted.

A State NRM funded project to assess the stock status of indicator species (Bight redfish, Pink snapper and Blue morwong) for the demersal suite in the South Coast Bioregion is due for completion at the end of 2015. This

1 Department of Fisheries Western Australia (2013). Key findings of the 2013 West Coast Demersal Scalefish Resource stock assessment. Fisheries Management Paper No. 262. Department of Fisheries, Western Australia. 36 pp. includes an assessment of the stock status of Bight redfish in the South-west Management Area of the WCB. The study is also examining the stock structure of Bight redfish between south-western Australia and the Great Australian Bight, where it is fished by Commonwealth fisheries.

Retained Species

Commercial production

All scalefish

WCDSIMF (2014) 334 tonnes

Demersal suite

WCDSIMF (2014) 309 tonnes

TDGDLF, WCRLF, CSLPF, SWTMF (2014 or 2013/14)

87 tonnes

Total 396 tonnes

Indicator species

WCDSIMF (2014)

West Australian dhufish 48 tonnes 140 tonnes Pink snapper **Baldchin** groper 9 tonnes **Redthroat emperor** 51 tonnes **Bight redfish** 18 tonnes TDGDLF, WCRLF, CSLPF, SWTMF (2014 or 2013/14) West Australian dhufish 14 tonnes Pink snapper 45 tonnes **Baldchin** groper 4 tonnes **Redthroat emperor** 4 tonnes **Bight redfish** < 1 tonne

Total

West Australian dhufish 62 tonnes
Pink snapper 185 tonnes
Baldchin groper 13 tonnes
Redthroat emperor 55 tonnes
Bight redfish 18 tonnes

Landings

Catches are reported from the most recent complete season of statutory return data for each commercial fishery that lands demersal species in the WCB. This includes 2014 for the WCDSIMF, CSLPF, SWTMF and WCRLF (15 Jan-14 Jan) and 2013/14 for the TDGDLF.

In 2014, the catches of all scalefish by the WCDSIMF fell to 334 t from 379 t in 2013 and the catches of demersal species fell from 357 t to 309 t. This is as a result of decreased entitlement consumption in the fishery. Inshore demersal species' catches fell to 296 t in 2014 from 348 t in 2013, while offshore demersal species' catches increased to 12 t from 10 t in 2013. Nearshore/estuarine species catches

² Fairclough, D.V., Molony, B.W., Crisafulli, B.M., Keay, I.S., Hesp, S.A., Marriott, R.J. (2014). Status of demersal finfish stocks on the west coast of Australia. Fisheries Research Report No. 253. Department of Fisheries. Western Australia. 96 pp.

³ Ryan, K.L., Hall, N.G., Lai, E.K., Smallwood, C.B., Taylor, S.M., Wise, B.S. 2015. State-wide survey of boat-based recreational fishing in Western Australia 2013/14. Fisheries Research Report No. 268, Department of Fisheries, Western Australia. 200p.

increased in 2014 to 10 t from 7 t in 2013. The catch of pelagic species of 14 t in 2014 remained similar to 2013.

In 2014, the catch by the WCDSIMF in the Kalbarri Area of all scalefish (133 t) and demersal species (123 t) decreased from the respective 164 t and 156 t landed in 2013. Similarly, the WCDSIMF catch in the Mid-west Area in 2014 of all scalefish (155 t) and of demersal species (142 t) fell from the respective catches of 173 t and 160 t in 2013. In contrast, catches of all scalefish and of demersal species in the Southwest Area increased slightly to 45 t and 43 t, respectively, in 2014, from 41 t and 40 t in 2013.

In 2014, the WCDSIMF catch consisted of 75 scalefish (teleost) species or species groups. This comprised 54 inshore and offshore demersal species, 11 estuarine/coastal species and nine pelagic species.

Four demersal species/species groups comprised 77 % of the total catch of the WCDSIMF in 2014, i.e. Pink snapper (140 t), Redthroat emperor (51 t), West Australian dhufish (48 t) and redfish species (*Centroberyx* spp., 19 t). Catches of offshore demersal species in 2014 were low, i.e. Hapuku, 4 t, Eightbar grouper, 4 t; Bass groper, 2 t, Blue-eye trevalla, 2 t and Ruby snapper, < 1 t.

In 2013/14, catches of demersal scalefish by the TDGDLF in the WCB increased to 85 t from 37 t in 2012/13. Other commercial fisheries permitted to land demersal scalefish species in the WCB (WCRLF, CSLPF and SWTMF), reported a catch of 2 t combined.

West Australian dhufish: The total catch of West Australian dhufish by the WCDSIMF decreased to 48 t in 2014 from 63 t in 2013. The catch of 4 t of WA dhufish in the Kalbarri Area in 2014 was similar to 2013. In the Mid-west Area, the catch in 2014 decreased to 34 t from 47 t in 2013. In the South-west Area, the catch in 2014 of 10 t of WA dhufish fell slightly from the 13 t landed in 2013 (West Coast Demersal Scalefish Figure 2). Catches of WA dhufish by the TDGDLF in the WCB increased to 14 t in 2013/14 from 9 t in 2012/13, while the SWTMF and CSLPF did not report any landings of this species in 2014.

Pink snapper: The total catch of Pink snapper by the WCDSIMF in 2014 of 140 t, decreased from 185 t in 2013. This was due to the decrease in catches of snapper in the Kalbarri area, from 105 t in 2013 to 75 t in 2014 and in the Mid-west Area from 77 t to 62 t. In the South-west Area, the catch in 2014 remained low and similar to previous years at 3 t (West Coast Demersal Scalefish Figure 3). Catches of snapper by the TDGDLF in the WCB increased to 45 t in 2013/14 from 9 t in 2012/13, due to increased long-line fishing. Pink snapper landings by the other commercial fisheries combined in the WCB in 2014 remained very low (< 1 t).

Baldchin groper: The catch of Baldchin groper by the WCDSIMF in 2014 of 9 t was slightly lower than the 11 t landed in 2013 (West Coast Demersal Scalefish Figure 4). This was taken mostly in the Mid-west Area (8 t). Approximately 6 t of the catch was taken in the Abrolhos Zone A of the WCRLF, similar to 2013. 3 t of Baldchin groper was landed by the TDGDLF in 2013/14 in the WCB and 1 t was landed by the WCRLF in 2014.

Redthroat emperor: A total catch of 58 t of emperors (Lethrinidae) was reported by the WCDSIMF in 2014, increasing from the 51 t landed in 2013. This catch comprised

predominantly Redthroat emperor, with 51 t landed in 2014, being an increase from 44 t in 2013 (West Coast Demersal Scalefish Figure 5). In 2014, 27 t of the WCDSIMF Redthroat emperor catch was taken in the Kalbarri Area, a slight decrease from 29 t in 2013. 25 t was caught in the Midwest Area in 2014, an increase from 15 t in 2013. Combined catches of Redthroat emperor in 2014 or 2013/14 in the WCB by other commercial fisheries totalled 4 t.

Bight redfish: A total catch of 19 t of redfishes (Berycidae) was reported by the WCDSIMF in 2014, increasing from 16 t in 2013. This catch comprised almost exclusively Bight redfish (99 %), which was taken in the South-west Area (West Coast Demersal Scalefish Figure 5). Less than 1 t of Bight redfish were landed by other commercial fisheries in the WCB in 2014 or 2013/14.

Recreational fishing (boat-based, non-charter) (2013/14)

Top 15 demersal scalefish species 139 - 166 tonnes Indicator species

West Australian Dhufish

Pink snapper

30 tonnes

Baldchin Groper

Redthroat emperor

2 tonnes

Bight redfish

1 tonne

The catch by boat-based recreational fishers in the WCB of the top 15 demersal species/species groups was estimated to be about 152 t in 2013/14 and thus slightly less than the estimate for 2011/12 of 159 t (West Coast Demersal Scalefish Figure 6). Estimated catches of West Australian dhufish in 2013/14 of 81 t increased from the 74 t landed in 2011/12. In contrast, catches of Pink snapper and Baldchin groper in 2013/14 of 30 t and 20 t, respectively, were lower than the 33 t and 29 t estimated for 2011/12. Estimated catches of both Redthroat emperor and Bight redfish in 2013/14 of \leq 2 t were similar to 2011/12. Less than 1 t of each of the offshore demersal species (e.g. Eightbar grouper, Bass groper) was estimated to have been landed in 2013/14, which is consistent with 2011/12.

Charter fishing (2013/14)

Top 15 demersal scalefish species/species groups

Indicator species

West Australian Dhufish
Pink snapper
Baldchin Groper
Redthroat emperor
Bight redfish

43 tonnes
13 tonnes
14 tonnes
14 tonnes
15 tonnes
16 tonnes
17 tonnes
18 tonnes
18 tonnes
18 tonnes
18 tonnes
18 tonnes

A total of 43 t of the top 15 demersal species/species groups were landed by charter fishers in 2013/14, which is similar to the 42 t landed in 2012/13 (West Coast Demersal Scalefish Figure 6). The catches of each of the indicator species in 2013/14 were also similar to 2012/13, i.e. West Australian

dhufish: 13 t in both years, Pink snapper: 11 t in 2013/14 vs 10 t in 2012/13, Baldchin groper: 10 t in both years, and Redthroat emperor and Bight redfish both ≤ 1 t in both years. Very small catches of offshore demersal species were reported in 2013/14, as in previous years (< 1 t in total).

Fishing effort/access level

Commercial

In 2014, 42 licensed fishing boats fished in the WCDSIMF, two less than in 2013. Eleven vessels fished in the Kalbarri Area, 35 in the Mid-west and 6 in the South-west, which was one less in each area than in 2013. Thirteen vessels fished in the Offshore Area. Some vessels have entitlements to fish in more than one inshore area, while in 2014 all could access the Offshore Area.

The total number of days on which fishing occurred by all vessels in the WCDSIMF in 2014 (1,261) was lower than the 1,381 days reported in 2013. This is reflected in the slight decrease in consumption of fishing entitlement (hours) by the whole fishery from 61 % in 2013 to 58 % in 2014 and in the total number of hours fished (hours searching + hours fishing) from 15,970 h in 2013 to 14,750 h in 2014. Similarly, the number of hours of fishing alone decreased from 10,900 h in 2013 to 9,750 h in 2014. Units of entitlement consumed in 2014 vs 2013 decreased in the Kalbarri Area (80 to 65 %), remained steady in the Mid-west Area (61 %) and increased slightly in the South-west Area (38 to 40 %). Entitlement consumed in the Offshore Area was similar to that in 2013 at 49 %.

Effort recorded by other fisheries that catch demersal species in the WCB is given in their separate sections of this *Status Reports of the Fisheries and Aquatic Resources of Western Australia*.

Recreational

The estimated number of boat days (days on which fishing occurred by a 'boat party') decreased from 293,112 days ($\pm 10,688$) in 2011/12 to 249,719 ($\pm 10,563$) days in 2013/14. The number of hours fished decreased from 820,693 h ($\pm 31,111$) to 716,722 h ($\pm 31,144$). Errors reported are one standard error. These effort estimates (fishing days and hours fished) are not directly comparable with estimates of effort from previous surveys, which were based on different survey methods.

Fishing and Aquatic Tour Industry (Charter)

The number of charter licences that reported fishing activities increased to 62 in 2013/14 from 53 in 2012/13. However, the total number of fisher days decreased to 22,800 in 2013/14 from about 23,500 in 2012/13, reflecting a small decline in the number of clients reported to 24,800, from ca 26,000.

Stock Assessment

Assessment complete

Yes (2013)

Assessment level and method:

Level 3 - Fishing mortality and spawning potential ratio (Periodic)

Level 1 - Catch by sector (Annual)

Breeding stock levels

West Australian dhufish: Recovering
Pink snapper: Recovering

Baldchin groper: Recovering

Inshore Demersal: A level three assessment of the status of stocks of three inshore demersal indicator species (West Australian dhufish, Pink snapper and Baldchin groper) in the WCB and its different management areas was conducted in 2013. This was an assessment of fishing mortality rates (F) based on fisheries-dependent age structure data collected from 2008/09-2010/11 for the first two species and 2007/08-2010/11 for the latter species. Assessments of Redthroat emperor and Bight redfish will form part of the next full assessment of demersal indicator species in the WCB. Methods for estimating F included some that have previously been independently reviewed and additional new methods, which have fewer assumptions, but have also been peerreviewed (O'Neill, 2009; Fisher, 2012; Fairclough et al., $(2014)^1$. The F estimates were compared with internationally accepted biological reference points to determine the change in status of stocks over time. Estimates of spawning potential ratios (SPR) were also determined.

The assessment demonstrated that both F and SPR for West Australian dhufish and F for Pink snapper in the West Coast Bioregion had improved. Thus, F decreased and SPR increased since the previous assessment period of 2005/06-2007/08. This indicates evidence of recovery in their breeding stocks. However, at the time of the current assessment, stocks had not yet recovered to an appropriate level, i.e. the threshold, where F is equivalent to the rate of natural mortality. The recovery trend was consistent among management areas for both species. However, the level of F for Pink snapper stocks in the northern management areas (Kalbarri and Mid-west) is higher than in the southern management areas (Metropolitan and South-west), indicating better status of stocks in the southern half of the WCB.

The F estimate for Baldchin groper was above the limit reference point and thus at unacceptable levels. The F and SPR levels have not changed significantly since the previous available assessment period of 2000/01-2001/02.

The limited levels of recovery for each of the indicator species at the time of this assessment was expected because changes to management were only introduced between late 2007 and early 2010, which overlaps the sampling period for age data used in that assessment. The precise rate at which the stocks for each indicator species will recover will also be influenced by their biological characteristics. Recovery to threshold management levels is estimated to take at least 10 years.

Offshore Demersal: A Level 1 assessment using catch is conducted annually for the offshore demersal suite, including Eightbar Grouper, Bass Groper, Hapuku, Blue-eye Trevalla and Ruby Snapper. These species are particularly vulnerable to overfishing, as their biological characteristics include

See footnote 2, page 87

¹ O'Neill., M. (2009). Scientific review of the West Coast Demersal Scalefish Fishery, Western Australia. Fisheries Occasional Publication, 66. Department of Fisheries, Western Australia. 24 pp.

Fisher, E.A. (2012). Tools for assessing data-limited fisheries and communicating stock status information. Ph.D. thesis, Murdoch University, Perth, Western Australia. 238 pp. http://researchrepository.murdoch.edu.au/14881/

being long-lived with associated low rates of natural mortality and productivity. In addition, some aggregate to spawn and most suffer barotrauma when caught due to the depths in which they are fished (> 250 m). Spawning by Eightbar grouper does not occur in the WCB and stocks are reliant on recruits dispersing to the WCB from spawning in the northern bioregions (Wakefield *et al.*, 2013¹). However, given the current low level of catches, risks to the biological sustainability of the stocks of each of these species in the WCB are considered to be acceptable.

Using the assessments of indicator species, revised management actions have reduced the ecological risks to the suites of inshore and offshore demersal species in the WCB to acceptable levels (see Fletcher *et al.*, 2010²). The inshore suite has moderate risks associated with meeting social and economic objectives for the community. This combination of factors means that this suite of species still has a high priority for the Department with the inshore demersal suite requiring continued close monitoring and assessment. The offshore demersal suite is currently considered to have a low risk level.

Non-Retained Species

Bycatch species impact

Low

Line fishing for demersal species using baited hooks is highly selective³ for demersal fishes. While other demersal species that are caught but not normally retained during demersal fishing activities (including inedible species, e.g. Silver Toadfish, and small species, such as wrasses) may not all survive this still represents a minor impact on these stocks.

Listed species interaction

Negligible

As line fishing is highly selective for demersal fishes, interactions with listed species by commercial, charter and recreational fishers in the WCDSF are minimal. Commercial WCDSIMF and charter fishers are required to record listed species interactions in their statutory returns. During 2014, two grey nurse sharks were caught by the WCDSIMF and both released alive. In 2013/14, charter fishers caught and released one grey nurse shark alive and two Goldspotted rockcod using a release weight (greater than the maximum legal size limits of 1 m or 30 kg).

Ecosystem Effects

Food chain effects

Low

An FRDC study⁴ examined the last 30 years of catch data by commercial wetline, gillnet and longline fisheries in the WCB and found that the species composition in catches had

changed over time. This may be a function of changes in targeting or differences in reporting methods but there was no evidence of a decline in the trophic level or mean size in catches representing a low risk to the ecosystem.

Habitat effects

Negligible

The main fishing method used in the commercial and recreational fishery for demersal species (line fishing), has little physical impact on the benthic environment and hence negligible risk to benthic habitats.

Social Effects

Commercial

The total number of crew members (excluding the skipper) employed per trip on permitted vessels that fished in the WCDSIMF in 2013 ranged from zero to four, with the majority employing two. Over 100 people are therefore directly employed by this fishery.

Fishing and Aquatic Tour Industry (Charter)

In 2013/14, 96 charter operators were licensed to operate in the WCB via a Fishing Tour Operators Licence, compared with 98 in 2012/13. Sixteen held a Restricted Fishing Tour Operators Licence in 2013/14, as in 2012/13. The number of people employed in the charter industry has not been estimated.

Recreational Fishing

There were approximately 131,000 Recreational Fishing from Boat Licence holders in Western Australia between May 2013 and April 2014⁵.

Economic Effects

Estimated annual value (to fishers) for 2014:

Level 2 - \$1-5 million

The estimated economic value of the WCDSIMF in 2014 was in the range of \$1-5 million, as for recent years.

Fishery Governance

Commercia

Current Fishing (or effort) level

Not acceptable (Pink snapper)

Catch (or effort) limit range:

All scalefish

WCDSIMF 449-469 tonnes

Demersal suite

WCDSIMF 410 tonnes

All fisheries combined (WCDSIMF, TDGDLF, WCRLF, CSLPF, SWTMF)
450 tonnes

The primary management objective for the WCDSIMF is to maintain the total catch of all scalefish, of the demersal suites

¹ Wakefield, et al. (2013a). Contrasting life history characteristics of the eightbar grouper Hyporthodus octofasciatus (Pisces: Epinephelidae) over a large latitudinal range reveals spawning omission at higher latitudes. ICES J Mar Sci, 70, 485-497

² W.J. Fletcher, J. Shaw, S.J. Metcalf & D.J. Gaughan (2010) An Ecosystem Based Fisheries Management framework: the efficient, regional-level planning tool for management agencies. Marine Policy 34 (2010) 1226–1238

³ Bycatch interactions of the gillnet and longline sector are presented in the relevant report.

⁴ Hall, N.G. and Wise, B.S. (2011). Development of an ecosystem approach to the monitoring and management of Western Australian fisheries. FRDC Report – Project 2005/063. Fisheries Research Report No. 215. Department of Fisheries, Western Australia. 112 pp.

⁵ See footnote 3, page 87

and of each of the indicator species, i.e. West Australian dhufish, Pink snapper and Baldchin groper, at no more than 50 % (the 'benchmark') of those caught by wetline fishers in the WCB during 2005/06. This is also proposed for the two recently-adopted indicator species, Redthroat emperor and Bight redfish. In addition, catches of the demersal suites in the WCB by all fisheries, i.e. WCDSIMF, TDGDLF, WCRLF, CSLPF and the SWTMF, should remain at or below 50 % of those in 2005/06.

In 2014, catches of all scalefish (334 t) and of the suite of demersal species (309 t) by the WCDSIMF remained below 50 % of those of 2005/06, i.e. 449-469 t and 410 t, respectively. The total catch of demersal species in a full year of fishing (either 2013/14 or 2014) by the WCDSIMF, TDGDLF, WCRLF, CSLPF and the SWTMF was 396 t, which is also below the benchmark of 450 t.

The catches of 48 t of West Australian dhufish by the WCDSIMF in 2014 was below the benchmark for the whole fishery of 72 t and this was also the case for each management area in which it is an indicator, i.e. Mid-west: 34 t landed vs 44 t benchmark; South-west 10 t vs 19t benchmark. Similarly, the WCDSIMF catch of Baldchin groper (9 t) in 2014 remained below its benchmark of 17 t, as did Redthroat emperor (51 t) and Bight redfish (19 t) with respect to their proposed benchmarks of 95 t and 37 t. Although catches of Pink snapper have declined since 2013, they remained above the 120 t benchmark for the whole fishery in 2014, i.e. 140 t. This was also the case in both the Kalbarri Area (75 t landed vs 65 t benchmark) and the Midwest Area (62 t vs 43 t). The increase in 2013/14 of Pink snapper catch by the TDGDLF was due to opportunistic targeting of scalefish by long-line.

As in previous years, WCDSIMF entitlements were not fully utilised in 2014. This latent effort leaves potential for further increases in effort and therefore catches in subsequent years if catch rates remain similar or increase. As stocks of demersal species begin to recover, catches of the indicator species will need to be monitored closely. The effect of any changes to management to reduce catch will also need to be monitored closely to ensure they have that effect and allow continuation of stock recovery.

Charter/recreational Current Fishing level

Demersal suite

Acceptable

Catch (or effort) limit range:

250 tonnes (from adjusted IFAAC values)

Retained catches of the suite of demersal species (represented by the top 15 species/species groups) and of the indicator species by the charter and recreational sector in the WCB should remain below 250 t (50 % of 2005/06 catches, as adjusted by the Integrated Fisheries Allocation Advisory Committee, IFAAC, 2013¹).

The latest available catch data for recreational fishers in 2013/14 was estimated via an integrated phone diary survey of boat-based fishers. This is not directly comparable to the previous estimates of recreational catch of demersal species from 2005/06, which was determined from a boat ramp

survey of boat-based fishers and was an under-estimate of the total recreational boat-based catch. Therefore, an increased adjusted estimate of catch in 2005/06 of the top 15 demersal species and of the indicator species was estimated by the IFAAC. These values for 2005/06 (plus those from charter fishers) are now being used for comparison.

The estimated catch of the top 15 species/species groups by the recreational sector (charter and recreational boat-based fishers) in 2013/14 was 195 t, which was below the adjusted 250 t IFAAC value. The total catch of West Australian dhufish (94 t) was less than 50 % of the 2005/06 catch of 126 t, as were catches of Baldchin groper (30 t landed vs 33 t benchmark) and catches of emperors (5 t) and redfish (2 t) species were below the nominal benchmark from 2005/06 of 11 and 6 t, respectively. However, the catch of 41 t of Pink snapper was slightly greater than the 50% of 2005/06 benchmark of 37 t – but within tolerance levels.

New management initiatives (2014/15)

Commercial

Amendments to the WCDSIMF management plan were implemented on 1 January 2015 in response to outcomes of the 2013 stock assessment of key indicator species in the WCB and current catches of snapper in relation to their current management targets.

Although the total retained catch of demersal scalefish within the WCB has been reduced to below the target levels (50% of the 2005/06 catch) the catch of Pink snapper within the Mid-West and Kalbarri areas of the WCDSIMF has remained high and in recent years increased to levels significantly above the target for this indicator species.

The amendments were as follows:

- A 33.3% reduction of the unit value for the Mid-West Area of the WCDSIMF Fishery (from 60 minutes to 40 minutes per unit);
- A 25% reduction of the unit value for the Kalbarri Area of the WCDSIMF Fishery (from 60 minutes to 45 minutes per unit); and
- An amalgamation of the Offshore Area with the three inshore areas resulting in the WCDSIMF Fishery being comprised of three broader areas. The amalgamation was accompanied by the removal of the 2400 hours currently allocated to the Offshore Area.

Formal catch management guidelines are being developed to establish clear and specifically articulated performance levels and associated management actions designed to achieve agreed objectives for the ecological/aquatic resources and relevant fishery sectors. The catch management guidelines determine how the various target catch adjustments by the different sectors that take demersal species will be most efficiently achieved.

Pre-assessment of the WCDSIMF against MSC criteria was completed in 2015.

Recreational/Charter

The Department of Fisheries has completed two Statewide Recreational Boat Fishing Surveys in 2011/12 and 2013/14 and has commenced the third survey in mid-2015. The Department is now able to estimate the quantity of fish retained and released by boat based fishers for each WA

¹ Integrated Fisheries Allocation and Advisory Committee (2013). West Coast Demersal Scalefish Allocation Report. Fisheries Management Paper No. 249. Department of Fisheries, Western Australia. 60 pp.

marine Bioregion. This information will assist the Department in managing the State's fisheries and aquatic ecosystem resources.

A review of the effectiveness of the recreational fishing arrangements implemented in the WCB to achieve the 50 % reduction in catch from 05/06 levels was undertaken during 2013, following the results of the Statewide Recreational Boat Fishing Survey and the outcomes of the stock assessment of indicator species. It was considered that the current management arrangements should be maintained to ensure recovery is achieved. On 1 February 2013 a simplified set of statewide recreational fishing rules were implemented. The major changes being a reduction from 13 to four categories of finfish species and, where possible, single bag limits for each species across the State. Size limits are now being formally reviewed across the state.

Integrated Fisheries Management

Integrated Fisheries Management (IFM) is one of the policies aimed at making sure that Western Australia's fisheries continue to be managed in a sustainable and equitable manner into the future. The IFM process has been completed for the demersal scalefish resource in the WCB. Two Fisheries Management Papers relevant to the implementation of IFM for the demersal scalefish resource in the WCB were released in July 2010¹. The Minister for Fisheries has made a determination in relation to the sectoral allocations for the West Coast Demersal Scalefish Resource. The overall allocation of shares in the total suite of species being 64% to the commercial fishing sector and 36% to the recreational sector. In addition catch proportion guidelines (rather than specific fixed proportional shares) for WCB indicator species were also determined. These were as follows:

West Australian dhufish – recreational sector 60%, commercial sector 40%

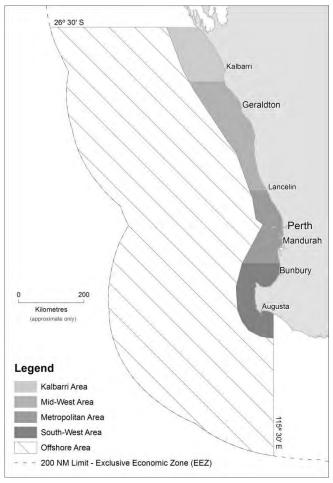
Pink snapper – recreational sector 20%, commercial sector 80%

Baldchin groper – recreational sector 65%, commercial sector 35%

External Factors

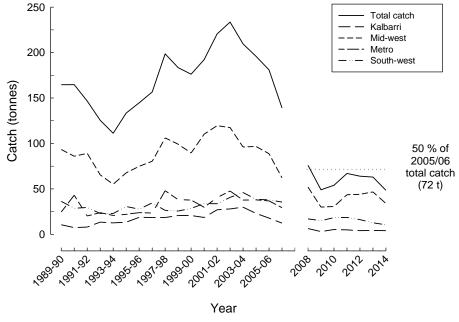
Recruitment success of both West Australian dhufish and Pink snapper varies from year to year and is influenced by environmental factors. Thus, the stocks of those species in the fishery are characterised by strong and weak recruitment years, which may influence catch rates. This is likely to be similar for other long-lived demersal species in the WCB.

Cockburn Sound is the only known spawning aggregation location for Pink snapper in the WCB. Juveniles also use the area as a nursery for approximately one and a half years following settlement, before leaving Cockburn Sound. Ongoing industrial development in the area may have detrimental effects on the environmental conditions that are important for both spawning and juvenile survival and thus influence future recruitment success from Cockburn Sound to the WCB; thus these developments may increase the risks to sustainability of Pink snapper in the WCB.

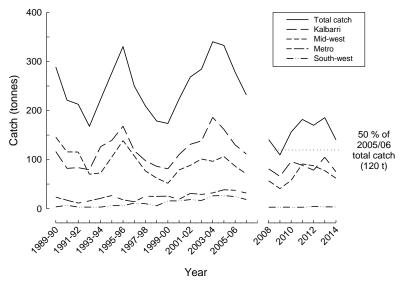

The Commonwealth Western Deepwater Trawl Fishery and Great Australian Bight Trawl Sector of the Southern and Eastern Scalefish and Shark Fishery fish in waters of the WCB from the 200 m isobath to the boundary of the AFZ. These fisheries target species such as Deepwater Flathead *Platycephalus conatus* and Bight Redfish *Centroberyx gerrardi*. The geographical overlap of these fisheries with the WCDSF indicates that they are likely to be fishing the same stocks. Currently, catches by these Commonwealth fisheries are very small in the WCB. A current WA NRM funded project is focussed on the status and connectivity of Bight Redfish in the SCB and WCB and will include Commonwealth fishery catches in the assessment of stock status and risks to sustainability.

The Commonwealth's proposed South-West Marine Bioregional Plan incorporates areas closed to fishing. These will restrict access to fishing in parts of the WCB to all sectors, i.e. commercial, recreational and charter. A compensation package will be offered to fishers for losses associated with closure to fishing in different areas. A public consultation period requesting comment on the guidelines for the operation of the package closed on July 1 2013. However, although the management plans for the Commonwealth's South-West Marine Bioregional Plan were intended to come into effect on 1 July 2014 they have still not been implemented and are currently under review.

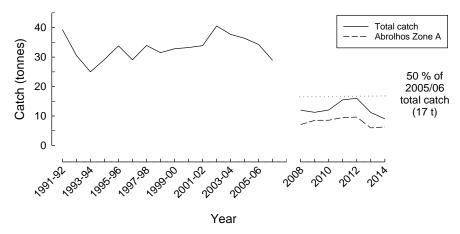
Climate change may lead to a range of impacts (e.g. increased water temperatures, acidification) which could influence aspects of the biology of demersal species, such as spawning success, settlement patterns and thus recruitment patterns. Extreme events, such as the marine heatwave in 2011^2 , may have severe negative effects, including increased mortalities.


¹ See Fisheries Management Papers 237 and 247 http://www.fish.wa.gov.au/About-Us/Publications/Pages/Fisheries-Management-Papers.aspx.

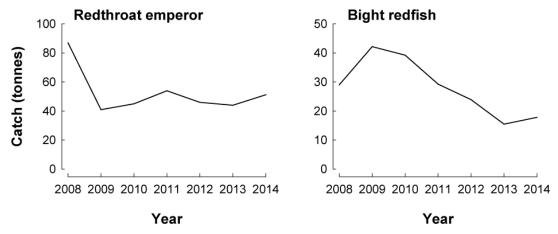
² See http://www.fish.wa.gov.au/Documents/research_reports/frr222.pdf.


WEST COAST DEMERSAL SCALEFISH FIGURE 1

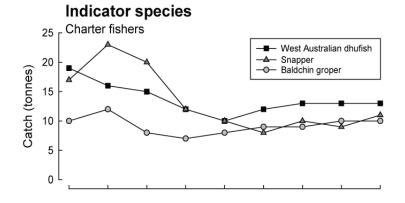
Map of the boundaries of the West Coast Demersal Scalefish Fishery extending from 26°30′ S to 115°30′ E. The northern boundary shown applies to the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) and is the proposed future boundary for the charter and recreational fishery. The Kalbarri, Mid-west, Metropolitan and South-west areas apply only to the WCDSIMF and extend from the coast to the 250 m depth contour, while the offshore area encompasses the waters from the 250 m depth contour outwards to the boundary of the 200 nm Australian Fishing Zone and from 26°30′ S to 115°30′ E. Note the Metropolitan Area is currently closed to fishing by the WCDSIMF.


WEST COAST DEMERSAL SCALEFISH FIGURE 2

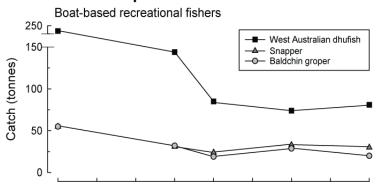
Total catch and catch by area of West Australian dhufish *Glaucosoma hebraicum* by commercial wetline fishers in the West Coast Bioregion between 1989/90 and 2006/07 and in the West Coast Demersal Scalefish (Interim) Managed Fishery between 2008 and 2014.


WEST COAST DEMERSAL SCALEFISH FIGURE 3

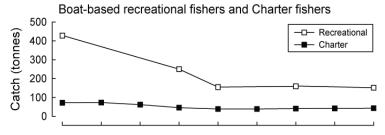
Total catch and catch by area of Pink snapper *Chrysophrys auratus* by commercial wetline fishers in the West Coast Bioregion between 1989/90 and 2006/07 and in the West Coast Demersal Scalefish (Interim) Managed Fishery between 2008 and 2014.

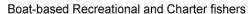

WEST COAST DEMERSAL SCALEFISH FIGURE 4

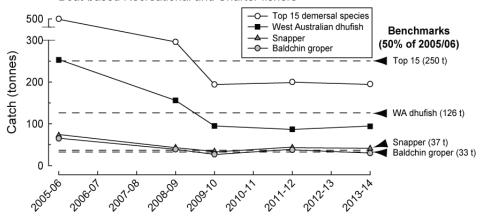
Total catch of Baldchin Groper *Choerodon rubescens* by commercial wetline fishers in the West Coast Bioregion (WCB) between 1991/92 and 2006/07 and by the West Coast Demersal Scalefish (Interim) Managed Fishery in the WCB and the Abrolhos Zone A of the Western Rock Lobster fishery between 2008 and 2014.



WEST COAST DEMERSAL SCALEFISH FIGURE 5


Total catches of Redthroat emperor *Lethrinus miniatus* and Bight redfish *Centroberyx gerrardi* in the West Coast Bioregion by the West Coast Demersal Scalefish (Interim) Managed Fishery between 2008 and 2014. Note: catches of each species in the WCB prior to the WCDSIMF commencing in 2008 are not shown, as emperors and redfish species were reported using a range of common names and name groups and thus cannot be accurately estimated.


Indicator species



Top 15 demersal species

Total catch of demersal species

WEST COAST DEMERSAL SCALEFISH FIGURE 6

Catch of the indicator species (West Australian dhufish, Snapper, Baldchin groper) and of the top fifteen demersal species by boat-based recreational and charter fishers in the West Coast Bioregion between 2005/06 and 2013/14. Note that catches of both Redthroat emperor and Bight redfish have remained low in each year between 2005/06 and 2013/14 and are not shown on these graphs.

Octopus Fishery Status Report

A. Hart, D. Murphy, L. Joll, L. Pickles and S. Walters

Main Features Status Current Landings Stock level Adequate Commercial - Statewide 204 t Fishing level Acceptable Recreational - Statewide (2013/14 estimate) 1.4 t

Fishery Description

The octopus fishery in Western Australia primarily targets *Octopus cf. tetricus*, with occasional bycatch of *O. ornatus* and *O. cyanea* in the northern parts of the fishery, and *O. maorum* in the southern and deeper sectors.

Fishing activities targeting octopus in Western Australia can be divided in four main categories. The West Coast Rock Lobster Managed Fishery (WCRLF) harvests octopus as a byproduct, and historically accounted for the majority of total octopus landings, although the Developing Octopus Fishery (DOF) is now the major octopus fishery. The Cockburn Sound (Line and Pot) Managed Fishery (CSLPF), uses unbaited or passive (shelter) octopus pots; the DOF uses both passive (shelter pots) pots and active (trigger pots) pots to selectively harvest octopus. Recreational octopus fishing consists of bycatch from recreational lobster pots, and targeted octopus fishing, mostly by SCUBA divers. In addition to these 4 main sectors, numerous trawl and trap fisheries land small amounts of octopus as a byproduct.

Governing legislation/fishing authority

Commercial

Cockburn Sound (Line and Pot) Limited Entry Fishery Notice 1995

Cockburn Sound (Line and Pot) Managed Fishery Licence

Exemptions under Section 7 of the Fish Resources

Management Act 1994

West Coast Rock Lobster Managed Fishery Management Plan 2012

West Coast Rock Lobster Managed Fishery Licence

Recreational

Fish Resources Management Act 1994; Fish Resources Management Regulations 1995 and other subsidiary legislation.

Consultation process

Commercial

The Department undertakes consultation directly with licensees on operational issues. Industry Annual Management Meetings are convened by the Western Australian Fishing Industry Council (WAFIC), who are also responsible for statutory management plan consultation under a Service Level Agreement with the Department.

Recreational

Consultation processes are now facilitated by Recfishwest under a Service Level Agreement with the Department, although the Department undertakes direct consultation with the community on specific issues.

Boundaries

Recreational octopus fishing is permitted to operate throughout Western Australian waters, with the exception of areas closed to recreational fishing such as reserves and sanctuaries. Each of the four commercial fishing sectors are limited spatially to the boundaries inherent in their legislative instruments. Octopus caught in the WCRLF are restricted to the boundaries of that fishery (between latitude 21° 44′ S and 34° 24′ S). Octopus catch in the CSLPF is limited to Cockburn Sound. Octopus caught in the DOF are limited to the boundaries of the developmental fishery, which is an area bounded by the Kalbarri Cliffs (26° 30' S) in the north and the South Australian border. Within the DOF there is also spatial separation of the areas fished by "Exemption holders".

Management arrangements

For the WCRLF, the keeping of octopus as a byproduct is permitted without catch restrictions or size-limits. The catch rate of octopus within the fishery is monitored as a performance indicator to ensure it is maintained within historical levels (see WCRLF status report).

The CSLPF is managed through input controls in the form of limited entry and gear restrictions. The DOF is also managed through limited entry (currently only 5 exemption holders) and limits on octopus pot allocations specific for passive (shelter) and active (trigger) octopus traps. Effort is spatially controlled, with each exemption holder allocated a specific area of coast. Sustainable harvest levels and pot allocations in the DOF are currently being examined through a combination of exploration of new areas, and associated biological and stock assessment research. It is expected that trap allocations for the DOF will be finalised in 2015 with the implementation of a Management Plan and establishment of an Interim Managed Fishery.

For the recreational sector, the current bag limit is 15 octopus, with a boat possession limit of 30 octopus.

A comprehensive Ecologically Sustainable Development assessment of this fishery has also been undertaken to

identify any potential sustainability risks requiring direct management. Boxed text in this status report provides the annual assessment of performance for this issue.

Research summary

Current research is focused on the assessment of annual catch and effort statistics from commercial fisheries which are generally reported on a monthly basis. In the DOF, additional reporting of daily catch and effort statistics by spatial location is also undertaken. The daily logbook provides details of the octopus fishing operations such as the depth, habitat, pot types used and soak times (the period of time pots remain in the water until next pull). Details on catch include catch size categories and the location of the fishing gear is recorded with a GPS position to enable a more precise spatial breakdown of fishing activities and the identification of fishing zones.

The Department has recently completed a research project with funding from the Fisheries Research and Development Corporation (FRDC). The project was titled "FRDC 2010/200: Innovative development of the *Octopus tetricus* fishery in Western Australia". Results from this project are being used to advise industry and government on sustainable harvest levels and pot allocations appropriate for an expansion of the octopus fishery into the future. Methods of assessing the Octopus fishery were also developed as part of this project and will be employed in future stock assessments. These methods include age estimation techniques, fishery independent surveys, and age-based per recruit methods that account for semelparity.

Retained Species

Commercial landings (season 2014):

204 tonnes (live weight)

Recreational catch estimate (season 2013/14):

2.0 tonnes (live weight)

Landings

Commercial: In 2014 the total commercial octopus catch was 204 t live weight, an 8 % decrease over last year's catch of 226 t (Octopus Figure 1).

On a sector-specific level, octopus catch from the WCRLF declined between 2011 and 2014, from 34 to 14 tonnes. Catch from the CSLP declined 17% in 2014, from 47 t to 39 t but was still over 100 % increase from 2012 (20 t). Catch from the DOF, 149 t, has decreased by 7 % from 2013, 160 t (Octopus Figure 1).

The DOF has steadily risen from 4% of the total catch in 2001 to an average of 71% between 2010 and 2014 (Octopus Table 1). At the same time, share of catch from the lobster fishery has declined from 86% to 8%, primarily as a result of effort reductions, which have occurred in that fishery.

Recreational: Annual estimates of recreational catch by boat-based fishers at both the statewide and bioregional levels were recently calculated for 2013/144 (Ryan *et al.*, 2015¹). The estimated total number of octopus captured

¹ Ryan, K.L., Hall, N.G., Lai, E.K., Smallwood, C.B., Taylor, S.M., Wise, B.S. 2015. Statewide survey of boat-based recreational fishing in Western Australia 2013/14.

during this period for all bioregions was 2,800 (92% in the West Coast Bioregion) which equates to a total weight of 2.0 tonnes

Fishing effort/access level

Commercial: Fishing effort in the commercial octopus fishery is measured as the amount of days fishing in which octopus was caught. Days fished is a reasonable indicator of effort in the DOF and CSLP fisheries, but not in the WCRLF because octopus is bycatch in that fishery. Days fished in the CSLP and DOF were 492 and 812 respectively, an increase of 24% and decrease of 18% respectively, from 2013 (Octopus Table 1).

Stock Assessment

Assessment complete: Preliminary
Assessment level and method: Level 2 - Catch rate
Breeding stock levels: Adequate

Catch per unit effort: The catch per unit effort (CPUE) from the three main sectors (WCRLF, CSLPF, DOF) are the principal indicators of abundance of octopus.

The CPUE for octopus from the WCRLF was 2.9 kg/day, which was a 22% reduction from 2013 (Octopus Figure 2). The large increases in octopus CPUE from 2009 to 2011 in the WCRLF may reflect changes in efficiency during this period when large reduction in fishing effort occurred for this fishery generated by changes in the management of rock lobster (see Western Rock Lobster report)..

The CPUE for octopus in the CSLPF and DOF sectors was 92 and 184 kg/day respectively. CPUE decreased 12 % for the CSLPF and increased 13 % for the DOF over the last year (Octopus Figure 2). In the case of the DOF the increases in CPUE is due to gear efficiency increases caused by significant number of fishers using longlines, which allows more pots to be set per day.

A standardised CPUE (SCPUE) analysis for the CSLPF and DOF was also undertaken, based on daily catch and effort logbook data which provide more precise estimates of effort, and standardised for month, soak time, and depth effects.

SCPUE for trigger pots showed a slight increasing trend between 2013 and 2014 (Octopus Figure 3). There is a clear anomaly in SCPUE for trigger pots in 2010, with a significantly high level. This is hypothesized to have been correlated with environmentally favourable conditions for octopus.

Future year's stock assessment will include a more in-depth assessment using techniques currently under development.

The initial performance measures for the fishery relate to breeding stock maintenance as indicated by catches remaining in the range 50 – 250 t and catch rate remaining above 70 kg/ day in the CSLP and DOF sectors. Both the catch and catch rate measure were met.

Target catch ranges and performance indicators will be reviewed as more information becomes available.

Fisheries Research Report No. 268, Department of Fisheries, Western Australia. 208pp.

Non-Retained Species

Bycatch species impact:

Negligible

Octopus are a bycatch for the WCRLF, the impacts of this fishery on other components is discussed in the specific report for this fishery. The selective method of fishing used for the CSLPF and DOF results in a minimal level of bycatch of other species.

Listed species interaction:

Low

In 2014 there were two reported whale entanglements (Humpback whale: *Megaptera novaeangliae*) in octopus fishing gear. This was a reduction from the three that were reported in 2013. All whales were successfully disentangled. Fishers have also adopted gear changes to mitigate entanglements.

Ecosystem Effects

Food chain effects:

Negligible

This fishery harvests only a small amount of octopus per annum. The effect from this harvesting on the rest of the ecosystem, given that the catch is spread over a wide region, is likely to be insignificant.

Habitat effects: Negligible

Rock lobster potting in the WCRLF occurs primarily on sand areas around robust limestone reef habitats covered with coralline and macro-algae, and these habitats are considered resistant to lobster potting due to the hard nature of the bottom substrate (see WCRLF report for full details).

In the CSLPF and DOF, octopus-specific pots are set in similar habitats to those fished in the WCRLF, as well as sandy and seagrass areas, particularly in Cockburn Sound. These are not expected to impact on benthic habitats as the soak times are at long intervals, averaging 10 days in the DOF and 20 days in the CSLP.

Social Effects

Each dedicated octopus fishing vessel employs between 2 and 3 people. In 2014, ~ 200 vessels caught octopus, although the vast majority of these landings were small (< 100 kg), as they were bycatch in the WCRLF. Within the octopus specific fisheries, 6 vessels fished in the CSLP, and 12 vessels in the DOF. There is also a substantial processing and value-added component to the octopus catch with factories in Fremantle and Geraldton.

Economic Effects

Estimated annual value (to fishers) for 2014:

Level 2 - \$1 - 5 million (\$1.6 million)

The estimated annual value for 2014 was \$1.6 million based on the total catch of 204 t and an average product price of \$7.91 /kg live weight.

Fishery Governance

Target catch range:

50 - 250 tonnes

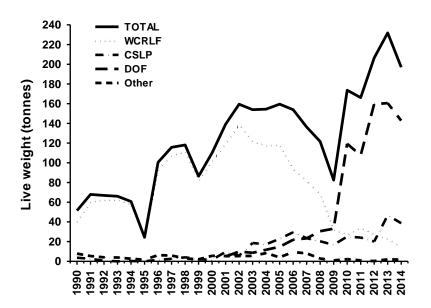
This is a preliminary target range due to the developing nature of the fishery. Current fishing level of 204 tonnes is within the target range. The fishery governance ranges will be reviewed in 2015 using outcomes of FRDC project 2010/200 "Innovative development of the *Octopus* (cf) *tetricus* fishery in Western Australia".

New management initiatives (2014/15)

The Department is currently in the process of developing formal management arrangements for the DOF. Following the conclusion of an independent panel process on access and allocation, the Department is currently developing an Interim Management Plan for the DOF. It is anticipated that the Interim Plan will be in place in late 2015.

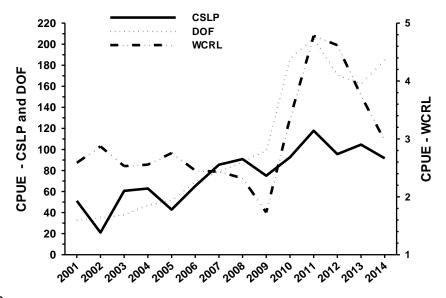
The Cockburn Sound (Line and Pot) Limited Entry Fishery Notice 1995 was reviewed following the Minister for Fisheries' decision on octopus pot entitlement allocation in the CSLPF. Amendments to the Cockburn Sound (Line and Pot) Limited Entry Fishery Notice 1995 were made on 1 May 2015 to introduce an octopus pot scheme of entitlement.

External Factors

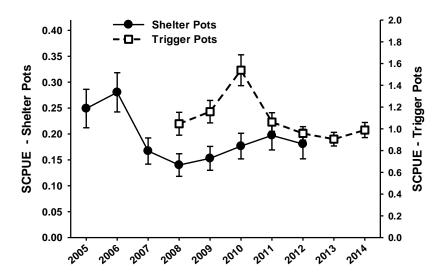

Cephalopods in general, including octopus, are known to be subject to large environmentally-driven fluctuations in abundance. If the fishery expands to reach a catch level approaching maximum sustainable yield, this year-to-year variability in abundance may prove a significant issue for the fishery. In particular, a "marine heatwave" experienced on the West Coast in the summer of 2010/11, where water temperatures reached 3 degrees Celsius above average, may have been the cause of the elevated catch rates during the first year of expansion in the fishery. Octopus was rated as a medium-low risk to climate change.

The move of the rock lobster fishery from an effort-controlled fishery to a catch quota fishery, coupled with significant effort reductions will ensure the octopus catch in the WCRL fishery remains a low % of the overall catch.

OCTOPUS TABLE 1


Percentage of octopus catch and total days fished from different sectors of the fishery. – WCRLF (West Coast Rock Lobster Fishery), CSLPF (Cockburn Sound Line and Pot), DOF (Developing Octopus Fishery) and Other, which is bycatch from trawl and miscellaneous pot fisheries.

Year	WCRLF	CSLPF	DOF	Other	CSLPF	DOF
rear		Percentage of total catch			Effort (total o	days fished)
2001	86	6.9	3.5	3.8	287	149
2002	87	3.6	6.2	3.2	300	278
2003	79	12.1	5.6	3.6	306	225
2004	76	11.1	7.6	5.3	273	249
2005	74	14.3	9.2	2.5	505	284
2006	62	19.7	11.6	6.3	451	250
2007	63	18.1	12.9	6.1	274	211
2008	61	18.0	19.0	2.4	222	241
2009	39	20.3	40.0	1.0	256	248
2010	16	14.4	68.7	1.2	271	639
2011	20	14.5	64.7	0.5	218	522
2012	13	11	76	0.1	230	927
2013	10	18	71	1.0	398	988
2014	7	19	73	0.8	492	812


OCTOPUS FIGURE 1

Commercial catch (t) of octopus in Western Australia since 1990. Catch is divided between the main sectors – WCRLF (West Coast Rock Lobster Fishery), CSLPF (Cockburn Sound Line and Pot), DOF (Developing Octopus Fishery) and Other, which is bycatch from trawl and miscellaneous pot fisheries.

OCTOPUS FIGURE 2

Catch per unit effort (CPUE) in kg/day of Octopus in the three main sectors – WCRLF (West Coast Rock Lobster Fishery), CSLPF (Cockburn Sound Line and Pot), DOF (Developing Octopus Fishery).

OCTOPUS FIGURE 3

Standardised catch per unit effort (SCPUE) (±95% CL) in kg / pot (kg in live weight) of Octopus in all sectors. Trends are for two pot types – passive shelter pots, and active trigger pots.

AQUACULTURE

Regional Research and Development Overview

Aquaculture production statistics are compiled at the Western Australian Fisheries and Marine Research Laboratories (WAFMRL) at Hillarys.

The Fish Resources Management Act 1994 now includes several new and amended provisions for aquaculture, mainly in relation to the environmental management of the industry and the establishment of offshore zones for aquaculture development.

The Department of Fisheries is now responsible for the environmental management of aquaculture in WA waters under the terms of a Memorandum of Understanding it has

executed with the then Department of Environment and Conservation. Environmental management will be effected principally through a requirement for licensees (with some exceptions) to develop and operate according to a Management and Environmental Monitoring Plan (MEMP). The Department has provided relevant licence holders a guidance statement and template to assist in the preparation of their MEMPs.

A focus of the Department of Fisheries in the Abrolhos Islands area is the regulation of the pearling industry which is based on species such as the blacklip oyster *Pinctada* margaritifera and, increasingly, the naturally-occurring Akoya oyster (*Pinctada imbricata*). The production of pearls from several other species such as *Pinctada albina* and *Pteria penguin* is also increasing in importance. A project, initiated by industry partners, demonstrated Akoya pearls can be produced successfully and provided the industry sector with the information it needs to continue to improve production strategies, reduce production costs, improve pearl quality and enhance the market value of the cultured Akoya pearls.

In addition to the production of pearl oysters, in the vicinity of the Abrolhos Islands there is increasing interest in the aquaculture of species that include coral and live rock.

Given the increasing interest in aquaculture in the area, the Department of Fisheries is starting the development of an Abrolhos Islands Aquaculture Policy.

Through its Fish Health Unit, the Department of Fisheries has worked closely with the Marine Fishfarmers Association and the Mid-West Development Corporation on a successful project to test the feasibility of farming yellowtail kingfish in sea cages at Geraldton. The project demonstrated the technical feasibility of offshore marine finfish aquaculture in WA coastal waters. Information generated by the project will underpin the future growth of the industry in the Mid-West region.

A second-stage project, which has recently received funding through the Royalties for Regions Regional Grants Scheme package, will trial the grow-out of up to 30,000 yellowtail kingfish. A collaboration between the Marine Fishfarmers Association and Indian Ocean Fresh Australia Pty Ltd, and being undertaken on behalf of the Mid West Development Commission, the trial will be located at a licensed aquaculture site in Champion Bay and is expected to start in September 2015.

To assist in addressing the regulatory and approvals issues concerning aquaculture development in WA coastal waters,

the Department of Fisheries has received Government funding of \$1.85 million to establish two aquaculture zones in the Kimberley and Mid-West regions. The aquaculture zones will comprise defined areas of water selected for their suitability for the commercial production of marine finfish. Through this project, the Department of Fisheries will secure strategic environmental approvals for the zones from the Environmental Protection Authority, thereby streamlining the approvals processes for commercial projects within zoned areas and providing an "investment ready" platform for prospective investors. The establishment of the Mid-West zone is progressing well, the sampling work has been completed and modelling is under way.

The Department's review of aquaculture licence conditions is continuing. The outcome of the review will deliver higher levels of consistency, transparency and certainty in licensing and compliance arrangements across all aquaculture industry sectors.

The Department of Fisheries has completed a review of mussel aquaculture activity in Cockburn Sound. The review identified licence and lease holders who could demonstrate a history of use of the sites for mussel farming and with an interest in continuing aquaculture activities. It also resulted in the development of improved licence conditions, to ensure effective and efficient long term management of aquaculture activities in Cockburn Sound. Following the completion of the review, new aquaculture licences were granted for mussel farming in Cockburn Sound.

A Fisheries Research and Development Corporation project, developed in collaboration with a commercial octopus fishing and processing company completed research on ranching wild-caught juvenile octopus and seeking to close the life cycle through larvae rearing. This project made a number of advances in rearing mechanisms for those species that have international significance.

COMPLIANCE AND COMMUNITY EDUCATION

Compliance and community education in commercial and recreational fisheries in the West Coast Bioregion is undertaken by Fisheries and Marine Officers (FMOs) based at the Busselton, Bunbury, Mandurah, Rockingham, Fremantle, Hillarys, Lancelin, Jurien, Dongara and Geraldton offices, statewide mobile patrol units and officers aboard the large ocean-going patrol vessels P.V's Houtman and Walcott. The Department's community education team delivers targeted education programs throughout the West Coast region. These programs are delivered by Community Education Officers based in Busselton and Fremantle, with the assistance (where available) of volunteers based in some regional centres within the Bioregion.

Services provided by land-based officers include processing inspections, landing and gear inspections, licence checks, wholesale/retail checks and sea-based patrols utilizing vessels ranging in size from 5 m to 12 m. They also provide support to seagoing personnel and provide a wide variety of educational and extension services through formal and informal media to commercial fishers, fishing related

operations (wholesale/retail/processors), other resource management agencies and community members.

The Department also delivers at-sea marine safety compliance services on behalf of the Department of Transport in the Metropolitan Region extending from Mandurah to Lancelin (excluding the Swan/Canning Rivers). Outside of this area, marine safety is unfunded and inspections are carried out in combination with fisheries compliance inspections. Marine park education and compliance functions are also undertaken in the Ngari Capes Marine Park (South West), Shoalwater and Marmion Marine Parks (Metropolitan), and Jurien Bay Marine Park (Midwest). These functions are primarily related to the integrity of management arrangements for the different zoning within the Parks.

Activities during 2013/14

During 2013/14, Fisheries and Marine Officers delivered a total of 21,917 hours of compliance and community education services in the field (West Coast Bioregion Compliance Table 1). This represents a slight decrease in field compliance over the previous year. A continuing emphasis was placed on employing risk- and intelligence-based approaches to compliance planning and prioritisation. There was an increase in recreational contacts and an increase in warnings and infringements in this sector. Commercial prosecution briefs also increased during the year.

The West Coast Rock Lobster Managed Fishery is the largest commercial fishery in the state and within the Bioregion and therefore much of the compliance focus is on this fishery. In addition to the rock lobster fishery, FMOs focused activity on ensuring high levels of compliance in other commercial fisheries such as the abalone, demersal scalefish (wetline), crab, shark, prawn and scallop (trawl) and estuarine fisheries.

The West Coast Rock Lobster Fishery entered its third season under a Quota Management System. A focus remains on the continual support to Fisheye users and encouragement to fishers and receivers to transition into using the online reporting system.

The focus of compliance activity for the West Coast Rock Lobster Managed Fishery reflected the outcomes of the Compliance Risk Assessment process. Routine compliance operations targeted black market operations, catch disposal records, quota weight declarations, container security, and over potting. There were a number of cases of fishers exceeding quota that required investigation.

Overall, compliance in the West Coast Bioregion by commercial fishers was reasonable although there was a large increase in the number of prosecution offences from 75 to 230 as FMOs dealt with commercial rock lobster quota offences. However the number of offences on a single prosecution brief can vary dramatically and the number of prosecution briefs actually decreased from 35 in 2013/14 to 34 in 2012/13. Infringements remained steady at 40 while infringement warnings decreased from 159 to 133 compared to 2012-13.

Recreational fishing compliance and education is a very large part of the compliance and education activity and primarily revolves around the prize species of demersal scalefish, rock lobster, abalone, marron, blue manna crabs and minor finfish species. Demersal scalefish closures and fishing within the bioregion more generally is supported by statewide recreational mobile patrol units.

Field contacts with the recreational fishing community increased from 82,531to 84,615. Overall compliance was good with decreases in prosecution offences from 227 to 189, infringements increased from 841 to 1,046 and infringement warnings increased from 1,227 to 1,610.

The Department continues to work collaboratively with the Department of Parks and Wildlife (DPaW) in delivering compliance services to marine parks throughout the Bioregion. This collaborative approach has worked very

effectively, particularly during the metropolitan abalone season (which occurs predominately within the Marmion Marine Park), and in the Jurien Marine Park, where DPaW officers undertake joint patrols with FMOs thereby increasing the effectiveness of compliance service delivery. The level of non-compliance encountered in these parks is still relatively low.

Throughout the year FMOs undertook joint patrols with other agencies including the Department of Transport, Australian Customs Service and WA Police. The Department also continued to provide at sea resources to assist DPaW officers in the disentanglement of whales in the West Coast Bioregion. This assistance led to the successful disentanglement of a number of humpback whales entangled in both rock lobster and octopus fishing gear.

In the Bioregion, the Department has had a growing role in shark response as part of the whole of government approach to the shark hazard program. During the year, FMOs provided support to incident responses and other program activities.

Initiatives in 2014/15

The fifth year of the Quota Management System commencing on 15 January 2014 in the West Coast Rock Lobster fishery will see the continuation of gear restrictions to mitigate against whale entanglements. The Department will continue to undertake a significant field education and compliance program to support this initiative.

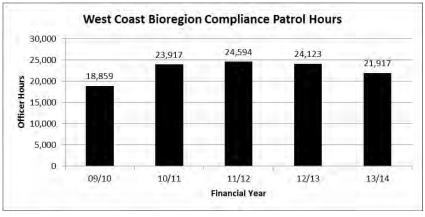
A re-structure of the Geraldton, Jurien and Dongara offices will support a dedicated team of FMO's to implement the commercial compliance program for the West Coast Rock Lobster fishery with support from other District Offices.

The increased focus on recreational fishing compliance will continue, particularly with the ongoing operation of the recreational mobile patrols operating within the Bioregion. Compliance and management personnel will continue to refine compliance planning to deliver greater efficiencies and outcomes through the use of risk assessments and intelligence processes.

Support will be provided to allow the Developing Octopus Fishery to move into an interim quota managed fishery under a management plan.

Staff will continue to work with the MSC assessment teams for our commercial fisheries to achieve positive preassessment and certification outcomes.

The extension of the West Coast Rock Lobster season for recreational fishers will be a significant change in the Bioregion.


Marine Park Collaborative Operational Plans formalising the cooperative and collaborative servicing arrangements between DPaW and the Department of Fisheries will be updated using a new template developed for this purpose. In the South West of the Bioregion the compliance program aimed at improving compliance with recreational abalone fishing rules in the Capes region will continue.

WEST COAST COMPLIANCE TABLE 1

Summary of compliance and educative contacts and detected offences within the West Coast Bioregion during the 2013/14 financial year.

PATROL HOURS DELIVERED TO THE BIOREGION	21,917 Officer Hours
CONTACT WITH THE COMMERCIAL FISHING COMMUNITY ¹	
Field Contacts by Fisheries & Marine Officers	1,378
Letters of warning	
Infringement warnings	133
Infringement notices	40
Prosecution Offences	230
Fishwatch reports ²	39
VMS (Vessel Days) ³	16,043
CONTACT WITH THE RECREATIONAL FISHING COMMUNITY	
Field Contacts by Fisheries & Marine Officers	84,615
Infringement warnings	1,610
Infringement notices	1,046
Prosecution Offences	189
Fishwatch reports	950
OTHER FISHING-RELATED CONTACTS WITH THE COMMUNITY	
Field Contacts by Fisheries & Marine Officers	5,451
Fishwatch reports	27

- ¹Contacts are classified according to the specific fishery, which is usually clearly delineated as being either commercial or recreational. The "Other" category is used where multiple fisheries are contacted and it is not possible to accurately classify the contacts into one specific fishery typically, the majority of these contacts are recreational in nature (e.g. personal contacts in Marine Parks), but contacts made in relation to fish kills, shark patrols and inspections of commercial fish wholesale and retail premises etc. are also included in this category. This table includes contacts made by PV Houtman and PV Walcott while they were operating in the Bioregion.
- ²Fishwatch reports are allocated to the District Offices relevant to the Bioregion. It is not possible to distinguish between calls relating to Inland Bioregions.
- ³VMS (Vessel Days) represents the number of vessel days recorded in the bioregion. That is, a count for each day that each vessel was polled within the bioregion.

WEST COAST COMPLIANCE FIGURE 1

"On Patrol" Officer Hours showing the level of compliance patrol activity delivered to the West Coast Bioregion over the previous 5 years. The 13/14 total gives the patrol hours in the Bioregion that resulted in the contacts detailed in Table 1. (The totals exclude: time delivered by the Department's large patrol vessels *PV Walcott PV Houtman* and *PV Hamelin*; time spent on other compliance related tasks e.g. travel time between patrol areas, preparation and planning time etc.. Time spent in Marine Park sanctuary zones is also excluded because this time may overlap field time outside a sanctuary zone and as a result, the historic data is slightly lowered compared to that reported in previous reports).