Biology, stock status and management summaries for selected fish species in south-western Australia

Claire B. Smallwood, S. Alex Hesp and Lynnath E. Beckley
Correct citation:

Disclaimer
The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Fisheries Western Australia.
While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Department of Fisheries Western Australia does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.

Fish illustrations
Illustrations © R. Swainston/www.anima.net.au

We dedicate this guide to the memory of our friend and colleague, Ben Chuwen
Contents

ACKNOWLEDGEMENTS .. 1

INTRODUCTION .. 2

CRITERIA EVALUATED ... 4

ABBREVIATIONS .. 14

FISH SPECIES REPORTS .. 15

Cobbler (*Cnidoglanis macrocephalus*) ... 15

Southern garfish (*Hyporhamphus melanochir*) ... 21

Bight redfish (*Centroberyx gerrardi*) .. 26

Southern blue spotted flathead (*Platycephalus speculator*) .. 31

Breaksea cod (*Ephinephelides armatus*) .. 35

Harlequin fish (*Othos dentex*) ... 39

Eightbar grouper (*Hyporthodus octofasciatus*) ... 43

Hapuku (*Polyprion oxygeneios*) ... 47

West Australian dhufish (*Glaucosoma hebraicum*) ... 52

Yellowfin whiting (*Sillago schomburgkii*) .. 59

King George whiting (*Sillaginodes punctata*) ... 64

Tailor (*Pomatomus saltatrix*) ... 70

Silver trevally (*Pseudocaranx georgianus*) .. 76

Samson fish (*Seriola hippos*) ... 82

Mahi mahi (*Coryphaena hippurus*) .. 86

Western Australian salmon (*Arripis truttaceus*) .. 92

Australian herring (*Arripis georgianus*) .. 97

Black bream (*Acanthopagrus butcheri*) ... 102

Pink snapper (*Pagrus auratus*) ... 110

Tarwhine (*Rhabdosargus sarba*) .. 121

Mulloway (*Argyrosomus japonicus*) ... 126

Blue morwong (*Nemadactylus valenciennesi*) ... 132

Yelloweye mullet (*Aldrichetta forsteri*) ... 136

Sea mullet (*Mugil cephalus*) ... 141

Western blue groper (*Achoerodus gouldii*) .. 148

Foxfish (*Bodianus frenchii*) ... 152

Brown spotted wrasse (*Notolabrus parilus*) ... 156

Baldchin groper (*Choerodon rubescens*) ... 161

Blue-eye trevalla (*Hyperoglyphe antarctica*) ... 166

Banded toadfish (*Torquigener pleurogramma*) ... 171
Acknowledgements

We are grateful to the following people who, collectively, provided detailed feedback on all the species summaries contained in this report. Thank you for sharing your extensive scientific knowledge of these species, which has greatly improved the quality and accuracy of this guide.

- Joshua Brown (DoF)
- Ben Chuwen (Institute for Marine and Antarctic Studies)
- Peter Coulson (Murdoch University)
- Brett Crisafulli (Murdoch University)
- David Fairclough (DoF)
- Emily Fisher (Murdoch University)
- Ben French (Murdoch University)
- Glenn Hyndes (Edith Cowan University)
- Gary Jackson (DoF)
- Paul Lewis (DoF)
- Brett Molony (DoF)
- Ross Marriott (DoF)
- Stephen Newman (DoF)
- Ian Potter (Murdoch University)
- Andrew Roland (Recfishwest)
- Kim Smith (DoF)
- Corey Wakefield (DoF)

We are also grateful to Norm Hall, Lindsay Joll, Brett Molony and Brent Wise for valuable discussions relating to the development of this guide and for providing additional feedback on sections relating to fisheries management. We thank the following people who participated in the workshop held in June 2011 for their suggestions on improving the content and layout of the guide: Neil MacGuffie, Joshua Brown, Peter Coulson, Emily Fisher, Glenn Hyndes, Gary Jackson, Kane Moyle, Kevin Donohue and Elena Sulin.

We gratefully acknowledge Murdoch University for providing seed funding for this project and the Australian Fisheries Research and Development Corporation for the financial support that enabled this guide to be developed. This guide was developed as part of FRDC project No. 2010/001, entitled "Predicting the impacts of shifting recreational fishing effort towards inshore species".
Introduction

Objective

Many people are interested in fishes, but often it can be difficult to access reliable information on the biology, status and management of a particular fish species. Although there is a long history of world class fisheries research and management in Australia, the full details are generally only available in a fragmented manner in various scientific journals, books and reports. In some cases, these sources of information can be difficult to find and, even for fisheries researchers and managers, who usually have access to scientific journals, certain types of information such as unpublished reports or student theses, can be hard to acquire.

The first objective in developing this guide was thus to collate a range of important details relating to current biological understanding, stock status and management for 30 of Western Australia’s most important and/or well known, temperate marine fish species. The second objective was to provide a comprehensive list of publications relevant to each species, to enable easier access to more detailed information on those species.

Features of the content and layout

Given the large number of species of fish in temperate Western Australia (Wakefield et al., in press), it is impossible to incorporate all of the recreationally and/or commercially important temperate fishes within this guide. With input from researchers and managers (Department of Fisheries, Murdoch University and Edith Cowan University) and other fishing industry stakeholders (Recfishwest and WAFIC) during a workshop held in June 2011, 30 of the most commonly-targeted and/or widely recognised temperate fish species in Western Australia were identified for inclusion in the guide. These include species caught by both the recreational and commercial sectors, and which, collectively, are found in estuaries and temperate marine ecosystems, i.e. in nearshore and offshore coastal waters, in the water column (pelagic) or near the sea-floor (demersal).

The fish species have been ordered according to taxonomic family and a bibliography has been provided at the end of each species report, for easy identification of information relevant to that species. Where available, estimates for each criterion considered in this guide are reported for one stock in south-western Australia. If multiple estimates are available, the reader is referred to relevant literature containing those other estimates. If information is unavailable for Western Australia, but is available elsewhere, then this is included for at least one location.

The information contained within this guide has been presented in as concise a manner as possible. This has meant, for example, that only point estimates for the various biological and stock assessment parameters considered have been provided, i.e., no standard errors or confidence limits, noting that if this extra information is required, it can usually be found in the cited literature. Furthermore, as there is an abundance of information in the popular literature on how to catch different fish species throughout Western Australia, this aspect has not been covered.

As a “scientific document”, the use of some complex terminology, as employed by researchers and managers on a daily basis, could not be avoided without reducing the relevance of this document. In the next section (Criteria Evaluated), explanations have thus been provided for various key terms used throughout the document, as well as for common abbreviations and equation/model parameters.
Where information is lacking the words “not reported” have been used to indicate a probable gap in current knowledge, thereby identifying where future research may be required (noting, of course, that a reference containing the relevant details may exist but which we failed to locate during our literature search). As this guide has succinctly summarised available biological and stock status data and management information for each fish species, a reader wanting for extensive information about a species will also need to refer to the cited literature. In the context of management for a species, this is likely to include, in particular, various editions of the Annual State of the Fisheries and Aquatic Resources Report, produced by the Western Australian Department of Fisheries (DoF) (Fletcher and Santoro, 2012). Whilst every effort has been made to ensure the accuracy of the information contained within this guide, we strongly encourage readers to refer to the original sources of information.

As new research and management information are constantly becoming available, unavoidably, this book might already be out of date to a certain extent by the time of publication. Despite this, we hope this guide will act as a useful reference for years to come.
Criteria evaluated

Scientific name: Genus and species name (scientific family name; common family name)

Common names: The first common name given is that listed in the Codes of Australian Aquatic Biota (Rees et al., 2012), followed by other well-known common names.

Key identifying features: General description of key identifying features. See commonly cited references such as Hutchins and Swainston (1986), Yearsley et al. (2001) or Allen (2009) for diagrams and definitions associated with these key features.

Distribution

Worldwide: A global description of the distribution of this species is provided if appropriate, otherwise it is indicated to be endemic to Western Australia.

Western Australia: A description of the distribution of this species within Western Australian waters.

Maximum length, weight and age: The maximum total body length (in mm) and whole wet body weight (in kg) are provided using the largest recorded individual caught by a recreational fisher in Western Australia or during a particular study. The maximum age is reported as the oldest specimen aged in a particular study.

Weight-length relationship: Where possible, an equation is presented for combined sexes (unless otherwise indicated) which relates fish total wet body weight in g (W) to total body length (TL), fork length (FL) or standard length (SL). Total length is the length of the fish from the tip of the snout to the end of the tip of the caudal fin when it is placed in a “natural” position. Fork length is the horizontal distance from the tip of the snout to the posterior edge of the fork of the caudal fin. Standard length is the horizontal distance from the edge of the snout to the end of the caudal peduncle.

Weight-length relationships may be used for a wide variety of purposes, such as to produce estimates for the weights of fish collected from anglers or fish processors after filleting, which thereby enables further analyses requiring information on weight, or parameter estimates (such as in various stock assessment models). Weight-length relationships for fish species are typically expressed as either a power relationship or as a (linear) log-log relationship.

A power relationship, is represented as

\[W = aL^b, \]

where \(L \) is either total, fork or standard length, and \(a \) and \(b \) are constants, noting that \(b \) is usually close to 3, due to the way in which body mass typically scales in proportion to body length. An example of this type of relationship is shown using tailor (\textit{Pomatomus saltatrix})

\[W = 0.000015L^{2.97} \] (Gaughan et al., 2006) (Figure 1).
A (linear) log-log relationship is represented as

\[\log_e W = \log_e a + b \log_e L. \]

(2)

An example of this type of relationship is shown using baldchin groper (Choerodon rubescens) \[\log_e W = -8.486 + 3.237 \log_e L \] (Fairclough, 2005) (Figure 2).

When using a log-log relationship, predicted values for the natural logarithms of weight are back log-transformed to derive an estimate for the actual weight for a fish, given its length. Such back log-transformation results in a biased estimate for weight, which may be corrected using an equation such as that of Beauchamp and Olson (2013)

\[E_{\text{corr}} = E_{\text{uncorr}} e^{ms/2}, \]

(3)

where \(E_{\text{corr}} \) represents the bias-corrected estimate for weight, \(E_{\text{uncorr}} \) is the back-transformed estimate for weight prior to bias-correction, \(e \) is Euler’s number (2.71828) and \(ms \) is the mean of the squared residuals, calculated when fitting the linear equation. When available, values for \(ms \) are reported. Unless otherwise specified, a single weight-length equation is reported for each species, calculated using combined weight-length data for the two sexes. To assist the reader in interpreting the relationships, tables are provided for each species providing estimates of weight for specified values of length.
Length relationship: Where available, the relationships between variables for length, such as between total length (TL) and fork length (FL) or standard length (SL), are given. Note that, for a number of species, the relationship between total length and fork length (or *vice versa*) is not reported in the literature because the tail is not forked.

Growth: Fish growth is typically modelled using the von Bertalanffy growth equation (von Bertalanffy, 1938), which relates the (mean) lengths of fish at different ages on their date of capture. The von Bertalanffy growth equation is

\[
L_t = L_\infty (1 - e^{-k(t-t_0)}),
\]

where \(L_t\) is the estimated length (mm) at age \(t\) (years), \(L_\infty\) is the “asymptotic” length, describing average maximum size (mm) of individuals in the population, \(k\) is the growth coefficient (year\(^{-1}\)) describing the rate at which the asymptotic length is reached and \(t_0\) is the hypothetical age (years) at which fish have zero length. The value for \(L_\infty\) determines the height of the curve whereas the value for \(k\), which typically ranges upwards to about one, determines the steepness of the early part of the curve. \(t_0\) is a nuisance parameter (i.e., one that is needed, but does not tell us much apart from providing an indication as to the quality of the length and age data used to construct the growth curve) which should approximate zero but may be substantially negative if there are few small fish in the sample data to which the curve is being fitted (i.e. which would otherwise act to “tie down” the early part of the growth curve).

Tables are provided for each species providing estimates of total length (mm) for specified values of age (years). Occasionally, various other growth equations (with different shapes) such as the more flexible Schnute growth curve (Schnute, 1981) are used if the von Bertalanffy is shown to provide a poor fit to the data. An example of a von Bertalanffy growth curve is provided for male West Australian dhufish (*Glaucosoma hebraicum*)

\[
L_t = 1025(1 - e^{-0.11(t-0.052)}),
\]

(Hesp et al., 2002) (Figure 3).

![Figure 3](image-url)
Figure 3 A von Bertalanffy growth curve for male West Australian dhufish (*Glaucosoma hebraicum*).

Length and age at maturity: The relationship between the probability of individuals being mature (during the spawning period) and their total lengths (mm) or ages (years) is typically described using a logistic equation such as either of the following forms. In the first equation, the probability of a fish being mature given its length, \(P_L\) is

\[
P_L = 1/e^{(a+bL)},
\]

where \(a\) and \(b\) are constants and \(L\) is the length of the individual. Using this equation, \(L_{50}\), the length at which the probability of a fish being mature is 0.5, may be determined as

\[
L_{50} = a/b,
\]
Similarly, P_L may be described by the functionally equivalent equation as

$$P_L = \frac{1}{1 + e^{\left(-\log_e(19)\left(L - L_{50}\right)/(L_{95} - L_{50})\right)}},$$

where L_{50} and L_{95} are the lengths at which the probability of a fish being mature is 0.5 and 0.95, respectively. The ages at which the probability of maturity are 0.5 and 0.95 may be estimated using this same equation, substituting ages for lengths. An example of a logistic curve is provided in Figure 4 for the female western blue grouper (*Achoerodus gouldii*)

$$P_L = \frac{1}{1 + e^{\left(-\log_e(19)\left(L - 653\right)/(927 - 653)\right)}}$$ (Coulson et al., 2009). This graph shows that, at a length of 653 mm, the probability of any fish in the population being mature is (on average) 0.5, compared with 0.95 at 927 mm.

![Logistic curve describing the relationship between the probability of maturity of individuals with respect to total length for female western blue groper (*Acherodus gouldii*).](image)

Figure 4 Logistic curve describing the relationship between the probability of maturity of individuals with respect to total length for female western blue groper (*Acherodus gouldii*).

Reproductive style: A species is described as either gonochoristic (individuals remain as one of two distinct sexes throughout life) or hermaphroditic (at least some individuals of a species change sex at some point during life). The following types of hermaphroditism are considered in the guide; protogynous hermaphroditism (sex change from a mature female to a male), protandrous hermaphroditism (sex change from a mature male to a female) and rudimentary hermaphroditism (where individuals develop from an early bisexual juvenile stage into either mature females or males and remain that sex for the rest of their life). Understanding the “reproductive style” of a species is important for assessing potential impacts of fishing pressure on that species, as hermaphroditic species can be more susceptible to overfishing.

This section also indicates if a species has been recorded as a “multiple” or “batch” spawner, where individual females release several batches of eggs (i.e. at different times) during the species’ spawning period (= most species). In contrast, a species may also be considered to be a “total spawner” or a single-spawning species. Biologists also sometimes use the terms “synchronous spawner” or “asynchronous spawner”, referring to whether all of the eggs in an ovary develop and are then released at the same time. Multiple spawners typically produce more eggs than total spawners (and may thus be more resilient to fishing pressure).

Adult sex ratio: An estimate of the ratio of the numbers of adult females to adult males in the population. This ratio is usually calculated from the numbers of females and males collected from sampling throughout the year that are above the L_{50} at maturity (see above) for the respective sexes, or the numbers of females and males collected during the spawning season belonging to length classes in which 50% or more of individuals are mature. The sex ratio for adults has been presented rather than the overall sex ratio for the population because different sampling gears and sampling intensities are often employed to collect juveniles vs adults. Thus
estimates of the overall population sex ratio are not likely to be accurate and a knowledge of the ratio of the adult sex ratio is likely to be most informative for better understanding the reproductive biology of a species (i.e., as only adults spawn). Note that one needs to be cautious in drawing conclusions relating to this statistic as fish may have been caught using multiple fishing gears (each with a different size-based selectivity), or there may be differences in the selectivity of a fishing gear for different sexes. Note also there is no “standard” sex ratio for a fish species, i.e. whereas the ratio of adult females to adult males is approximately equal in many species, it differs markedly in others, such as for many hermaphroditic species.

Length and age at sex change: The relationship between the probability of individuals of hermaphroditic species having changed from the initial sex to the other (terminal) sex with respect to length or age. These relationships are typically described using the same logistic equations used to calculate length at maturity. The parameters \(L_{50} \) and \(L_{95} \) are used to describe the lengths at which the probability of a fish having changed sex is 0.5 and 0.95, respectively, as may be estimated using Equation 7 (see above, under Length and age at maturity). It should also be noted that not all fish species change sex (i.e., are gonochoristic).

Spawning season: Describes the period during the year when the majority of spawning activity takes place. Fish biologists sometimes also refer to the main period of spawning for a species which may be defined, for example, as those months during the year when more than 50% of the females possess ovaries that are either fully mature (e.g., ovaries containing mainly yolked oocytes) or are in spawning condition (i.e., possess migratory nucleus stage oocytes, hydrated oocytes and/or post-ovulatory follicles). An oocyte is defined as an immature female reproductive cell prior to fertilization.

Spawning location and habitat: The location and/or habitat in which spawning occurs. For example, certain species may only spawn over reefs in coastal waters, or exclusively in estuaries.

Fecundity: Fecundity is a measure of the number of eggs produced by individual female fish during a specified time period, e.g., a year or day. Batch fecundity is the number of eggs released by an individual female during a spawning event (i.e., on a given day), whereas annual fecundity is the number of eggs released by a female during a spawning season. Batch fecundity is typically estimated by counting hydrated oocytes in samples of ovarian tissue of reproductively active females just prior to spawning (and extrapolating from the average number of oocytes per gram of ovarian tissue for a fish up to the total weight of its ovaries). Species may have either determinate or indeterminate fecundity. Species with determinate fecundity are those for which the number of eggs that will be released by a female during a spawning season is “fixed” prior to the commencement of that season. In such species, annual fecundity can be determined from counts of yolked oocytes in ovaries of fish just prior to the commencement of the spawning period. In contrast, species with indeterminate fecundity are those for which the number of eggs that will be released by a female during a spawning season is not fixed prior to its commencement. For this latter group of species, annual fecundity must be determined using a combination of data on batch fecundity, spawning period duration and spawning frequency (see below). Relationships between batch fecundity (\(BF \)) or annual fecundity (\(F \)) with fish length are often described using a power relationship (Equation 1). To assist the reader in interpreting these relationships, tables are provided with estimates of \(BF \) or \(F \) for specified fish lengths.

Spawning frequency: Describes the frequency with which actively spawning females release batches of eggs during the spawning season, e.g., on average, individual fish spawn every 2 days. Data on spawning frequency are most often collected for species with indeterminate
fecundity. The method by which spawning frequency has been estimated, i.e., the hydrated oocyte or post-ovulatory follicle method (Hunter and Goldberg, 1980; Hunter et al., 1985) is listed if specified in the literature.

Development and habitat use

Eggs: A brief description of the type and location of eggs of this species. Eggs (and larvae) are often described as neustonic (living at the surface of the water column), pelagic (free in the water column) or benthic (living on or near the bottom).

Larvae: A brief description of the larval stages and habitat preferences of the larvae of the species.

Juveniles: A brief description of the development and habitat preferences of the juveniles of the species.

Adults: A brief description of the development and habitat preferences of the adults of the species.

Migration: A description of known fish migration patterns. The term “fish migration” typically refers to predictable, active (and often cyclical) movements between habitats by large numbers of individuals in a population. For example, the adults of certain fish species undertake migrate seasonally to spawning areas.

Stock delineation: A brief description of the genetic stock structure of the species in temperate Western Australia, if known. Stock structure may vary from being panmictic (random mating within a breeding population) to populations which are genetically distinct between localized areas.

Diet: A brief description of the dietary composition of the species.

Fishery

Recreational: An indication of the importance of the species to the recreational sector and the methods by which it is caught.

Commercial: An indication of the importance of the species to the commercial sector, the fisheries in which it is caught, and by what method.

Age at full recruitment into the fishery: The age at which fish are assumed to be fully vulnerable to the fishing gear used by the fishery targeting the species. This parameter is often determined from age composition data and taken as the age corresponding to one year above that at which the numbers of fish in the sample is greatest.

Gear selectivity parameters: Gear type and specifications (e.g., gillnet, mesh size) are provided along with the relationship describing the size- or age-related vulnerability of capture (i.e., probability) of individuals to the gear. This relationship is typically expressed as a logistic relationship (Equations 5 and 7), where L_{50} and L_{95} refer to the respective lengths at which the relative vulnerabilities to the fishing gear are 0.5 and 0.95.

Management parameters

Managing Western Australia’s finfish resources represents a huge challenge, as more than 3,000 finfish species (including target and non-target species) exist over the more than 12,800 km of coastline (Wakefield et al., in press). To address this issue, DoF has identified key “indicator” species in each of the four marine “bioregions” in the state (i.e., the North Coast, Gascoyne Coast, West Coast and South Coast bioregions) (DoF, 2011). Assessment and monitoring is focused towards these indicator species, which are representative of different “suites” of
species located in various broad ecological areas. These areas include estuaries, nearshore marine waters (<20 m depth), the marine inshore demersal zone (20 – 250 m depth), the marine offshore demersal zone (250 m depth to the edge of the exclusive economic zone (200 nm offshore) and the marine pelagic zone.

The indicator species, *i.e.*, those fish species for which, collectively, assessments of their stock status are considered to be indicative of the status of an entire suite of species, have been selected according to various biological attributes (*e.g.*, longevity, reproductive characteristics, recruitment patterns, stock structure and post catch and release survival, noting that species at the more vulnerable end of the spectrum (in terms of impacts of fishing) are chosen to ensure conservative (precautionary) management. A detailed description of the approach adopted by DoF for monitoring, assessing and managing finfish resources in Western Australia, including a full list of species used as indicators for each suite, is provided in DoF (2011). Whilst a number of the species included represent indicator species of different suites within the West Coast or South Coast bioregions, some do not, or have only recently been proposed as indicator species for future monitoring and assessment. It should therefore be recognized that, although stock assessment information may be very limited for some species, the status of those species is monitored and assessed indirectly through assessments of other (indicator) species. Note also that DoF adopts a risk-based Ecosystem Based Fisheries Management (EBFM) approach (Fletcher and Santoro, 2012).

Total mortality: Available estimates for the instantaneous rate of total mortality (Z, year$^{-1}$) are provided along with the area for which the study was completed, and the method of estimation, (*e.g.*, catch curve analysis). Total mortality refers to the rate of death of individuals in a population due to natural causes (*e.g.*, predation, disease, senescence) and fishing (also including effects of post-release mortality due to hooking injuries and/or barotrauma, and high-grading).

Natural mortality: Available estimates for the instantaneous rate of natural mortality (M, year$^{-1}$) are provided along with the area for which the study was completed and the method of estimation (*e.g.*, Hoenig’s (1983) empirical equation for fish, which relates to mortality rates of 84 lightly-fished stocks to their maximum ages, and is often used if the maximum age of the species is known). Natural mortality is that which occurs as the result of natural causes (*i.e.*, predation, disease, senescence) and not fishing.

Fishing mortality: Available estimates for the instantaneous rate of fishing mortality (F, year$^{-1}$) are provided along with the area for which the study was completed. Can be calculated as $F = Z - M$.

Biological reference points: Where available, estimates are provided for various biological reference points against which estimates of the level of fishing mortality or spawning biomass for a fish stock may be compared to gain an indication of stock status (*e.g.*, $F=2/3M$, $F=M$, F_{MSY}, $F_{0.1}$, F_{Max}, SPR, SSB/R, YPR, EPR). F_{MSY}, for example, is the value of F at which the maximum sustainable yield is achieved, whereas $F_{0.1}$ is a more conservative level of F than F_{MSY}. SPR (spawning potential ratio) is a measure of the level to which a stock’s reproductive capacity has declined from the original, unfished (virgin) level. SSB/R (spawning stock biomass per recruit) is the expected lifetime reproduction potential of individual fish, measured in terms of biomass. YPR (yield per recruit) is the expected biomass that individual fish, recruited into the fishery at a specific age, contribute to catches over their lifetime. EPR (eggs per recruit) is the estimate of the average expected lifetime reproductive potential of individual fish, measured in terms of egg production, and provides a measure of the impact that fishing has had on the potential productivity of the stock.
A biological reference point may be used as a target reference point (to indicate the level where fishing mortality or biomass should be), a threshold reference point (a level at which there is sufficient concern to trigger management and/or research actions) or a limit reference point (where fishing should be restricted or ceased in order to allow stock recovery). Depending on the species’ biological attributes and thus, in turn, its vulnerability to exploitation, different values of fishing mortality and spawning biomass are used to correspond to the target, threshold and limit reference points. As is best practice in fisheries management around the world [e.g., Caddy and Mahon (1998); (2006)], DoF assess the stock status of finfish species against clearly-defined reference points for those species (see Wise et al., 2007 for more detailed information).

An example of fishing mortality-based reference points were those employed by DoF for the West Australian dhufish (Glaucosoma hebraicum), where the target reference point is $F=2/3M$, the threshold reference point is $F=M$ and the limit reference point is $F=3/2M$.

An estimate of natural mortality (M) for West Australian dhufish is $M=0.11$ year$^{-1}$ (Hesp et al., 2002; Wise et al., 2007). An estimate of F for this species, based on recreational catch samples taken from the waters off Perth is 0.14 year$^{-1}$ (Wise et al., 2007). In this instance, the estimate for F is greater than that for M and is thus between the threshold and limit reference points for this species. Note that a range of information, including estimates of current F or biomass in relation to defined reference points, but also other information (e.g. characteristics influencing the inherent vulnerability of a species to fishing or other factors) is used as advice for informing the management of a fish stock using what, DoF terms, a “weight-of-evidence” framework. For more information on this aspect, see DoF (2011).

Current status: Current status of the species based on the best available, and reported, information obtained mainly from DoF, in the State of the Fisheries and Aquatic Resources Report (Fletcher and Santoro, 2012), the Resource Assessment Framework (Fletcher et al., 2005; DoF, 2011) and International Union for Conservation of Nature (IUCN) Redlist (www.iucnredlist.org).

Catch trends

Recreational: A brief description of catch trends in terms of fish caught by recreational fishers from boats and the shore, and the area to which they pertain, are provided. **Commercial:** A brief description of catch trends in terms of this species caught by commercial fishers, and the area to which they pertain, are provided.

Management regulations

Recreational: Current management regulations (at 1 February 2013) in terms of the bag limit and Minimum Legal Limit (MLL) for capture and retention, also known as minimum size limit, for recreational catch of this species are provided (DoF, 2013). Historical changes are also listed by year, indicating the time when the change in regulations was implemented. Note that recreational fishing regulations were first introduced in Western Australia in 1913. If a species was not specifically listed for a recorded management change, then the earliest information will be for 1991, when a ‘low risk’ or ‘bread and butter’ category was introduced and encapsulated most species not listed elsewhere, excluding some species of baitfish (i.e., pilchards, scaly mackerel) and feral freshwater species, which have no catch limit.

Commercial: A general summary of current management regulations for commercial fisheries in which this species is caught. The reader is referred to the State of the Fisheries and Aquatic Resources Report (Fletcher and Santoro, 2012) for further details.
Current research: A brief description of current research underway which relates to this species.

Comments/other published information: Additional references relating to this species which has not been provided elsewhere in the document.

References: References are cited in the text and presented in alphabetical order at the end of each species report.

References

Hesp, S. A., Potter, I. C., Hall, N. G., 2002. Age and size composition, growth rate, reproductive biology, and habitats of the West Australian dhufish (Glaucosoma hebraicum) and their relevance to the management of this species. Fishery Bulletin 100, 214-227.

Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGDLF</td>
<td>A collective name for two fisheries (the WCDSGLF and JASDGDLF, see below) which target sharks and rays but also retain demersal scalefish. The Demersal Gillnet and Demersal Longline Fishery extends over the continental shelf waters along the south and lower west coasts.</td>
</tr>
<tr>
<td>DoF</td>
<td>Department of Fisheries, Western Australia</td>
</tr>
<tr>
<td>GABTS</td>
<td>Great Australian Bight Trawl Sector</td>
</tr>
<tr>
<td>GDSF</td>
<td>Gascoyne Demersal Scalefish Managed Fishery</td>
</tr>
<tr>
<td>JASDGDLF</td>
<td>Joint Authority Southern Demersal Gillnet and Demersal Longline Managed Fishery.</td>
</tr>
<tr>
<td>NDSF</td>
<td>Northern Demersal Scalefish Fishery</td>
</tr>
<tr>
<td>PDSF</td>
<td>Pilbara Demersal Scalefish Fishery</td>
</tr>
<tr>
<td>SBBSMNMNF</td>
<td>Shark Bay Beach Seine and Mesh Net Managed Fishery</td>
</tr>
<tr>
<td>SCEMF</td>
<td>South Coast Estuarine Managed Fishery</td>
</tr>
<tr>
<td>UWA</td>
<td>University of Western Australia</td>
</tr>
<tr>
<td>WCDGDLF</td>
<td>West Coast Demersal Gillnet and Demersal Longline (Interim) Managed Fishery.</td>
</tr>
<tr>
<td>WCDSIMF</td>
<td>West Coast Demersal Scalefish (Interim) Managed Fishery is a handline and dropline fishery, and is the main commercial fishery targeting demersal species in the West Coast bioregion. This fishery encompasses the waters of the Indian Ocean just south of Shark Bay to just east of Augusta and extends seaward to the 200 nm boundary of the Australian Fishing Zone (~200 nm).</td>
</tr>
<tr>
<td>WBTF</td>
<td>The Western Billfish and Tuna Fishery is a Commonwealth fishery which operates along the coast of Western Australia using predominately pelagic longlines.</td>
</tr>
<tr>
<td>WCEF</td>
<td>West Coast Estuarine (Interim) Managed Fishery</td>
</tr>
</tbody>
</table>
Fish species reports

Cobbler (*Cnidoglanis macrocephalus*)
Reviewed by Kim Smith (DoF)

Scientific name: *Cnidoglanis macrocephalus* (Plotosidae; Eeltail catfish)

Common names: Estuary cobbler also estuarine catfish, cobbler

Key identifying features: Upper lip ends in prominent tentacle, colour varies from blackish-grey to mottled pattern of pale and dark blotches, rear margin of caudal fin less rounded than similar catfish species (Hutchins and Thompson, 1983).

Distribution of species

Worldwide: Endemic to southern Australian waters from Queensland to Western Australia (McGrouther, 2005).

Western Australia: Southern Western Australian border to Abrolhos Islands (Gomon *et al.*, 2008).

Maximum length, weight and age: 910mm, 2.6 kg (Hutchins and Swainston, 1986), 13 years (Kailola *et al.*, 1993).

Length/weight relationship: [Swan River] Females $\log W = -2.76 + 3.35 \log SL$ ($R^2=0.99$, $n=84$); Males $\log W = -2.61 + 3.26 \log SL$ ($R^2=0.99$, $n=155$) (Morrison, 1988).

<table>
<thead>
<tr>
<th>SL (cm)</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g) Females</td>
<td>154</td>
<td>404</td>
<td>854</td>
</tr>
<tr>
<td>Males</td>
<td>160</td>
<td>410</td>
<td>848</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [Swan River, Schnute growth curve] Females $y_1 = 225$ mm, $y_2 = 537$ mm, $a=0.25$, $b=0.90$, $\tau_1 = 1$ year, $\tau_2 = 4$ years ($n=517$, $R^2=0.91$); Males $y_1 = 239$ mm, $y_2 = 525$ mm, $a=0.02$, $b=1.75$, $\tau_1 = 1$ year, $\tau_2 = 4$ years ($n=447$, $R^2=0.85$) (Laurenson *et al.*, 1994). See also Nel *et al.* (1985) and Chuwen *et al.* (2011).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>325</td>
<td>652</td>
<td>767</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>356</td>
<td>655</td>
<td>859</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Swan River] 22% of 1+ males and 14% of 1+ females mature. All 2+ and older fish mature. Typical size at maturity is 385 mm for males and 405 mm for females (Nel *et al.*, 1985). See also Laurenson *et al.* (1993a) for Wilson Inlet. In that estuary, the size and age at maturity has declined, possibly due to fishing-induced evolutionary changes (Chuwen *et al.*, 2011).
Reproductive style: Gonochoristic. Single spawner which generally mates in pairs (Nel et al., 1985; Laurenson et al., 1993a; Neira et al., 1998; Harrison, 2001; Smith, 2006).

Adult sex ratio: [Wilson Inlet, gill nets] F1.5:M1 (Laurenson et al., 1993a).

Length and age at sex change: Not applicable.

Spawning season: [Swan River] October to December (Nel et al., 1985); [Wilson Inlet] October to January (Laurenson et al., 1993a). Differences in spawning times between estuaries may be related to water temperature (Laurenson et al., 1993a).

Spawning habitat and location: [Swan River] Shallow coastal waters and lower parts of estuaries (Gomon et al., 2008), subject to availability of suitable structural habitat for nesting (Laurenson et al., 1993a).

Fecundity: Annual fecundity; \(\log F = -3.6992 + 2.5404 \log TL \) \((n=44, R^2=0.80)\) (Nel et al., 1985).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>500</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>392</td>
<td>1,436</td>
<td>3,377</td>
</tr>
</tbody>
</table>

Spawning frequency: Once per year (Laurenson et al., 1993b).

Development and habitat use

Eggs: Males brood eggs in burrows with eggs resting on substrate, or in between pelvic fins (Nel et al., 1985; Laurenson et al., 1993a; Neira et al., 1998; Harrison, 2001).

Larvae: Males guard larvae in burrow (Laurenson et al., 1993a).

Juveniles: Typically associated with marine vegetation including detached beds of seagrass or macrophytes in surf zones off sandy beaches, or in sheltered marine environments or estuaries (Lenanton et al., 1982; Lenanton and Caputi, 1989; Hyndes et al., 1999; Crawley et al., 2006).

Adults: Estuaries and nearshore coastal waters over seagrass beds and reef habitats, also in shallow bays and sandy inlets near river mouths (Potter et al., 1983; Loneragan et al., 1987; Valesini et al., 2004). Often concealed beneath rocky ledges during daylight hours (Gomon et al., 2008).

Migration: Seasonal, localised migrations occur in winter with individuals of this species moving to accumulations of detached macrophytes (Lenanton et al., 1982; Hyndes et al., 1999). Juveniles also aggregate at night in small drift macrophytes in the surf zone to feed and escape predation (Lenanton et al., 1982; Lenanton and Caputi, 1989).

Stock delineation: Genetic divergence between populations indicates that little interbreeding occurs between estuarine populations (Ayvazian et al., 1994).

Diet: Feeding occurs at night and diet changes markedly with increasing body size (Nel et al., 1985). Cobbler feed primarily on bivalves (and other molluscs), detritus, organic material, crustaceans, worms and algae (Thomson, 1957; Lenanton et al., 1982; Lenanton and Caputi, 1989; Platell and Hall, 2006; Platell et al., 2006). Juveniles in surf zones of sandy beaches consume more amphipods than larger fish (Lenanton and Caputi, 1989; Crawley et al., 2006).

Fishery

Recreational: Occasionally taken by recreational fishers (Loneragan et al., 1989; Malseed and Sumner, 2001), in both the West Coast and South Coast bioregions. Recreational fishing for this species was banned in the Swan-Canning River in 2007 (Smith et al., 2012b).

Commercial: Frequently caught in the estuarine and nearshore finfish fisheries of the West...
Coast and South Coast bioregions as part of the West Coast Estuarine (Interim) Managed Fishery (WCEF) and South Coast Estuarine Managed Fishery (SCEMF), respectively (Lenanton and Potter, 1987; Smith, 2006; Smith et al., 2012a; Smith et al., 2012b). A ban on this species in the Swan-Canning River was introduced in 2007 (Smith et al., 2012b). Targeted at night with gillnets, haul nets and beach seines (Smith et al., 2012a; Smith et al., 2012b). Also occasionally caught as by-catch in the temperate demersal gillnet and longline fishery (McAuley and Simpfendorfer, 2003).

Age at full recruitment: Not reported.

Gear selectivity parameters: \(\theta_1=6.1; \theta_2=6802 \) [parameters of method of Kirkwood and Walker (1986) and Chuwen et al. (2011)]. See Laurenson et al. (1993a) and Chuwen et al. (2011) for description of lengths of fish caught by different gillnet mesh sizes.

Management parameters

Total mortality: [Wilson Inlet] 1.82 year\(^{-1}\) (Chuwen et al., 2011). Estimates using a form of catch curve analysis involving Poisson regression, taking into account recruitment variability and gear selectivity.

Natural mortality estimates: [Wilson Inlet, Hoenig’s (1983) equation for fish] 0.35 year\(^{-1}\) (Chuwen et al., 2011).

Fishing mortality estimates: [Wilson Inlet] 1.47 year\(^{-1}\) (Chuwen et al., 2011). See Chuwen et al. (2011) for comparison with estimates for earlier years.

Biological reference points: F-based target reference points of Gabriel and Mace (1999) considered by Chuwen et al. (2011) in the context of their estimates.

Current status: Stock level acceptable in the Peel-Harvey Estuary (Smith et al., 2012b), and adequate in Wilson Inlet and Oyster Harbour (Smith et al., 2012a). This species has been protected in the Swan-Canning River since 2007 (Smith et al., 2012b). Species has not been assessed in other estuaries of the West Coast or South Coast bioregions. An indicator species for the estuarine suite in the West Coast and South Coast bioregions (DoF, 2011). Overall risk to sustainability for this suite is moderate in the West Coast and South Coast bioregions (DoF, 2011). Inherent vulnerability for this species is extreme, current risk to wild stock is minimal (South Coast estuaries except Wilson Inlet which is moderate) or extreme (West Coast estuaries) (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: Small recreational catches of this species have been recorded during surveys of estuaries in the West Coast (Malseed and Sumner, 2001) and South Coast bioregions (Smallwood and Sumner, 2007). Note that targeted spearing (gidgy) of this species occurs at night and is unlikely to have been picked up in recreational surveys.

Commercial: Since 2000, 95% of the commercial catch was taken in estuaries of the South Coast bioregion, with the remaining 5% from the West Coast bioregion (predominantly the Peel-Harvey Estuary) (Smith et al., 2012b). A complete catch trend graph is shown for the Peel-Harvey Estuary in the 2010/11 State of the Fisheries and Aquatic Resources Report (Smith et al., 2012b). Total annual landings in the West Coast bioregion from 2001 – 2010 varied between <1 t to 9 t, with historical catches much higher (up to 298 t in the Peel-Harvey Estuary in 1961) (Smith et al., 2012b). Landings of this species in the Swan-Canning Estuary declined from >20 t in the 1970s to <1 t in 1997, leading to the current closure of the fishery (Smith et al., 2012b). The total catch of cobbler in the South Coast
Estuarine Managed fishery in 2011 was 65 t, of which 78% was caught in Wilson Inlet (Smith et al., 2012a). The historic peak of 79 t was achieved in 1985 and again in 2003 (Smith et al., 2012a).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1975)</td>
<td>-</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>20</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Statewide (1995)</td>
<td>8</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>4</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>4</td>
<td>430</td>
<td>Spatial closure = Swan-Canning River</td>
</tr>
<tr>
<td>West Coast (2008)</td>
<td>4</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>8</td>
<td>430</td>
<td>Spatial closure = Swan-Canning River</td>
</tr>
</tbody>
</table>

Commercial: Nearshore and estuarine finfish fisheries in the West Coast and South Coast bioregions are regulated primarily using input controls (such as limited entry and gear restrictions) as well as seasonal and temporal closures, and size limits (Smith et al., 2012a; Smith et al., 2012b).

Current research: Juvenile recruitment is monitored annually by DoF, along with the age, length and sex structures in commercial catches and trends in catch per unit effort. DoF commenced a 3-year tagging study in 2012, run in collaboration with commercial fishers from the South Coast Estuarine Managed Fishery. Ongoing data collection occurs through commercial logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

References

Southern garfish (Hyporhamphus melanochir)
Reviewed by Kim Smith (DoF)

Scientific name: Hyporhamphus melanochir (Hemiramphidae; Halfbeaks)
Common names: Southern garfish also southern sea garfish, gardie
Key identifying features: Lower jaw extended into a bill, no dark mark on side below dorsal fin, silver strip along midline, t-shaped small sensory pore before eye (Yearsley et al., 2001).

Distribution
Worldwide: Endemic to southern Australia (Collette, 1974).
Western Australia: Southern Western Australian border to Lancelin (Gomon et al., 2008).

Maximum length, weight and age: 500 mm (including beak), 0.6 kg (Gomon et al., 2008), 10 years (Jones et al., 2002).

Length/weight relationship: [West Coast and South Coast bioregions] \(W = 5.627 \times 10^{-6} \cdot SL^{3.029} \) (\(n = 1,345, R^2 = 0.895 \)) (Jones et al., 2002).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>49</td>
<td>168</td>
<td>401</td>
</tr>
</tbody>
</table>

Length relationship: [South Australia] \(TL = 1.1423 \cdot SL^{0.7732} (n=388, R^2=0.995) \) (Jones et al., 2002).

Growth: [West Coast and South Coast] Females \(L_{\infty} = 330 \text{ mm}, k=0.05 \text{ year}^{-1}, t_0=-4.6 \text{ years} \) (\(n=302 \)); Males \(L_{\infty} = 303 \text{ mm}, k=0.05 \text{ year}^{-1}, t_0=-4.1 \text{ years} \) (\(n=150 \)) (Jones et al., 2002).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, SL (mm)</td>
<td>93</td>
<td>126</td>
<td>154</td>
</tr>
<tr>
<td>Males, SL (mm)</td>
<td>80</td>
<td>111</td>
<td>138</td>
</tr>
</tbody>
</table>

Length and age maturity: [West Coast and South Coast, SL] \(L_{50} = 228 \text{ mm}, A_{50} = 1.6 \text{ years} \) (Jones et al., 2002). See also Thomson (1957a).

Reproductive style: [South Australia] Gonochoristic. Serial batch spawner with asynchronous spawning (Jones et al., 2002).

Sex ratio: [West Coast and South Coast] F1:M1 (Jones et al., 2002).

Length and age at sex change: Not applicable.

Spawning season: [West Coast and South Coast] September – April (Jones et al., 2002). See also Thomson (1957b) and Smith et al. (2008).

Spawning location and habitat: Spawning occurs throughout species range and in coastal waters, near vegetation (Jordan et al., 1998; Jones et al., 2002). Some anecdotal evidence of spawning in Wilson Inlet (Neira and Potter, 1992). The species is structured into multiple breeding sub-populations across its range (Steer et al., 2009a).
Fecundity: [West Coast and South Coast] Batch fecundity; \(BF=102.3*SL-1773\) (\(n=52, R^2=0.29\)) (Jones et al., 2002). See also Thomson (1957a).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>273</td>
<td>1,296</td>
<td>2,319</td>
</tr>
</tbody>
</table>

Spawning frequency: Not reported.

Development and habitat use

Eggs: Pelagic but with adhesive filaments that may attach to aquatic vegetation (i.e., seagrass or drift algae) (Collette, 1974; Noell, 2005).

Larvae: Larvae hatch at advanced development stage (post-flexion) and are neustonic.

Limited larval dispersal from spawning sites and post-flexion larvae can maintain their position in the water column where they tend to aggregate around floating seaweed (Jordan et al., 1998; Noell, 2002; 2005).

Juveniles: Estuarine waters and shallow inshore waters (Lenanton, 1982).

Adults: Seagrass beds in shallow inshore waters (Jones et al., 2002).

Migration: [South Australia] Believed to exhibit (possibly offshore) movements associated with spawning, although spawning grounds currently unknown (Fowler et al., 2008).

Stock delineation: Four genetically separate populations identified in Australia located in; Western Australia (samples from Cockburn Sound and Oyster Harbour), western South Australia, South Australian gulfs/Victorian bays and Tasmania (Donnellan et al., 2002). South Australia has several semi-discrete populations (Steer et al., 2009b; Steer et al., 2010).

Diet: Herbivorous, feeds predominantly on seagrass, filamentous green algae, diatoms, chironomid algae and polychaetes (Thomson, 1957b). *H. melanochir* are also predated by *A. georgianus* (Thomson, 1957a) and *A. truttaceus*. In South Australia, *H. melanochir* have been observed feeding on vegetation at the bottom of the water column during the day while rising to the surface to feed on invertebrates at night (Robertson and Klumpp, 1983).

Fishery

Recreational: Caught by shore and boat-based recreational line fishers in nearshore and estuarine environments of the West Coast and South Coast bioregions (Jones et al., 2002; Smallwood and Sumner, 2007; Sumner et al., 2008; Smallwood et al., 2012).

Commercial: Frequently caught in the estuarine and nearshore finfish fisheries of the West Coast and South Coast bioregions (Jones et al., 2002; Smith et al., 2012a; Smith et al., 2012b). This species is caught using a variety of methods although the greatest catch is obtained from beach seine and haul nets and gill netting (Jones et al., 2002). This species is often caught opportunistically, rather than being targeted.

Age at full recruitment: [South and West Coast, commercial, TL] Overall mean length = 288 mm, mean age = 2.2 years. These differ seasonally, and between bioregions (Jones et al., 2002).

Gear selectivity parameters: [South Australia] For haul net mesh selectivity see Steer et al. (2011).

Management parameters

Total mortality: [West Coast and South Coast] 0.98 year\(^{-1}\) (\(n=1,413\)) (Jones et al., 2002).

Natural mortality: Not reported.
Fishing mortality: [South Australia] High mortality rate. Recent estimate of annual harvest fraction of legal-sized garfish is 69% (McGarvey et al., 2009).

Biological reference points: Not reported.

Current status: Current stock levels listed as acceptable for the West Coast bioregion (Smith et al., 2012b). An indicator species for the nearshore suite in the West Coast bioregion (Smith et al., 2012b). Overall risk to sustainability for this suite is moderate in the West Coast and South Coast bioregions (DoF, 2011). Inherent vulnerability is moderate, current risk to wild stock is minimal (South Coast) or moderate (West Coast) (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: Total estimated recreational boat-based catch in the West Coast bioregion was 2 t for 1996/97 and 7 t in 2005/06 (Sumner et al., 2008). Total estimated recreational catch in the West Coast bioregion was 35 t in 2000/01 (Henry and Lyle, 2003). An estimated 0.2 t was retained within estuaries of the South Cost bioregion in 2002/03 (Smallwood and Sumner, 2007). See also Harvey (2004), Smallwood et al. (2006) and Smallwood et al. (2012).

Commercial: Up to five species of garfish are landed in Western Australian waters, although southern garfish is the dominant species. Since 2000, about 54% of commercial catch has been in the West Coast bioregion, 31% from the South Coast, 13% from the Gascoyne Coast and 1% from the North Coast (Smith et al., 2012b). Although highly variable, commercial catches in the nearshore and estuarine fisheries of the West Coast have increased from 11.5 t in 2007 to 19.2 t in 2011 (from a peak of 44 t in 1999), with a large proportion of this from Cockburn Sound (Smith et al., 2012b). Commercial catches in the nearshore and estuarine fisheries of the South Coast have decreased from 18 t in 2007 to 10.8 t in 2011, with a low of 7.6 t in 2009 (Smith et al., 2012a). See also Jones et al. (2002).

Management regulations

Recreational: Currently included in the “all other species of finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1958)</td>
<td>-</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Commercial: South Coast and West Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, gear restrictions, spatial and temporal closures) (Smith et al., 2012a; Smith et al., 2012b). Size limit for commercial fishers ended in 2011. See also Jones et al. (2002).

Current research: Intermittent sampling of age, length and sex of fishery landings in Cockburn sound conducted by DoF. Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.
Comments/other published information: Diet [Victoria] (Klumpp and Nichols, 1983); Reproduction [Tasmania] (Jordan et al., 1998); Parasites [South Australia] (Hutson et al., 2011); Commercial fisheries [South Australia] (Steer et al., 2009b; Steer et al., 2011).

References

Bight redfish (*Centroberyx gerrardi*)

Reviewed by David Fairclough (DoF)

Scientific name: *Centroberyx gerrardi* (Berycidae; Alfonsinos)

Common names: Bight redfish *also* red snapper, nannygai

Key identifying features: White stripe along lateral line, widely separated nostrils, dorsal fin with 6 spines, enlarged teeth at jaw tips (Yearsley *et al*., 2001).

Distribution

Worldwide: Endemic to southern Australia.

Western Australia: Southern Western Australian border to Lancelin (Gomon *et al*., 2008).

Maximum length, weight and age: 660 mm, 4.6 kg (Hutchins and Swainston, 1986), 71 years (Stokie and Krusic-Golub, 2005).

Length/weight relationship: [Cape Naturaliste] $W=0.0001*FL^{2.758}$ (Mackie *et al*., 2009). See also Knuckey *et al.* (2006) and Graham (1999).

<table>
<thead>
<tr>
<th>FL (mm)</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>679</td>
<td>1,501</td>
<td>2,778</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [Great Australian Bight, FL] Females $L_\infty=481$ mm, $k=0.023$ year$^{-1}$, $t_0=30.9$ years
Males $L_\infty=420$ mm, $k=0.034$ year$^{-1}$, $t_0=27.6$ years (Stokie, 2004). See also Brown and Sivakumaran (2007).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>332</td>
<td>387</td>
<td>422</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>337</td>
<td>378</td>
<td>399</td>
</tr>
</tbody>
</table>

Length and age maturity: [Great Australian Bight, FL] $L_{50}=250$ mm, $A_{50}=9$ years (Brown and Sivakumaran, 2007).

Reproductive style: [Cape Naturaliste] Gonochoristic. Multiple batch spawners who form spawning aggregations (Mackie *et al*., 2009).

Adult sex ratio: [GABTS, trawl] F1:M1 ($n = 866$) (Brown and Sivakumaran, 2007).

Length and age at sex change: Not applicable
Spawning season: [Cape Naturaliste] February – April (Brown and Sivakumaran, 2007; Mackie et al., 2009).

Spawning location and habitat: [Cape Naturaliste] Aggregate above “lumps” on the seabed during spawning period (Mackie et al., 2009).

Fecundity: Indeterminate (Brown and Sivakumaran, 2007); batch fecundity is probably low (Mackie et al., 2009).

Spawning frequency: Not reported.

Development and habitat use

Juveniles: Not reported.
Adults: Can be solitary or form aggregations and inhabit deep reefs along the edge of the continental shelf, within caves and beneath ledges. (Harvey et al., 2004; Gomon et al., 2008; Mackie et al., 2009). Higher abundance in cooler waters (Langlois et al., 2012).

Migration: Not reported.

Stock delineation: Not reported.

Diet: [Centroberyx affinis] Omnivorous. Feeds predominantly on benthos-pelagic fish and pelagic crustaceans (Coleman and Mobley, 1984; Bulman et al., 2001).

Fishery

Recreational: With the aid of improved technology, this species is increasingly being targeted by recreational boat-based rod and line fishers and spear fishers in the West Coast and South Coast bioregions (Mackie et al., 2009). This species is also caught by charter boats in these bioregions (Telfer, 2010).

Commercial: A commercially important species caught predominantly in several fisheries including; the Great Australian Bight Trawl Sector (GABTS) of the Southern and Eastern Scalefish and Shark Fishery, by open access wetline fishers in the South Coast bioregion, line fishers in the south-west management area of the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) and by temperate Demersal Gillnet and Demersal Longline Fisheries (DGDLF) operating in the West and South Coast bioregions. Taken mainly at depths ≤200 m in the West Coast bioregion and the GABTS (Klaer, 2012). See also McAuley and Simpfendorfer (2003).

Age at full recruitment into the fishery: [Great Australian Bight] Females=17 years ($n=287$), Males=15 years ($n=314$) (Stokie, 2004).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: Not reported but estimated in stock assessment models for South Australian stocks (Klaer, 2012).

Fishing mortality: Not reported but estimated in stock assessment models for South Australian stocks (Klaer, 2012).
Biological reference points: Increase in fishing effort (2002 data) resulted in a 66% reduction in the production of eggs per-recruit according to the model (assuming $M=0.13$ year$^{-1}$) (Brown and Sivakumaran, 2007). Spawning stock biomass is estimated to be 90% of unexploited stock level (SSB$_0$) in the Great Australian Bight (Klaer, 2012).

Current status: A proposed indicator species for the inshore demersal suite in the South Coast bioregion (DoF, 2011). Overall risk to sustainability for this suite is medium to high in the West Coast and South Coast bioregions (DoF, 2011). Inherent vulnerability for the species is high while current risk to wild stock is high (West Coast) or moderate (South Coast) (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: Total estimated recreational boat-based catch in the West Coast bioregion increased from 1 t in 1996/97 to 5 t in 2005/06 (Sumner et al., 2008). An estimated 26,722 individuals of this species were caught by recreational anglers in Western Australia in 2000/01 (Henry and Lyle, 2003). This species is the most frequently caught (in number) by charter fishers in the South Coast bioregion (Telfer, 2010).

Commercial: The total statewide commercial catch of Centroberyx gerrardi in 2010/11 was 40 t (Fletcher and Santoro, 2012). Commercial catches in 2011 included 29 t caught in the WCDSIMF (Fairclough et al., 2012). The DGDLF recorded 6.2 t of Centroberyx spp. caught in the South Coast bioregion in 2011, and a further 0.2 t in the West Coast bioregion. Commercial catches of Centroberyx spp. in the South Coast Demersal Line Fishery have decreased from 37 t in 2007 to 23.9 t in 2011, with a high of 47.2 t in 2008 (Molony et al., 2012). Note: this species is often grouped under Centroberyx spp. (McAuley and Rowland, 2012). See also Klaer (2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1988)</td>
<td>-</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>8</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Statewide (1992/93)</td>
<td>20</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>4</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>West Coast (2005)</td>
<td>4</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>300</td>
<td>Closed season (15 Oct – 15 Dec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsory possession of release weight</td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012). The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012). The South Coast Demersal Line Fishery is currently ‘open access’ for the holder of a valid Fishing Boat Licence (for the boat) and a Commercial Fishing Licence (for the fisher) (Molony et al., 2012).

Current research: Another assessment of indicator species for the south-west management area of the West Coast bioregion will be conducted in 2012/13. Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based
fishing in 2011/12 may also provide additional catch information. A collaborative NRM-funded research project between Murdoch University and DoF recently commenced which will describe the key biological characteristics of this species in Western Australia.

Comments/other published information: Passive acoustic monitoring (Mackie et al., 2009); Age structure modeling (Wise and Tilzey, 2000).

References

Southern blue spotted flathead (*Platycephalus speculator*)

Reviewed by Peter Coulson (Murdoch University)

Scientific name: *Platycephalus speculator* (Platycephalidae; Flatheads)

Common names: Southern blue spotted flathead also blue-spotted flathead, southern flathead

Key identifying features: Caudal fin margin with 3 – 5 large black spots, no greatly enlarged teeth at tip of upper jaw, one pair of bony ridges behind the eye and no large dark blotch inside operculum (Yearsley *et al.*, 2001).

Distribution of species

Worldwide: Endemic to southern Australia (Gomon *et al.*, 2008).

Western Australia: Southern Western Australian border to Carnarvon (Gomon *et al.*, 2008).

Maximum length, weight and age: 900 mm, 8 kg (Gomon *et al.*, 2008), 12 years (Hyndes *et al.*, 1992a).

Length/weight relationship: [West Coast bioregion] \(W=4.35 \times 10^{-6} TL^{3.05} \) [unpublished DoF data, cited in Sumner (2008)].

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>1,562</td>
<td>3,756</td>
<td>7,419</td>
</tr>
</tbody>
</table>

Length relationship: Not applicable for FL vs TL.

Growth: [Wilson Inlet] Females \(L_\infty=482 \) mm, \(k=0.593 \) year\(^{-1}\), \(t_0=-0.056 \) years (\(n=711 \))

Males \(L_\infty=429 \) mm, \(k=0.573 \) year\(^{-1}\), \(t_0=-0.134 \) years (\(n=630 \)) (Hyndes *et al.*, 1992a).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>340</td>
<td>469</td>
<td>481</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>303</td>
<td>416</td>
<td>428</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Wilson Inlet] Females \(L_{50}=250 \) mm, Males \(L_{50}=325 \) mm. Most females and males attain maturity at 2 and ~ 1 years old, respectively, and at 250 – 400 mm and 190 – 310 mm, respectively (Hyndes *et al.*, 1992a; Hyndes *et al.*, 1992b).

Reproductive style: Gonochoristic. Multiple spawner (Hyndes *et al.*, 1992b).

Length and age at sex change: Not applicable.
Spawning season: [Wilson Inlet] December to April (Hyndes et al., 1992b).

Spawning location and habitat: Spawn in open and closed estuaries on the south coast and adjacent marine waters, but not in estuaries on the lower west coast of Western Australia (Hyndes et al., 1992b; Potter and Hyndes, 1999).

Fecundity: Not reported.

Spawning frequency: Not reported.

Development and habitat use

Eggs: Pelagic; estuaries and coastal waters (Hyndes et al., 1992b; Potter and Hyndes, 1999).

Larvae: Description of pelagic larval stages (Neira et al., 1998); estuaries and coastal waters (Hyndes et al., 1992b; Neira and Potter, 1992; Breheny et al., 2012).

Juveniles: Estuaries (Hyndes et al., 1992b).

Adults: Sand and sparsely vegetated weed or seagrass areas in sheltered marine embayments and estuaries as well as surf zones and nearshore reef habitats (Ayvazian and Hyndes, 1995; Chatfield et al., 2010). Most abundant in areas ≤30 m depth (Chatfield et al., 2010).

Migration: Life cycle can be completed within south coast estuaries, but species is a marine-estuarine opportunist on the lower west coast (Potter and Hyndes, 1999).

Stock delineation: Not reported.

Diet: Ambush predator which feeds predominantly on crustaceans, teleosts (both benthic and mid-water species) and gastropods. Diet in Wilson Inlet found to overlap considerably with the diets of two small cormorant species (Humphries et al., 1992).

Fishery

Recreational: Species of Platycephalidae, including the blue spotted flathead, are caught by recreational fishers from boats and from the shore using lines and nets in the Gascoyne Coast, West Coast and South Coast bioregions (Hyndes et al., 1992b; Sumner et al., 2002; Smallwood and Sumner, 2007).

Commercial: Species of Platycephalidae, including the blue spotted flathead, are targeted using gill and haul nets in the South Coast Estuarine Managed Fishery (SCEMF) as well as beach-based nearshore commercial fisheries (Lenanton and Potter, 1987; Smith et al., 2012).

Age at full recruitment: Not reported.

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: Not reported.

Natural mortality: Not reported.

Fishing mortality: Not reported.

Biological reference points: Not reported.

Current status: Overall risk to sustainability for the nearshore suite of species is moderate in the South Coast bioregion (DoF, 2011). Inherent vulnerability for the species and current risk to wild stock is minimal (DoF, 2011). See DoF (2011) for more detailed risk assessment data.
Catch trends

Recreational: Total recreational catch of Platycephalidae from boat-based fishing was estimated to be 5.4 t in the West Coast bioregion in 1996/97 (Sumner and Williamson, 1999) and 2.6 t in estuaries of the South Coast bioregion in 2002/03 (Smallwood and Sumner, 2007). See also Sumner et al. (2002) and Harvey (2004).

Commercial: Total commercial catch of Platycephalidae in Western Australia was 3 t in 2010/11 (Fletcher and Santoro, 2012). Catches in the SCEMF and beach-based nearshore commercial fisheries decreased from 9.1 t in 2007 to 3.6 t in 2011, with a low of 3 t in 2010 (Smith et al., 2012).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1986)</td>
<td>-</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (2001)</td>
<td>20</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2004)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The South Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, gear restrictions, spatial and temporal closures, and size limits) (Smith et al., 2012).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

References

Breaksea cod (Ephinephelides armatus)

Reviewed by David Fairclough (DoF)

Scientific name: *Ephinephelides armatus* (Serranidae; Groupers)

Common names: Breaksea cod also blackarse snapper, blackarse cod, blackarse, tiger cod

Key identifying features: Black blotch surrounds anus, often has a pale stripe on tip of snout (Hutchins and Thompson, 1983).

Distribution of species

Worldwide: Endemic to Western Australia.

Western Australia: Recherché Archipelago to Carnarvon (Gomon et al., 2008).

Maximum length, weight and age: 550 mm (Hutchins and Thompson, 1983), 3 kg (AAA, 2011), 19 years (Moore et al., 2007).

Length/weight relationships: [Lower west coast] $\ln W = 3.118 \times \ln TL - 11.672$ ($n=217$, $R^2=0.996$) (Moore, 2005). See also Eastman (2001).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>127</td>
<td>451</td>
<td>1,107</td>
</tr>
</tbody>
</table>

Length relationship: Not applicable for FL vs TL.

Growth: [Lower west coast] Females $L_x=561$ mm, $k=0.14$ year$^{-1}$, $t_0=0.24$ years ($n=335$, $R^2=0.794$); Males $L_x=588$ mm, $k=0.17$ year$^{-1}$, $t_0=0.04$ years ($n=283$, $R^2=0.789$) (Moore et al., 2007).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>3</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>200</td>
<td>292</td>
<td>427</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>237</td>
<td>338</td>
<td>481</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Lower west coast] Females $L_{50}=306$ mm, $L_{95}=357$ mm; Males $L_{50}=256$ mm, $L_{95}=317$ mm. All females and males < 5 and 3 years, respectively, are immature. The majority of females and males are mature by 7 and 5 years, respectively (Moore et al., 2007).

Reproductive style: Gonochoristic. This is the first confirmed gonochorist of the sub-family Anthiinae, with all other species being protogynous hermaphrodites. Multiple spawner (Moore et al., 2007).

Adult sex ratio: [Lower west coast, rod and line] F1:M1.22 (Moore et al., 2007).
Length and age at sex change: Not applicable.

Spawning season: October - April (Moore et al., 2007).

Spawning locality: Over reefs in coastal waters (Moore et al., 2007).

Fecundity: Indeterminate (Moore et al., 2007).

Spawning frequency: Not reported.

Development and habitat use

Eggs: [Family Serranidae] Pelagic (Neira et al., 1998).

Larvae: [Family Serranidae] Pelagic. Ephinephaline larvae have elongate dorsal and pelvic fin spines (Leis and Carson-Ewart, 2000).

Juveniles: Limestone and coral reefs (Moore, 2005).

Adults: Continental shelf waters over prominent limestone and coral reefs. Relatively common in coastal waters <100 m deep (Hutchins and Swainston, 1986; Lenanton et al., 2009).

Migration: No evidence of migratory behavior (Moore, 2005).

Stock delineation: Not reported.

Diet: A carnivorous species which feeds by “ram-feeding” and preys predominantly on teleosts, decapods and crustaceans (Platell et al., 2010).

Fishery

Recreational: An important recreational species caught by boat-based line fishers (Wise et al., 2007; Sumner et al., 2008) and charter boats (Telfer, 2010).

Commercial: Not targeted by commercial fishers but caught as by-product by the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) (Fairclough et al., 2012) and in rock lobster pots (De Lestang et al., 2012).

Age at full recruitment: [Lower west coast, recreational and research line fishing data] ~ 5 years, i.e., 1 year after peak in age compositions shown in Moore et al. (2007).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [Catch curve analysis] ~0.60 year⁻¹ in waters > 40 m near Two Rocks, 1.34 year⁻¹ in waters <40 m near Rottnest Island (Moore, 2005).

Natural mortality: [Pauly’s (1980) equation] Females 0.46 year⁻¹; Males 0.45 year⁻¹ (Moore, 2005; Moore et al., 2007).

Fishing mortality: 0.14 year⁻¹ (i.e., $F=Z-M$). Mortality estimates require updating with more recent data and consideration of representativeness of age composition in samples (Moore et al., 2007).

Biological reference points: Not reported.

Current status: Overall risk to sustainability for the nearshore demersal suite is medium high in the West Coast and South Coast bioregions (DoF, 2011). Inherent vulnerability for the species is moderate and current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.
Catch trends:

Recreational: Total estimated recreational boat-based catch in the West Coast bioregion was 17 t for 1996/97 and 16 t in 2005/06 (Sumner *et al.*, 2008). This species is the most frequently caught (in number) by charter fishers in the West Coast and South Coast bioregions (Telfer, 2010).

Commercial: The total landed weight of this species was 5 t in 2010/11 (Fletcher and Santoro, 2012). By-catch in rock lobster pots in 2010/11 was 126 kg (De Lestang *et al.*, 2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>4</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>South Coast (2003)</td>
<td>4</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>300</td>
<td>Closed season: 15 Oct – 15 Dec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsory possession of release weight</td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>3</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF, in which breaksea cod is a by-product species, is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough *et al.*, 2012).

Current research: Research is being undertaken by DoF to obtain more robust (and current) estimates of mortality. Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published research: *Intestinal worms* (Aken’Ova *et al.*, 2003); *Distribution linked to water temperature* (Langlois *et al.*, 2012b); *Length frequency using stereo-video techniques* (Langlois *et al.*, 2012a); *Barotrauma* (Lenanton *et al.*, 2009).

References

Harlequin fish *Othos dentex*

Reviewed by Ben French (Murdoch University)

Scientific name: *Othos dentex* (Serranidae; Groupers)

Common names: Harlequin fish also chinese lantern, tiger cod

Key identifying features: Bright blue spots and yellow blotches on dark brown to yellow sides, 10 dorsal fin spines (Hutchins and Thompson, 1983).

Distribution of species

Worldwide: Endemic to southern Australian waters (Gomon *et al.*, 2008).

Australia: Southern Western Australian border to Jurien Bay (Gomon *et al.*, 2008).

Maximum length, weight and age: 760 mm, 4.25 kg (Hutchins and Swainston, 1986), [South Australia] 42 years (Saunders *et al.*, 2010).

Length/weight relationship: \(W = 0.000005059*TL^{3.1667} \) \((n=249, R^2=0.98) \) (B. French, unpublished data, Murdoch University).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>353</td>
<td>879</td>
<td>1,782</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [South Australia, sexes combined] \(L_\infty = 565 \) mm, \(k=0.17 \) year\(^{-1} \), \(t_0=-0.32 \) years \((n=26) \) (Saunders *et al.*, 2010).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (mm)</td>
<td>567</td>
<td>547</td>
<td>562</td>
</tr>
</tbody>
</table>

Length and age at maturity: Not reported.

Reproductive style: [South Australia] Possibly gonochoristic (overlapping size ranges) (Saunders *et al.*, 2010).

Adult sex ratio: Not reported.

Length and age at sex change: Not reported.

Spawning season: Not reported.

Spawning location and habitat: Not reported.

Fecundity: Not reported.

Spawning frequency: Not reported.
Development and habitat use

Larvae: [Serranidae] Pelagic (Leis and Carson-Ewart, 2000).

Juveniles: Not reported.

Adults: [South Australia] Shallow reefs and caves with drop offs (from about 4 m to 60 m deep) (Gomon et al., 2008; Baker et al., 2009).

Migration: None.

Stock delineation: Not reported.

Diet: [South Australia] A predator that feeds on abalone (Shepherd, 1973) and small fish species (Scott et al., 1974).

Fishery

Recreational: Targeted by recreational boat-based line fishers (Sumner et al., 2008) as well as spear fishers (Smith, 2000). This species is also caught by fishers on charter boats (Telfer, 2010).

Commercial: Not targeted by commercial fishers but taken as by-catch in the temperate Demersal Gillnet and Demersal Longline Fisheries (DGDLF) in the West Coast and South Coast bioregions (McAuley and Simpfendorfer, 2003). This species is also taken as by-product in the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) (D. Fairclough, DoF, pers. comm. 2012) and in rock lobster pots (Baker, 2009).

Age at full recruitment: Not reported.

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: Not reported.

Natural mortality: Not reported.

Fishing mortality: Not reported.

Biological reference points: Not reported.

Current status: Overall risk to sustainability for the nearshore demersal suite of species is medium to high in the West Coast and South Coast bioregions (DoF, 2011). Inherent vulnerability for the species is moderate and current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated retained catch of this species by recreational boat-based fishers in the West Coast bioregion was 1,256 fish in 1996/97 and 1,989 fish in 2005/06 (Sumner et al., 2008). It was also estimated that 4,697 fish of this species were kept by recreational anglers in Western Australia in 2000/01 (Henry and Lyle, 2003). See also (Telfer, 2010) for information on catch of this species from charter boats.

Commercial: Occasionally obtained as a by-catch of the DGDLF in the West Coast and South Coast bioregions, but no catch information reported (McAuley and Simpfendorfer, 2003).
Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>-</td>
<td>Closed season: 15 Oct – 15 Dec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsory possession of release weight</td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012). The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012).

Current research: Biological studies being undertaken as part of a PhD at Murdoch University. Ongoing data collection occurs through commercial logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

References

Eightbar grouper (*Hyporthodus octofasciatus*)

Reviewed by Stephen Newman (DoF)

Scientific name: *Hyporthodus octofasciatus* (Serranidae; Groupers) (often confused with *Hyporthodus septemfasciatus*). Common names: Eightbar grouper also grey-banded rockcod, bar cod

Key identifying features: Eight dark vertical bands on side of body, a dark blotch on upper portion of caudal peduncle, blackish brown dorsal, anal and pelvic fins; faint brown band from eye to the operculum (Heemstra and Randall, 1993; Rome and Newman, 2010). It differs from *Ephinephelus septemfasciatus* by having a different configuration of dark bars on the side of the body.

Distribution

Worldwide: Indo-West Pacific from South Africa to Japan, Australia and New Zealand. Most distribution records for *H. septemfasciatus* outside of Japan, China and Korea are probably for *H. octofasciatus* (Heemstra and Randall, 1993).

Western Australia: Entire Western Australian coastline (Rome and Newman, 2010).

Maximum length, weight and age: 1,000 mm (Rome and Newman, 2010), 12 kg (Heemstra and Randall, 1993), 47 years (Wakefield et al., 2013).

Length/weight relationship: \[W=0.00001356*L^{3.03} \] \((n=156, R^2=0.99)\) (Wakefield et al., 2013).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>400</th>
<th>600</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>1,039</td>
<td>3,549</td>
<td>8,484</td>
</tr>
</tbody>
</table>

Length relationship: Not applicable.

Growth: [Western Australia, sexes combined] \[L_\infty=1,100 \text{ mm}, k=0.11 \text{ year}^{-1}, t_0=-0.41 \text{ years} \] \((n=26)\) (Wakefield et al., 2013). Differences in growth between temperate and tropical waters (Wakefield et al., 2013).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (mm)</td>
<td>750</td>
<td>983</td>
<td>1,061</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Western Australia, tropical waters] Females \(L_{50}=560 \text{ mm}, A_{50}=6.1 \text{ years}, L_{95}=900 \text{ mm}, A_{95}=16.4 \text{ years} \) (Wakefield et al., 2013). No mature females were recorded in temperate waters (Wakefield et al., 2013).

Reproductive style: Monandric protogynous hermaphrodite (Wakefield et al., 2013).
Adult sex ratio: Not reported.

Length and age at sex change: [Western Australia, tropical waters] $L_{50}=1,022$ mm (Wakefield et al., 2013).

Spawning season: Late spring to summer (October – February) (Wakefield et al., 2013).

Spawning location and habitat: No evidence of reproduction south of ~30°S latitude (Wakefield et al., 2013).

Fecundity: Not reported.

Spawning frequency: Not reported.

Development and habitat use

Larvae: [Serranidae] Pelagic (Leis and Carson-Ewart, 2000).

Juveniles: Not reported.

Adults: Offshore reefs at depths of 150 – 300 m (Heemstra and Randall, 1993; Rome and Newman, 2010).

Migration: Not reported.

Stock delineation: Not reported.

Diet: Not reported.

Fishery

Recreational: Caught using hook and line in deep waters by recreational boat-based fishers (To and Pollard, 2008).

Commercial: Caught using various wetline methods (i.e., handlines and droplines) by offshore demersal fisheries throughout Western Australia, including the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF), South Coast Demersal Line Fishery, Gascoyne Demersal Scalefish Fishery (GDSF), Pilbara Demersal Scalefish Fishery (PDSF) and the Northern Demersal Scalefish Fishery (NDSF) (DoF, 2011; Fairclough et al., 2012; Molony et al., 2012).

Age at full recruitment into the fishery: Not reported.

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: Not reported.

Natural mortality: 0.09 year^{-1} (Wakefield et al., 2013).

Fishing mortality: Not reported.

Biological reference points: Not reported.

Current status: A proposed indicator species for the offshore demersal zone in the West Coast and a current indicator species in the South Coast bioregion (DoF, 2011). Overall risk to sustainability for this offshore demersal suite is medium high in all four bioregions (DoF, 2011). Inherent vulnerability for the species is high and current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data. Assessed in IUCN Red List in 2008 as data deficient (To and Pollard, 2008).
Catch trends

Recreational: Not reported. Catches of this species are likely to have been incorporated into a general “cod” category (Sumner et al., 2008).

Commercial: The total catch of this species for 2010/11 in Western Australia was 23 t, of which <4 t was caught by the WCDSIMF (Fairclough et al., 2012). Commercial catches of this species in the South Coast Demersal Line Fishery have dropped from 2.5 t in 2007 to 1.4 t in 2011, with a low of 0.5 t in 2010 (Molony et al., 2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>-</td>
<td>Closed season (15 Oct – 15 Dec)</td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>-</td>
<td>Compulsory possession of release weight</td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012). The South Coast Demersal Line Fishery is currently ‘open access’ for the holder of a valid Fishing Boat Licence (for the boat) and a Commercial Fishing Licence (for the fisher) (Molony et al., 2012).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

References

Hapuku (*Polyprion oxygeneios*)

Reviewed by Corey Wakefield (DoF)

Scientific name: *Polyprion oxygeneios* (Polyprionidae; Wreckfishes)

Common names: Hapuku also hapuka, New Zealand groper

Key identifying features: Uniformly grey on back, operculum broadly angular with obvious ridge ending in a strong spine, dorsal fin continuous with distinct spinous part, large mouth and head (Yearsley *et al.*, 2001). Similar to *P. americanus*, which has a parallel distribution in southern Australia, the two species are differentiated by *P. oxygeneios* having a body length <30% standard length (versus >35% standard length), a pectoral fin length 35 – 44% of head length (versus 44 – 50 head length), side of body distinctly dark above and pale below in adults (versus side of body uniformly pigmented in adults) and pelagic juveniles with oblique bands (versus mottled colouring) (Gomon *et al.*, 2008).

Distribution

Worldwide: Global distribution in temperate and sub-tropical waters, except South Africa (Gomon *et al.*, 2008).

Western Australia: Southern Western Australia to Rottnest Island (Gomon *et al.*, 2008).

Maximum length, weight and age: 1,800 mm, 70 kg (Yearsley *et al.*, 2001), 35 years for females and 52 years for males (Wakefield *et al.*, 2010).

Length/weight relationship:
\[W=0.000002582*TL^{3.24337} \]
(n=98) (C. Wakefield, DoF, unpublished data).

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>400</th>
<th>800</th>
<th>1,200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>710</td>
<td>6,725</td>
<td>25,054</td>
</tr>
</tbody>
</table>

Length relationship: Not applicable.

Growth: [South Coast] Females \(L_\infty =905 \text{ mm}, \ k=0.23 \text{ year}^{-1}, \ t_0=0.20 \text{ years} \) (n=361)
Males \(L_\infty =877 \text{ mm}, \ k=0.22 \text{ year}^{-1}, \ t_0=0.47 \text{ years} \) (n=399) (Wakefield *et al.*, 2010).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>818</td>
<td>896</td>
<td>904</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>789</td>
<td>867</td>
<td>876</td>
</tr>
</tbody>
</table>

Length and age at maturity: [South Coast] Females \(L_{50}=760 \text{ mm}, \ A_{50}=7.1 \text{ years} \); Males \(L_{50}=702 \text{ mm}, \ A_{50}=6.8 \text{ years} \) (Wakefield *et al.*, 2010).
Reproductive style: Gonochoristic (Roberts, 1989; Wakefield et al., 2010).

Adult sex ratio: [South Coast, commercial hook and line] F1:M1.2 (Wakefield et al., 2010).

Length and age at sex change: Not applicable.

Spawning season: [South Coast] May – September (Wakefield et al., 2010), similar to New Zealand (Beentjes and Francis, 1999).

Spawning location and habitat: Not reported, but possibly forms spawning aggregations (Beentjes and Francis, 1999; Wakefield et al., 2010).

Fecundity: Not reported.

Spawning frequency: Not reported.

Development and habitat use

Eggs: [New Zealand] Likely to drift upwards in the water column after spawning to become pelagic (Anderson et al., 2012).

Larvae: [New Zealand] Pelagic (Anderson et al., 2012); [USA] Description of larval stages (Richards, 2006).

Juveniles: [New Zealand] Until about 50 cm in length, juveniles are pelagic and predominantly found in surface waters in association with flotsam (Roberts, 1996).

Adults: Deep offshore waters of the continental slope between 100 – 500 m depth, predominantly over reef and rough ground (Wakefield et al., 2010). Maximum recorded depth is 854 m (Barreiros et al., 2004).

Migration: [New Zealand] Not reported but tagging has shown that some individuals of this species have strong site associations, while others migrate large distances (Beentjes and Francis, 1999).

Stock delineation: Mixing between populations throughout southern hemisphere likely (Wakefield et al., 2010) due to its long pelagic juvenile phase (Francis et al., 1999). Evidence of pan-oceanic mixing in Polyprion species (Sedberry et al., 1996; Ball et al., 2000).

Fishery

Recreational: Targeted by recreational fishers in New Zealand and South Australia (Francis et al., 1999; Baker, 2009), and beginning to appear in catches in Western Australia (C. Wakefield, DoF, pers. comm., 2012)

Commercial: Caught by commercial fishers using handlines and droplines in Western Australian waters in the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) and the South Coast Demersal Line Fishery (Fairclough et al., 2012; Molony et al., 2012). Also caught in Commonwealth waters in the Western Deepwater Trawl Fishery (Emery et al., 2009)

Age at full recruitment into the fishery: [South Coast] ~5 years, 1 year following peak in age composition (Wakefield et al., 2010).

Gear selectivity parameters: Not reported.
Management parameters

Total mortality: [Derived from age composition data] $0.10-0.14 \text{ year}^{-1}$ (Wakefield et al., 2010).

Natural mortality: [Hoenig’s (1983) equation for fish] 0.09 year^{-1} (Wakefield et al., 2010).

Fishing mortality: $0.01-0.05 \text{ year}^{-1}$ (Wakefield et al., 2010).

Biological reference points: $F_{\text{target}} = 0.06 \text{ year}^{-1}$ (i.e., 2/3M) (Wakefield et al., 2010).

Current status: Uncertain (Wakefield et al., 2010). A proposed indicator species for the offshore demersal zone in the West Coast and South Coast bioregions (DoF, 2011). Overall risk to sustainability for the offshore demersal suite in the West Coast and South Coast bioregions is medium to high (DoF, 2011). Inherent vulnerability of the species is high and current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: No recreational catch information available for Western Australia.

Commercial: Total commercial catch in Western Australia in 2010/11 was 13 t (Fletcher and Santoro, 2012). The majority of this catch was taken by the South Coast Demersal Line Fishery, with 14.8 t caught in 2011, a decrease from the peak of 18.5 t caught in 2009 (Molony et al., 2012). Only 1 t was recorded in WCDSIMF for 2011 (Fairclough et al., 2012). The Western Deepwater Trawl Fishery took small, intermittent catches of this species with <0.3 t from 2000 – 2003 (Emery et al., 2009).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1991)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2005)</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>-</td>
<td>Closed season (15 Oct – 15 Dec)</td>
</tr>
<tr>
<td>state-wide (except West Coast) (2013)</td>
<td>3</td>
<td>-</td>
<td>Compulsory possession of release weight</td>
</tr>
</tbody>
</table>

Commercial: Management of this species in the WCDSIMF involves a variety of input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012). The South Coast Demersal Line Fishery is currently ‘open access’ for the holder of a valid Fishing Boat Licence (for the boat) and a Commercial Fishing Licence (for the fisher) (Molony et al., 2012). The Western Deepwater Trawl Fishery is managed using a number of arrangements including limited entry and species specific limits (Emery et al., 2009).

Current research: Genetic studies are underway, firstly to confirm the taxonomy of Polyprion species in Western Australia and secondly, examine connectivity between Australia (east and west coast) and New Zealand. Additional studies are underway investigating age-based demography and reproduction from the lower west coast and fish ecology of upper slope in Western Australia with respect to latitude and depth (C. Wakefield, DoF, pers. comm., 2012). Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.
Comments/other published information: *Heavy metals and poisons* [New Zealand] (Solly and Harrison, 1972; Brooks and Rumsey, 1974; Van den Broek *et al.*, 1981); *Lipid and fatty acids* [New Zealand] (Vlieg and Body, 1988); *Predation* [New Zealand] (Jaquet *et al.*, 2000; Lussesau and Wing, 2006); *Liver oil* [New Zealand] (Shorland, 1953).

References

West Australian dhufish (Glaucosoma hebraicum)

Reviewed by David Fairclough (DoF)

Scientific name: *Glaucosoma hebraicum* (Glaucosomatidae; Pearl Perches)

Common name: West Australian Dhufish also dhufish, dhuie

Key identifying features: No shield-like bone at top of operculum, dark curved bar through eye, pale gill rakers and body cavity membrane (Yearsley *et al.*, 2001).

Distribution of species

Worldwide: Endemic to Western Australia (Hutchins and Swainston, 1986).

Australia: Recherché Archipelago to Shark Bay (Hutchins and Swainston, 1986).

Maximum length and age: 1,219 mm, 25.8 kg (Hutchins & Thomson, 1995), 41 years (Hesp *et al.*, 2002a).

Length/weight relationship: [West Coast bioregion] Females \(\log W = \log0.0000417 + 2.859* \log TL (n=486, R^2=0.995)\); Males \(\log W = \log0.0000322 + 2.898* \log TL (n=486, R^2=0.995)\) (Hesp *et al.*, 2002a).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>500</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight – Females (g)</td>
<td>500</td>
<td>2,170</td>
<td>5,680</td>
</tr>
<tr>
<td>Weight – Male (g)</td>
<td>485</td>
<td>2,130</td>
<td>5,660</td>
</tr>
</tbody>
</table>

Length relationship: Not applicable.

Growth curve: [West Coast bioregion] Females \(L_\infty = 929 \text{ mm}, k=0.11 \text{ year}^{-1}, t_0=0.141 \text{ years} (n=675, R^2=0.83)\); Males \(L_\infty = 1025 \text{ mm}, k=0.11 \text{ year}^{-1}, t_0=0.052 \text{ years} (n=799, R^2=0.90)\) (Hesp *et al.*, 2002a). See also Lenanton *et al.* (2009a).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>5</th>
<th>15</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>285</td>
<td>748</td>
<td>894</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>430</td>
<td>827</td>
<td>987</td>
</tr>
</tbody>
</table>

Length and age at maturity: Females \(L_{50} = 301 \text{ mm}; \) Males \(L_{50} = 320 \text{ mm}\) (Hesp *et al.*, 2002a)

Reproductive style: Gonochoristic. Multiple spawner (Hesp *et al.*, 2002a). Reproductive strategy involves complex social system, spawning in pairs or small groups (Lenanton *et al.*, 2009a; Mackie *et al.*, 2009).

Adult sex ratio: [West Coast bioregion, Metropolitan Zone, commercial, recreational and research sampling using lines and gillnets] F1:M1.1 (Lenanton *et al.*, 2009a). See also Marr (1980) and Hesp (1997).
Length and age at sex change: Not applicable.

Spawning season: November to April, with increased activity from December to March (Hesp et al., 2002a). See also Marr (1980), Abordi (1986) and May (1986).

Spawning location and habitat: Over reefs (Hesp et al., 2002a; Mackie et al., 2009).

Fecundity: Batch fecundity; $BF = (0.0841TL - 10.432)^3$ (Wise et al., 2007; Lenanton et al., 2009a).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>Fecundity (eggs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3,240</td>
</tr>
<tr>
<td>500</td>
<td>31,608</td>
</tr>
<tr>
<td>700</td>
<td>113,647</td>
</tr>
</tbody>
</table>

Spawning frequency: ~1.7 days (hydrated oocyte method) to 2 days (post-ovulatory follicle method) (McKeever, 2011).

Development and habitat use

Eggs: Pelagic (Neira et al., 1998).

Larvae: Description of larval stages (Neira et al., 1998). Pelagic (Jones, 1986; Cleary and Jenkins, 2003) but settle to a benthic habitat once eyes have adapted to low light (Pironet and Neira, 1998; Shand, 2001). Based on laboratory studies, settlement occurs at ~45 days, when the larvae are ~8 mm long (Pironet and Neira, 1998; Cleary and Jenkins, 2003). Has been speculated that the strength of the northwards-flowing Capes current may play a role in distributing larvae northwards (Lenanton et al., 2009a). Particle modelling by Berry et al. (2012) indicates that, overall, the strength of ocean currents is unlikely to profoundly impact recruitment strength (but may impact localised recruitment to some areas).

Juveniles: Small juveniles (<150 mm) found predominantly over sandy areas of sand-inundated low profile reef (with mixed macroalgae, sponge and seagrass) and in small isolated patches of low or medium profile reef surrounded by sandy areas or seagrass beds in coastal inshore waters between 2 – 48 m depth (Wakefield et al., 2013). Larger juveniles (150 – 300 mm) are found over low-lying reefs, i.e., rock ledges < 30 cm high (Hesp et al., 2002a; Mitsopoulos and Molony, 2010).

Adults: Fish > 300 mm are found over prominent reefs (Hesp et al., 2002a).

Migration: Tagging and otolith microchemistry studies indicate restricted movement and limited mixing of adults latitudinally along the west coast, respectively (Lenanton et al., 2009a; Mackie et al., 2009; Fairclough et al., 2013) except during spawning where individuals may move into shallower waters, especially in the southern West Coast bioregion (Mackie et al., 2009). Individuals are more active at night (Mackie et al., 2009).

Stock delineation: Microsatellite DNA studies indicate a single genetic stock (Berry et al., 2012). Otolith microchemistry studies indicate geographic residency of adults along the West Coast bioregion and that by the early juvenile phase, individuals will have settled adjacent to their adult location (Lenanton et al., 2009a; Fairclough et al., 2013).

Fishery

Recreational: One of the most important species for boat-based recreational line fishers, including charter operators, especially in the West Coast bioregion (Wise et al., 2007; Telfer, 2010; Fairclough et al., 2012).
Commercial: A commercially important species caught in the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) and Demersal Gillnet and Demersal Longline Fisheries (DGDLF) (Fairclough et al., 2012; McAuley and Rowland, 2012). Small numbers of this species are also caught as by-catch in rock lobster pots (De Lestang et al., 2012).

Age at full recruitment: 9 years (Hesp et al., 2002).

Gear selectivity parameters: Females $L_{50}=503$ mm; Males $L_{95}=658$ mm (Hesp et al., 2010).

Management parameters

Total mortality: [West Coast bioregion, $Z=M+F$ using $M=0.11$ year$^{-1}$] 0.17 – 0.37 year$^{-1}$ (Wise et al., 2007).

Natural mortality: A range of estimates available for the West Coast bioregion including; 0.12 – 0.21 year$^{-1}$ calculated using Hoenig’s (1983) regression method (Hesp et al., 2002a; Wise et al., 2007) and 0.11 – 0.21 year$^{-1}$ calculated using the maximum age method (Hesp et al., 2002b; Wise et al., 2007).

Fishing mortality: [West Coast bioregion] 0.06 – 0.26 year$^{-1}$ (Wise et al., 2007).

Biological reference points: $F_{\text{limit}} \sim 0.11$ year$^{-1}$ (i.e., $F=3/2M$).

YPR_{max} at $\sim F=0.16$ year$^{-1}$

$E/R, SPR=20\%$ at $\sim F=0.08$ year$^{-1}$, $SPR 40\%$ at $\sim F=0.2$ year$^{-1}$ (Wise et al., 2007).

Current status: Breeding stock levels assessed as recovering in the West Coast bioregion (Fairclough et al., 2012). An indicator species in the inshore demersal ecosystem (DoF, 2011a). Overall risk to sustainability for the inshore demersal suite in the West Coast bioregion is medium to high (DoF, 2011a). Inherent vulnerability for the species is high and current risk to wild stock is high (DoF, 2011a). See DoF (2011a) for more detailed risk assessment data.

Catch trends

Recreational: The recreational catch of this species in the West Coast bioregion has decreased from 181 t in 2005/06 to 85 t in 2009/10, while the charter sector retained 12 t in 2010/11 (Fairclough et al., 2012). This species is one of the most frequently caught (in number) by charter fishers in the West Coast and South Coast bioregion (Telfer, 2010). See also Sumner and Williamson (1999), Harvey (2004), Wise et al. (2007) and Sumner et al. (2008) for more catch information.

Commercial: Total commercial catch in Western Australian waters in 2010/11 was 75 t (live weight) (Fletcher and Santoro, 2012). Commercial catch of this species peaked at 254 t in 2002/03, of which 72% was taken by the wetline fishery (Wise et al., 2007). In 2011, the WCDSIMF retained 67 t, an increase from 54 t in 2010 (Fairclough et al., 2012). The DGDFL retained 13 t in 2010/11, an increase from 16 t in 2009/10 (McAuley and Rowland, 2012). A complete catch trend graph is shown in the 2010/11 State of the Fisheries and Aquatic Resources Report. In 2009/10, 11.8 t was retained in the South Coast bioregion (DoF, 2011b). In the West Coast bioregion, 0.2 t of this species was caught in rock lobster pots during 2010/11 (De Lestang et al., 2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).
<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1958)</td>
<td>-</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Statewide (1975)</td>
<td>3</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Statewide (1977)</td>
<td>10</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Statewide (1985)</td>
<td>5</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2005)</td>
<td>2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>South Coast (2007)</td>
<td>2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>1</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>1</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closed season (15 Oct – 15 Dec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsory possession of release weight</td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012). The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012). The South Coast Demersal Line Fishery is currently ‘open access’ for the holder of a valid Fishing Boat Licence (for the boat) and a Commercial Fishing Licence (for the fisher) (Molony et al., 2012).

Current research: DoF is undertaking collaborative research with Curtin University, to explore the use of passive acoustic methods for monitoring relative abundances of demersal species (including dhufish), and a project with CSIRO using DNA techniques for identifying dhufish larvae (DoF, 2012). Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Retinal development (Shand, 2001); Aquaculture (Stephens et al., 2001; 2002a; b; 2003); Parasitism (Hesp et al., 2002b); Age and mortality estimation (Craine et al., 2009); Acoustic tracking (Mackie et al., 2009); Effects of sanctuary zones (Kleczkowski et al., 2008); Identification of microsatellite markers (Burridge and England, 2009); Simulation modeling for exploring implications of alternative management, catch and behavioural characteristics (Burch, 2009; Hesp et al., 2010; Fisher et al., 2011); Barotrauma (Lenanton et al., 2009b).

References

Burch, R., 2009. Description and parameterisation of an agent-based model to explore the effects of recruitment variability on populations of *Glaucosoma hebraicum* in a recreational fishery, Honours thesis, Murdoch University, Perth, Western Australia. pp. 139.

Yellowfin whiting (*Sillago schomburgkii*)

Reviewed by Joshua Brown (DoF)

Scientific name: *Sillago schomburgkii* (Sillaginidae; Whitings)

Common name: Yellowfin whiting

Key identifying features: Elongate body with pointed snout, bright yellow pelvic and anal fins, no spots, blotches or stripes along the upper sides of body of adults. Juveniles have dark blotches along upper side of body (Yearsley *et al.*, 2001; Gomon *et al.*, 2008).

Distribution

Worldwide: Endemic to Australia (McKay, 1992).

Western Australia: Southern Western Australian border to Exmouth Gulf (Gomon *et al.*, 2008). Most abundant between Augusta and Shark Bay (J.Brown, *pers. comm.*, DoF).

Maximum length, weight and age: 414 mm, 0.68 kg (Hutchins and Swainston, 1986), 12 years (Hyndes and Potter, 1997).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>58</td>
<td>214</td>
<td>544</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [West Coast bioregion] Females $L_s=333$ mm, $k=0.53$ year$^{-1}$, $t_0=-0.16$ years ($n=662$, $R^2=0.95$); Males $L_s=325$ mm, $k=0.49$ year$^{-1}$, $t_0=-0.22$ years ($n=554$, $R^2=0.93$) (Hyndes and Potter, 1997). See also Gaughan *et al.* (2006) for South Coast bioregion estimates and Hyndes *et al.* (1997).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>153</td>
<td>271</td>
<td>312</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>123</td>
<td>232</td>
<td>282</td>
</tr>
</tbody>
</table>

Length and age at maturity: [West Coast bioregion] $L_{50}=199$ mm (Gaughan *et al.*, 2006). In comparison, virtually all females and about half of males recorded by Hyndes and Potter (1997) were mature by 200 mm. Most females and males mature by 2 years (Hyndes and Potter, 1997).

Reproductive style: Gonochoristic. Multiple spawner (Hyndes and Potter, 1997).

Adult sex ratio: [West Coast bioregion, seine net] F1.8:M1 (Hyndes and Potter, 1997).

Length and age at sex change: Not applicable.

Spawning season: [West Coast bioregion] December to February (Hyndes and Potter, 1997).
Spawning season earlier and longer in Shark Bay (August to December), presumably due to differences in water temperature (Coulson et al., 2005). See also Lenanton (1969).

Spawning location and habitat: Shallow, nearshore waters (Hyndes and Potter, 1997).

Fecundity: Indeterminate (Coulson, 2003).

Spawning frequency: Not reported.

Development and habitat use

Eggs: [Sillago species] Pelagic (Neira et al., 1998).

Larvae: Description of larval stages (Neira et al., 1998). Coastal waters (Bruce, 1995).

Juveniles: Shallow waters in sheltered, marine nearshore environments and estuaries over bare sand (Lenanton, 1982; Hyndes et al., 1996; Hyndes et al., 1997; Hyndes and Potter, 1997).

Adults: Deeper waters in sheltered, marine nearshore environments and estuaries over bare sand (Lenanton, 1982; Hyndes et al., 1996; Hyndes et al., 1997; Hyndes and Potter, 1997).

Migration: Moves away from shore during the day and back towards shore at night (Hyndes et al., 1996). Adult fish tend to move closer to shore during the spawning season, which increases their catchability (J. Brown, pers. comm., DoF).

Stock delineation: [New South Wales] Not reported (Dixon et al., 1987).

Diet: Predominantly crustaceans and polychaetes (Hyndes et al., 1997; Platell and Potter, 2001).

Fishery

Recreational: Sillago species (including S. schomburgkii) are commonly targeted largely by shore-based rod and line anglers, and some boat-based fishers, in coastal and estuarine waters of the South Coast, West Coast and Gascoyne Coast (Shark Bay) bioregions (Lenanton, 1969).

Commercial: Targeted by a variety of commercial seine net fisheries including the West Coast Beach Bait Managed Fishery, South West Beach Seine Fishery in the West Coast bioregion (Smith et al., 2012a), the Shark Bay Beach Seine and Mesh Net Managed Fishery (SBBSMNF) in the Gascoyne Coast bioregion (Jackson et al., 2012a), and estuarine and beach-based nearshore commercial fisheries in the South Coast bioregion (Lenanton, 1969; Smith et al., 2012b).

Age at full recruitment: 2 – 3 years (Coulson, 2003).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [Shark Bay, catch curve analysis] 0.81 year\(^{-1}\) (Coulson, 2003).

Natural mortality: [Shark Bay, obtained by re-fitting Hoenig’s (1983) equation for estimating mortality using the data provided in Hoenig (1982) and assuming a common maximum age for both sexes] 0.68 year\(^{-1}\) (reported as Z) (Coulson, 2003). Note: the estimate is higher than would be obtained by using Hoenig’s (1983) original equation.

Fishing mortality: [Shark Bay] 0.13 year\(^{-1}\) (i.e., \(F=Z-M\)).

Biological reference: Not reported.
Current status: Stock levels of *Sillago* species not assessed in the West Coast bioregion (Smith *et al*., 2012a) and adequate in Shark Bay (Jackson *et al*., 2012a). *Sillago* species are proposed indicator species for the nearshore ecosystem in the West Coast, Gascoyne Coast and South Coast bioregions (DoF, 2011). Overall risk to sustainability for the nearshore suite is moderate in the South Coast and Gascoyne Coast bioregions and medium to high in the West Coast bioregion (DoF, 2011). Inherent vulnerability and current risk to wild stock for the species is minimal in the Gascoyne Coast and West Coast bioregions (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends
Due to the difficulties in distinguishing the various *Sillago* species, they are often grouped together for analysis of recreational and commercial catches.

Recreational: The total estimated recreational boat-based catch of *Sillago* species in the West Coast bioregion was 58 t for 1996/97 and 46 t in 2005/06 (Sumner *et al*., 2008). The total recreational catch of *Sillago* species was estimated as 154 t in the West Coast bioregion and 11 t in the South Coast bioregion in 2000/01 (Henry and Lyle, 2003). Yellowfin whiting was the dominant species caught by recreational anglers in the Blackwood Estuary during two previous creel surveys (Caputi, 1976; Prior and Beckley, 2007). See also Malseed *et al*.(2000), Malseed and Sumner (2001a; b), Harvey (2004), Smallwood *et al*.(2006), Smallwood and Sumner (2007) and Smallwood *et al*.(2012).

Commercial: A total of 119 t of yellowfin whiting was reportedly caught by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). The majority of the commercial catch of *Sillago* species from 2000 – 2011 was taken in the Gascoyne Coast bioregion (67%) with the remainder from the West Coast (23%), South Coast (7%) and North Coast (3%) bioregions (Smith *et al*., 2012a). The majority (86%) of the catch in the West Coast bioregion was reported to be yellowfin whiting (Smith *et al*., 2012a). This species was considered overfished in the Shark Bay region in the 1960s, prior to a marked reduction in the number of fishing units in the SBBSMNMF (Shaw, 2000).

Management regulations
Recreational: Currently included in the “all other species of finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Statewide (1958)</td>
<td>-</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2005)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2007)</td>
<td>16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2008)</td>
<td>16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>South Coast (2008)</td>
<td>16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: This species is caught in multiple commercial fisheries including the SBBSMNMF, West Coast Beach Bait Managed Fishery and South West Beach Seine Fishery. These operate under a variety of input control systems including limits on numbers of boats, gear sizes and fishing areas (i.e., to protect nursery areas) (Shaw, 2000; Jackson *et al*., 2012b). A legal minimum size limit of 220 mm existed for commercial fishers until March 2011.
Current research: A NRM funded project is currently being run by DoF to assess the stock status of several Sillago species in the West Coast and South Coast bioregions as well as to ascertain the composition of Sillago species in recreational and commercial catches. Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

References

Lenanton, R. C. J., 1969. Whiting fishery - Shark Bay. Western Australian Department of Fisheries and Wildlife 2, 4-11.

Smith, K., Brown, J., Howard, A., Studler, M., 2012b. South Coast nearshore and estuarine finfish resources status report, In Status reports of the fisheries and aquatic resources of Western Australia 2011/2012: The State of the Fisheries. Fletcher, W. J., Santoro, K. (eds), Perth, Western Australia, pp. 266-278.

King George whiting (Sillaginodes punctata)
Reviewed by Glenn Hyndes (Edith Cowan University)

Scientific name: *Sillaginodes punctata* (Sillaginidae; Whitings)

Common names: King George whiting also spotted whiting

Key identifying features: Elongate body with pointed snout, numerous small dark spots on sides, small scales, and two dorsal fins which are often slightly separated (Yearsley *et al.*, 2001).

Distribution of species
- **Worldwide:** Endemic to southern Australia.
- **Western Australia:** Southern Western Australian border to Jurien Bay (Gomon *et al.*, 2008).

Maximum length, weight and age: 720 mm, 4.8 kg (Gomon *et al.*, 2008), 14 years (Hyndes *et al.*, 1998). [SA] maximum age = 17 years (Fowler *et al.*, 1999; 2000).

Length/weight relationship: $W=1.10*10^6TL^{3.29}$ $(n=1,099)$ (Gaughan *et al.*, 2006).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>155</td>
<td>400</td>
<td>834</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [West Coast bioregion] Females $L_\infty=532$ mm, $k=0.47$ year$^{-1}$, $t_0=0.13$ years ($n=194$); Males $L_\infty=500$ mm, $k=0.53$ year$^{-1}$, $t_0=0.16$ years ($n=124$) (Hyndes *et al.*, 1998). Size-at-age declines with increasing latitude (and decreasing water temperature) (Sulin, 2012). See also Orr (2000), Gaughan *et al.* (2006), Potter *et al.* (2011) and Sulin (2012). Growth highly seasonal in South Australia, but not in Western Australia (Hyndes *et al.*, 1998; McGarvey and Fowler, 2002; Sulin, 2012).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>311</td>
<td>498</td>
<td>527</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>311</td>
<td>477</td>
<td>497</td>
</tr>
</tbody>
</table>

Length and age at maturity: [West Coast bioregion] Females, $L_{50}=410$ mm, $L_{95} \sim 450$ mm (Hyndes *et al.*, 1998). Majority of females mature by 4 years, all mature by 5 years. Data for males not provided. See also Gaughan *et al.* (2006).

Reproductive style: Gonochoristic. Multiple spawner (Hyndes *et al.*, 1998).

Adult sex ratio: Not reported.

Length and age at sex change: Not applicable.

Spawning locality: [West Coast bioregion] Around reefs in waters between 6 – 50m deep.
There is anecdotal evidence of spawning aggregation behaviour from fishers. Additional information: [South Australia, Victoria] Spawn in deeper waters, with medium-high wave energy, while hydrodynamic modeling suggests post-larvae originate from spawning grounds in South Australia or western Victoria (Fowler et al., 2000; Hamer et al., 2004).

Fecundity: [South Australia] Indeterminate (Fowler et al., 1999); Batch fecundity: $BF = 461.16 \times TL - 143772.8$ ($n=29, R^2=0.4567$) (Fowler et al., 1999).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>Fecundity (eggs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>40,000</td>
</tr>
<tr>
<td>450</td>
<td>64,000</td>
</tr>
<tr>
<td>500</td>
<td>87,000</td>
</tr>
</tbody>
</table>

Spawning frequency: [SA] Once every 2 days (Fowler et al., 1999).

Development and habitat use

Eggs: Pelagic (Bruce, 1995; Neira et al., 1998).

Larvae: [South Australia] Passively transported to shallow, nearshore marine waters (Bruce, 1995; Fowler et al., 2000). Pre-settlement duration ~ 80-130 days (Fowler and Short, 1996). [Victoria] Weak swimming ability of larvae consistent with passive dispersal (Jenkins and Welsford, 2002). Larval period 3 – 5 months (Jenkins and May, 1994; Jenkins, 2005). Description of pelagic larval stages (Neira et al., 1998).

Juveniles: Sandy areas in sheltered shallow, nearshore marine waters as well as in estuaries (Hyndes et al., 1998). [South Australia] Settle over seagrass meadows or bare sand areas in sheltered embayments (Jenkins and May, 1994).

Adults: Around reefs on weedy or sandy bottoms in waters between 6 – 50m depth (Hyndes et al., 1998). Adults do not spawn in estuaries (Potter et al., 2011).

Migration: Exhibits pronounced size-related offshore movements between habitats at different life stages (Hyndes et al., 1996; Hyndes et al., 1998; Fowler and March, 1999; Fowler et al., 2002; Sulin, 2012). In the nearshore habitat, early juveniles undertake movements away from shore during the day and towards shore at night (Hyndes et al., 1996).

Stock delineation: Parasitological and allozyme studies indicate sub-structuring of the stock along the southern coast (Sandars, 1945; Dixon et al., 1987). Conversely, a more recent genetic study provided no evidence of long-standing population structure/contemporary population differentiation (Fowler and McGarvey, 2000). It has been hypothesised that assemblages in estuaries on the south coast of Western Australia are derived from relatively discrete, nearby spawning assemblages (Potter et al., 2011).

Diet: Predominantly crustaceans and polychaetes. Small juveniles consume large amounts of copepods. The diet in larger individuals changes to increasing consumption of polychaetes, penaeids and carids (Hyndes et al., 1997; Orr, 2000; Whitehead, 2000).

Fishery

Recreational: Caught by boat and shore-based recreational anglers, including charter boats, using lines in coastal and estuarine waters of the South Coast and West Coast bioregions (Smallwood and Sumner, 2007; Sumner et al., 2008; Telfer, 2010).

Commercial: One of the most frequently caught species in nearshore and estuarine finfish commercial gillnet, haul net and beach seine fisheries in the South Coast and West Coast bioregions (Smith et al., 2012a; Smith et al., 2012b). This species is also taken in the temperate Demersal Gillnet and Demersal Longline Fishery (DGDLF) and the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) (DoF, 2011).
Age at full recruitment: Not reported.

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: Not reported.

Natural mortality: [South Australia] Value fixed at 0.4 year$^{-1}$ in stock assessments (but also with sensitivity tests for different values of M) (McGarvey and Feenstra, 2011).

Fishing mortality: [South Australia] See McGarvey et al. (2005), Fowler et al. (2008) and McGarvey and Feenstra (2011).

Current status: Overall risk to sustainability is moderate for the West Coast and South Coast bioregions (DoF, 2011). Overall risk to sustainability for the inshore demersal suite is medium to high in the South Coast and West Coast bioregion (DoF, 2011). Inherent vulnerability and current risk to wild stock for this species is moderate in the West Coast and South Coast bioregions (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated recreational boat-based catch was 28 t in 1996/97, 19 t in 2005/06 in the West Coast bioregion (Sumner et al., 2008) and 40 t in 2000/01 in the South Coast bioregion (Henry and Lyle, 2003). An estimated 10.9 t of this species was retained in estuaries of Western Australia in in 2002/03 (Smallwood and Sumner, 2007). Catches in the West Coast bioregion from charter boats have been stable from 2003/04 onwards, but in the South Coast bioregion, they increased in 2006/07 and 2007/08 (Telfer, 2010). See also Harvey (2004), Smallwood et al. (2006) and Smallwood et al. (2011).

Commercial: A total of 15 t of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). The total catch of this species in the West Coast bioregion has varied from 0.9 t in 2007 to 4.4 t in 2011, with a high of 5.9 t in 2010 (Smith et al., 2012b). In the South Coast bioregion, the total catch of this species has remained relatively static between 2007 (8.0 t) to 2011 (7.8 t), from a peak of 9.1 t in 2008 (Smith et al., 2012a). See also Gaughan et al. (2006). See also (Kemp et al., 2012).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (1986)</td>
<td>30</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>20</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>8</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>South Coast (2003)</td>
<td>20</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>12</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>12</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: South Coast and West Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, gear restrictions, spatial and temporal closures, and size limits) (Smith et al., 2012a; Smith et al., 2012b).
Current research: Collaborative stock assessment studies are being undertaken by DoF and Murdoch University (FRDC 2010/001). Ongoing data collection is occurring from commercial and charter fishing logbooks. Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published research: Planktonic transport of larvae [Victoria] (Moran et al., 2004); Factors affecting shallow/deep hooking rates [Victoria] (Grixiti et al., 2010); Growth (Barber and Jenkins, 2001); Age validation [South Australia] (Fowler and Short, 1998); Movement [South Australia] (McGarvey and Feenstra, 2002); Per-recruit analysis [South Australia] (Sluczansowski et al., 1990); Diet [South Australia] (Jenkins et al., 2011); Hydrodynamic modeling exploring larval movement [South Australia] (Fowler and McGarvey, 2000; Hamer et al., 2004).

References

Tailor (*Pomatomus saltatrix*)

Reviewed by Paul Lewis (DoF)

Scientific name: *Pomatomus saltatrix* (Pomatomidae; Bluefish)

Common names: Tailor, small fish < 35cm often called choppers.

Key identifying features: Silvery body, 7 – 8 short dorsal fin spines depressed into a groove and connected to each other via a membrane, oblique mouth with a prominent lower jaw (Yearsley *et al.*, 2001).

Distribution

Worldwide: Coastal temperate and subtropical waters of all ocean basins, except the eastern Pacific (Goodbred and Graves, 1996).

Western Australia: Southern Western Australian border to Onslow (Gomon *et al.*, 2008).

Maximum length, weight and age: 1,200 mm, 14.4 kg (Gomon *et al.*, 2008), 10 years (Smith *et al.*, in press)

Length/weight relationship: [West Coast bioregion] \(W = 0.7 \times 10^{-5} TL^{3.0415} \) \((R^2=0.996, n=1692) \) (Smith *et al.*, in press). See also Smith *et al.* (in press) for fork length to weight relationship and Gaughan *et al.* (2006) for another West Coast bioregion relationship.

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>600</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>239</td>
<td>1,971</td>
<td>6,767</td>
</tr>
</tbody>
</table>

Length relationship: [West Coast bioregion] \(TL = 1.1288*FL - 0.4264 \) \((R^2=0.999, n=3497) \).

Growth curves: [West Coast bioregion] Females \(L_{\infty} = 546 \) mm, \(k = 0.57 \) year\(^{-1}\), \(t_0 = -0.04 \) years \((n=300) \); Males \(L_{\infty} = 660 \) mm, \(k = 0.37 \) year\(^{-1}\), \(t_0 = -0.13 \) years \((n=300) \) (Smith *et al.*, in press). See also Gaughan *et al.* (2006) and Young *et al.* (1999).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>375</td>
<td>491</td>
<td>529</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>360</td>
<td>517</td>
<td>592</td>
</tr>
</tbody>
</table>

Length and age at maturity: [West Coast bioregion] \(L_{50} = 330 \) mm, \(L_{95} = 451 \) mm \((n=1632) \) (Smith *et al.*, in press).

Reproductive style: Gonochoristic. Fractional, broadcast spawner (Smith *et al.*, in press).

Adult sex ratio: [West Coast bioregion, recreational and commercial] F:1.5: M1 \((n=2,859) \). Ratio consistent across years, size classes and sectors (Smith *et al.*, in press).

Length and age at sex change: Not applicable.
Spawning season: Spring and autumn in the West Coast bioregion and, winter and spring in the Gascoyne Coast bioregion (Lenanton et al., 1996; Smith et al., in press).

Spawning location and habitat: Probably in inner-shelf waters between summer and autumn (Lenanton et al., 1996; Chisholm).

Fecundity: [West Coast bioregion] Indeterminate fecundity; [Eastern USA] Batch fecundity; \(BF=6.036.6e^{0.0053TL} \) (Robillard et al., 2008). See also Robillard et al. (2008) for batch fecundity versus somatic weight relationship.

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>600</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>29,602</td>
<td>145,160</td>
<td>711,831</td>
</tr>
</tbody>
</table>

Spawning frequency: Not reported.

Development and habitat use

Eggs: Small buoyant pelagic eggs which hatch at 46 – 48 hours. Eggs are likely to be transported southwards by the Leeuwin current in winter-spring and northwards by the Capes Current in summer-autumn. Positioning of eggs also affected strongly by wind driven surface water currents (Juanes et al., 1996; Lenanton et al., 1996; Neira et al., 1998; Pearce and Pattiaratchi, 1999).

Larvae: Larvae generally collected between coastal areas and the edge of the continental shelf where water temperatures are between 18 – 25°C (Lenanton et al., 1996; Chisholm, 2004). A larval duration of 18 – 25 days has been identified in Eastern USA (Hare and Cowen, 1993). Description of larval stages (Neira et al., 1998).

Juveniles: Sheltered estuarine and shallow coastal areas of the lower west coast of Western Australia, mainly between Cervantes and Bunbury, are important nursery habitats (Lenanton et al., 1996; Young et al., 1999).

Adults: Once tailor attain maturity, they move northwards and offshore to pelagic waters, and also move inshore in search of food (Gomon et al., 2008).

Migration: Adults migrate to spawning grounds (Lenanton, 1974; Juanes et al., 1996; Young et al., 1999). In southern Africa, divergent migratory patterns were found, including a northern stock that is migratory and a southern stock showing combinations of seasonally transient and resident behaviour (Hedger et al., 2010).

Stock delineation: A stable isotope study indicated that tailor in Shark Bay constitute a single stock and that fish throughout south-western Australia and in Shark Bay may also be regarded as a single, although not homogenous, stock (Edmonds et al., 1999). Tailor from the east coast and west coasts of Australian are genetically distinct, and are considered as separate stocks (Nurthen et al., 1992). A genetic study across several countries has provided evidence that tailor in eastern and western Australia are closely related, as are those from U.S.A., Portugal and South Africa, while tailor from Brazil are distantly related to other groups (Goodbred and Graves, 1996).

Diet: [Eastern Australia] Juveniles feed on small crustaceans, cephalopods and fish and adults prey mainly on small schooling fish (Bade, 1977; Gomon et al., 2008).

Fishery

Recreational: Listed as the tenth most commonly retained species in Western Australia in a survey undertaken in 2001/02, with the majority caught by shore-based recreational fishers
in the West Coast bioregion (Henry and Lyle, 2003). Recreational fishing effort is focused in shallow, nearshore waters during summer and autumn when this species is mainly caught at dawn and dusk with bait or lures cast from beaches and rock platforms (Cribb, 1994; Lenanton et al., 1996; Young et al., 1999).

Commercial: The majority of commercial catches for this species are taken in the Gascoyne Coast bioregion using beach seine and haul nets in the Shark Bay Beach Seine and Mesh Net Managed Fishery (SBBSMNMF) (Smith et al., 2012b). This is species is also fished in the West Coast Estuarine Managed Fishery (WCEF), and in estuarine and beach-based nearshore commercial fisheries in the South Coast bioregion (Smith, 2006; Smith et al., 2012a).

Age at full recruitment: Not reported.

Gear selectivity: Not reported.

Management parameters

Total mortality: Not reported.

Natural mortality: [West Coast bioregion] 0.42 year\(^{-1}\) (Smith et al., in press).

Fishing mortality: Assuming 100% reporting of tags, fish < 250 mm (the minimum legal limit for tailor at time of study) was 0.058 year\(^{-1}\) (SE = 0.013 year\(^{-1}\)), while for fish > 250 mm it was 0.081 year\(^{-1}\) (SE = 0.029 year\(^{-1}\)) (Young et al., 1999).

Biological reference points: Not reported.

Current status: Stock level acceptable in West Coast bioregion (Smith et al., 2012a), adequate in Gascoyne Coast bioregion (Jackson et al., 2012). An indicator species for the nearshore suite in the West Coast bioregion, and a proposed indicator for the Gascoyne Coast bioregion (DoF, 2011). Overall risk to sustainability for the nearshore suite is moderate (South Coast and Gascoyne Coast bioregions) or medium to high (West Coast bioregion) (DoF, 2011). Inherent vulnerability of this species is moderate while current risk to wild stock is minimal in the Gascoyne Coast and moderate in the West Coast bioregion (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The estimated total catch from recreational fishers in Western Australia was 187 t in 2000/01 (Henry and Lyle, 2003). The total estimated recreational boat-based catch in the West Coast bioregion was 14 t for 1996/97 and 3 t in 2005/06 (Sumner et al., 2008). The catch in the Gascoyne Coast bioregion was estimated at 5 t in 1998/99 (Sumner et al., 2002). See also Malseed et al. (2000), Malseed and Sumner (2001a; b), Harvey (2004), Smallwood et al. (2006), Smith (2006), Smith et al. (2008) and Smallwood et al. (2011).

Commercial: A total of 24 t of this species was taken by commercial fishers in Western Australia in 2010/11, down from a peak of 90 t in 1965 (Smith et al., 2012a). Since 2001, 84% of tailor has been caught in the Gascoyne Coast bioregion, 15% in the West Coast bioregion and 1% in the South Coast bioregion (Smith et al., 2012a). A complete catch trend graph is shown in the 2010/11 State of the Fisheries and Aquatic Resources Report. In 2011, the catch in the Gascoyne Coast bioregion was 18 t, almost all of which was taken in Shark Bay (Smith et al., 2012a). See also Smith (2006).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).
<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Statewide (1937)</td>
<td>-</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Statewide (1975)</td>
<td>-</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (1990)</td>
<td>20</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (1995)</td>
<td>8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>8</td>
<td>300</td>
<td>Two fish only > 600mm</td>
</tr>
<tr>
<td>South Coast (2003)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2003)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>8</td>
<td>300</td>
<td>Two fish only > 600mm</td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>8</td>
<td>300</td>
<td>Two fish only > 500mm</td>
</tr>
</tbody>
</table>

Commercial: The South Coast nearshore and estuarine fisheries, WCEF and SBBSMNMF are managed primarily through input controls such as limited entry, gear restrictions (i.e., net length and mesh size), spatial and temporal closures and size limits (Jackson et al., 2012; Smith et al., 2012b). Minimum legal size for commercial fishers is 300 mm (increased from 250 mm in October 2003).

Current research: NRM-funded project being run by DoF to provide more rigorous monitoring and assessment of this species as well as identify sources of recruitment to the Perth Metropolitan fishery (Smith et al., 2012b). Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Age validation and growth [Eastern USA] (Robillard et al., 2009); Stock assessment [Queensland, New South Wales] (Leigh and O’Neill, 2004); Biology [South Africa] (Van der Elst, 1976); Early life history [South Africa] (Beckley and Connell, 1996).

References

Smith, K., Brown, J., Howard, A., Stadler, M., 2012b. South Coast nearshore and estuarine finfish resources status report, In Status reports of the fisheries and aquatic resources of Western Australia 2011/2012: The State of the Fisheries. Fletcher, W. J., Santoro, K. (eds), Perth, Western Australia, pp. 266-278.

Silver trevally (Pseudocaranx georgianus)

Reviewed by Emily Fisher (Murdoch University)

Scientific name: *Pseudocaranx georgianus* (formerly *Pseudocaranx dentex*) (Carangidae; Trevallies)

Common names: Silver trevally also silvery trevally, skipjack trevally, white trevally, skippy

Key identifying features: Posterior margin of upper jaw nearly vertical, no scales on lachrymal bone, below and in front of eye, and usually has a large and diffuse dark spot on opercle (Gomon *et al*., 2008).

Distribution

Worldwide: New Zealand and southern Australia, but not fully understood because of previous taxonomic confusion with other species. Until recently regarded as part of the widely-distributed, anti-tropical *P. dentex* (Gomon *et al*., 2008).

Western Australia: Southern Western Australian border to Lancelin, including Rottnest Island. Note: a similar species, *P. dinjerra*, extends from the Abrolhos Islands to North-West Cape (Smith-Vaniz and Jelks, 2006). A recent detailed morphological and genetic study of “silver trevally” collected as far north as Port Gregory (and from the Abrolhos Islands) were all *P. georgianus* (i.e., not *P. dinjerra*) (Robert, 2012).

Maximum length, weight and age: 938 mm, 10 kg (Hutchins and Swainston, 1986), 18 years (Farmer *et al*., 2005).

Length/weight relationship: [Lower west coast, inshore] \(\ln W = 2.992 \times \ln TL - 11.331 \) \((n=1424, R^2=0.996)\) (French, 2003; Farmer *et al*., 2005).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>400</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>92</td>
<td>732</td>
<td>2,462</td>
</tr>
</tbody>
</table>

Length relationship: \(TL = 1.203 \times FL - 0.6185 \) (French, 2003).

Growth: [Lower west coast, inshore] Females \(L_{\infty} = 477 \text{ mm, } k = 0.24 \text{ year}^{-1}, t_0 = 0.37 \text{ years} \) \((n=434, R^2=0.819)\); Males \(L_{\infty} = 459 \text{ mm, } k = 0.27 \text{ year}^{-1}, t_0 = 0.22 \text{ years} \) \((n=337, R^2=0.568)\) (Farmer *et al*., 2005). These growth parameters were estimated by fitting a growth curve to lengths at age for fish in inshore waters (<60 m deep). See Farmer *et al.* (2005) for estimates from other areas of the West Coast bioregion where geographical differences in growth rates have been identified.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>310</td>
<td>413</td>
<td>452</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>312</td>
<td>409</td>
<td>442</td>
</tr>
</tbody>
</table>
Length and age at maturity: [Lower west coast, inshore] Females $L_{50}=310$ mm, $L_{95}=378$ mm, 54% mature by 3 years; Males $L_{50}=310$ mm, $L_{95}=378$ mm, 50% mature by 3 years (Farmer et al., 2005). See Farmer et al. (2005) for estimates from other areas of the West Coast bioregion.

Reproductive style: Gonochoristic. Broadcast, multiple spawner (Farmer et al., 2005).

Adult sex ratio: [Lower west coast, inshore, rod and line fishing] F1.12:M1 (Farmer et al., 2005).

Length and age at sex change: Not applicable.

Spawning season: [Lower west coast, inshore] August to December, beginning in July in the upper West Coast bioregion (Farmer et al., 2005).

Spawning location and habitat: Marine waters, near reefs (Farmer et al., 2005).

Fecundity: Indeterminate (Farmer et al., 2005). [New South Wales] Estimated fecundity 30,000 – 220,000 eggs for fish between 230 – 370 mm (Rowling and Raines, 2000).

Spawning frequency: Not reported.

Development and habitat use

Eggs: Pelagic (Neira et al., 1998).

Larvae: [New South Wales] Evident in greater numbers in deeper waters, up to 100 m (Gray et al., 1992; Gray, 1993; Syahailatua et al., 2011). Additional information on *P. dentex* from Japan, where Phototaxis demonstrated 3 days after hatching (Masuda and Tsukamoto, 1999) while the larval stages have also been described (Neira et al., 1998). Larvae of *Pseudocaranx* spp. have been recorded in sampling in Western Australia (Muhling, 2006; Holliday, 2009; Breheny et al., 2012).

Juveniles: Found predominantly in inshore waters < 20 m deep over bare sand and around structures (i.e., jetties, bridges, harbours) as well as in estuaries, bays and other shallow shelf waters (Lenanton and Potter, 1987; Potter and Hyndes, 1994; Farmer et al., 2005). [Japan, *P. dentex*] Small juveniles have strong association with drift objects. At ~ 40 mm total length the lateral line is fully developed, enabling tight schooling (as opposed to drift object association), at which stage fish migrate to inshore nursery grounds (Masuda and Tsukamoto, 1999).

Adults: Adults found in schools over a variety of reef habitats and other structures on the continental shelf (Harvey et al., 2004; Farmer et al., 2005). Also found over seagrass, macro-algal beds and in surf zones (Ayvazian and Hyndes, 1995; Harvey et al., 2004). The largest and oldest individuals are caught in water depths > 60 m (Harvey et al., 2004; Farmer et al., 2005).

Migration: Evidence of offshore movement with increasing size and age (Farmer et al., 2005).

Stock delineation: Recent work has resulted in the description of a new species, *P. dinjerra*, which has a more northern distribution (Abrolhos Islands to North-West Cape) than *P. georgianus* (formally *P. dentex*), which was previously thought to extend over the entire distribution range in Western Australia (Smith-Vaniz and Jelks, 2006). *P. georgianus* is clearly genetically different from *P. wright* (Smith-Vaniz and Jelks, 2006) and there is no evidence that *P. georgianus* in inshore and offshore waters are genetically distinct (Bearham, 2004).

Diet: Opportunistic feeders. Depending on its position in the water column this species feeds on small teleosts, crabs, littorinids, amphipods, echinoderms, isopods and small bivalves (Thomson, 1957; French et al., 2012). Diet varies with region (French et al., 2012). [Victoria] planktonic crustaceans (Hindell et al., 2000).
Fishery

Recreational: A popular recreational species targeted by shore and boat-based recreational fishers using rod and line in coastal waters of the West Coast and South Coast bioregions (Sumner and Williamson, 1999; Smallwood and Sumner, 2007; Sumner et al., 2008).

Commercial: An important commercial species in southern Australian waters, although caught in greater numbers off New South Wales and Victoria (Rowling and Raines, 2000). A minor species caught in the estuarine and nearshore finfish commercial fisheries, including beach-based fisheries which operate in the South Coast and West Coast bioregions (Smith et al., 2012a; Smith et al., 2012b).

Age at full recruitment: [Lower west coast, inshore] 5 years (Farmer et al., 2005).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [Lower west coast, inshore, catch curve analysis] 0.57 year⁻¹ (Farmer et al., 2005). See also Farmer et al. (2005) for estimates obtained from other methods and for the upper West Coast bioregion. As at least some individuals apparently migrate to offshore waters, these mortality estimates are not representative of the entire stock and also ignore impacts of offshore migration on the age composition of the inshore component of the stock.

Natural mortality: [Lower west coast, inshore, Bayesian method of Hall et al. (2004)] 0.38 year⁻¹ (Farmer et al., 2005). See also Farmer et al. (2005) for estimates obtained from other methods and for the upper West Coast bioregion.

Fishing mortality: [Lower west coast, inshore] 0.11 year⁻¹ (Farmer et al., 2005)

Biological reference points: [Lower west coast, inshore]

\[YPR_{\text{current}} = 0.02 \text{ kg year}^{-1} \]

\[F_{0.1} = 0.69 \text{ kg year}^{-1} \]

\[\text{SSB}/R_{\text{current}} = 0.35 \text{ kg year}^{-1} \]

\[SPR_{\text{current}} = 0.81 \text{ (Farmer et al., 2005). See also Farmer et al. (2005) for estimates for the upper West Coast bioregion.} \]

Current status: Overall risk to sustainability for the nearshore suite is moderate in the South Coast and Gascoyne Coast bioregions and medium to high in the West Coast bioregion (DoF, 2011). Inherent vulnerability for the species is moderate and current risk to wild stock is minimal in the Gascoyne Coast and moderate in the West Coast bioregion (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated recreational boat-based catch of *Pseudocaranx* spp. in the West Coast bioregion was 38 t for 1996/97 and 34 t in 2005/06 (Sumner et al., 2008). The total estimated recreational catch in 2000/01 was 42 t in the West Coast bioregion and 93 t in the South Coast bioregion (Henry and Lye, 2003). An estimated 6.1 t was retained from South Coast estuaries in 2002/03 (Smallwood and Sumner, 2007). See also Caputi (1976), Harvey (2004), Smallwood et al. (2006), Prior and Beckley (2007) and Smallwood et al. (2011).

Commercial: A total of 10 t of *P. dentex* was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). The total catch of Carangidae in the West Coast bioregion in the nearshore and estuarine fishery has remained relatively static, with 2 t
taken in 2007 and 2.1 t in 2011, with a high of 3.5 t in 2010 (Smith et al., 2012b). In the South Coast bioregion the total catch of Carangidae has declined from 3.1 t in 2007 to 2.0 t in 2011 (Smith et al., 2012a). Small amounts of this species was caught in rock lobster pots during 2010/11 (De Lestang et al., 2012).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1958)</td>
<td>-</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>20</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>South Coast (2003)</td>
<td>20</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2003)</td>
<td>8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>12</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>8</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The South Coast and West Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, gear restrictions, spatial and temporal closures, and size limits) (Smith et al., 2012a; Smith et al., 2012b).

Current research: A collaborative Murdoch University and DoF study is developing a stock assessment model to simultaneously estimate fishing mortality in inshore and offshore waters, employing length-at-age data (FRDC 2010/001). Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Disease (Mori et al., 1992); Commercial fishing: [New Zealand] (Langley, 2004; Walsh et al., 2010); Behaviour towards SCUBA divers (Watson and Harvey, 2007); Response to baited video (Birt et al., 2012); Diet [eastern Australia] (Coleman and Mobley, 1984; Bulman et al., 2001).

References

French, B., Platell, M. E., Clarke, K. R., Potter, I. C., 2012. Ranking of length-class, seasonal and regional effects on dietary compositions of the co-occurring Pagrus auratus (Sparidae) and Pseudocaranx georgianus (Carangidinae). Estuarine, Coastal and shelf Science 115, 309-325.

Samson fish (Seriola hippos)

Reviewed by Andrew Roland (Recfishwest)

Scientific name: *Seriola hippos* (Carangidae; Trevallies)

Common names: Samson fish *also* sea kingfish

Key identifying features: Greyish back with yellowish stripe through midline, dorsal fin with 6 – 8 spines and 22 – 23 soft rays, short pectoral fins (Yearsley *et al.*, 2001).

Distribution

Worldwide: Southern Australia, New Zealand and Norfolk Island.

Western Australia: Southern Western Australian border to Shark Bay (Gomon *et al.*, 2008).

Maximum length, weight and age: 1,800 mm, 55 kg (Gomon *et al.*, 2008), 29 years (Rowland, 2009).

Length/weight relationship: [West Coast bioregion] \(W = 1.497 \times 10^{-4} \cdot FL^{2.982} \) \((n=264, R^2=0.99) \) (Rowland, 2009).

<table>
<thead>
<tr>
<th>FL (mm)</th>
<th>800</th>
<th>1,200</th>
<th>1,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>4.6</td>
<td>16.2</td>
<td>39.6</td>
</tr>
</tbody>
</table>

Length relationship: [West Coast bioregion] \(TL=1.09 \cdot FL^{1.78} \) \((n=443, R^2=0.998) \) (Rowland, 2009).

Growth: [West Coast bioregion, Schnute growth curve] Females \(y_1=435.3 \text{ mm}, y_2=1,089.1 \text{ mm}, a=0.044, b=2.748, \tau_1=1 \text{ year}, \tau_2=10 \text{ years} (n=207, R^2=0.929) \); Males \(y_1=400.3 \text{ mm}, y_2=1,034.5 \text{ mm}, a=0.13634.5 \text{ coast bioregion} \) porate new management regulations. Minor changes made to commercial heading, \(b=1.971, \tau_1=1 \text{ year}, \tau_2=10 \text{ years} (n=167, R^2=0.943) \) (Rowland, 2009).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>5</th>
<th>15</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>608</td>
<td>924</td>
<td>1,089</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>568</td>
<td>891</td>
<td>1,034</td>
</tr>
</tbody>
</table>

Length and age maturity: Females \(L_{50}=831 \text{ mm}, L_{95}=942 \text{ mm}, A_{50} \approx 4 \text{ years} \) (Rowland, 2009).

Reproductive style: Gonochoristic. Serial spawner (Rowland, 2009).

Sex ratio: [West Coast bioregion] F1.36:M1 \((n=552) \) (Rowland, 2009).

Length and age at sex change: Not applicable.

Spawning season: [West Coast bioregion] October – February (Rowland, 2009).
Spawning location and habitat: [West Coast bioregion] Aggregate to the west of Rottnest Island, (Rowland, 2009).

Fecundity: [West Coast bioregion] Indeterminate. Batch fecundity; \(BF = 5,021 \times FL - 4,698,076 \) (\(n=6, \ R^2=0.815 \)) (Rowland, 2009).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>1000</th>
<th>1200</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>322,924</td>
<td>1,327,124</td>
<td>3,335,524</td>
</tr>
</tbody>
</table>

Spawning frequency: Not reported.

Development and habitat use

Eggs: [Seriola spp.] Pelagic (Neira et al., 1998; Rowland, 2009).

Larvae: Pelagic (Rowland, 2009). Description of larval stages (Neira et al., 1998).

Juveniles: Surface waters underneath jellyfish or drifting, detached seagrass. Found in waters up to 150 m deep (Rowland, 2009).

Adults: Found on inshore and offshore reefs, seagrass beds and around jetties/piles and channel markers and around artificial reef structures such as shipwrecks (Harvey et al., 2004; Rowland, 2009). Occasionally observed or caught in the lower reaches of estuaries (Lenanton and Potter, 1987; Malseed and Sumner, 2001; Smith, 2006).

Stock delineation: Likely to be a single population along the Western Australian coast (Rowland, 2009).

Migration: Migrates long distances (i.e., from the South Coast) to spawning aggregation areas along the lower west coast including off Rottnest Island (Rowland, 2009).

Diet: Teleost fishes, predominantly pilchards and cephalopod species (Rowland, 2009).

Fishery

Recreational: A common by-catch or by-product species for boat-based recreational line fishers targeting other demersal species (e.g., West Australian dhufish, Spanish Mackerel) in the West and South Coast bioregions. However, this species is targeted by charter operators and during sportfishing competitions involving rod and line fishing and spearfishing (Rowland, 2009; Telfer, 2010).

Commercial: Not of major commercial interest but is caught as byproduct in temperate Demersal Gillnet and Demersal Longline Fisheries (DGDLF) of the West and South Coast bioregions (McAuley and Rowland, 2012). Samson fish is one of the top six fish species (by weight) caught by the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) (Fairclough et al., 2012).

Age at full recruitment: 7 years (Rowland, 2009).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [West Coast bioregion, catch curve analysis] 0.21 year\(^{-1}\). Several estimates, based on different methods of calculation available (Rowland, 2009).

Natural mortality: [West Coast bioregion, Hoenig’s (1983) equation for fish] 0.20 year\(^{-1}\). Several estimates, based on different methods of calculation available (Rowland, 2009).

Fishing mortality: [West Coast bioregion] 0.04 year\(^{-1}\) (Rowland, 2009).
Biological reference points: Not reported.

Current status: Probably lightly to moderately exploited based on the estimates of fishing mortality provided by Rowland (2009). An indicator species for the pelagic zone in the West Coast and South Coast bioregions (DoF, 2011). Overall risk to sustainability for the pelagic suite is low (DoF, 2011). Inherent vulnerability for the species is moderate and current risk to wild stock is minimal (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated recreational boat-based catch in the West Coast bioregion was 35 t for 1996/97 and 24 t in 2005/06 (Sumner et al., 2008). The recreational catch at the Abrolhos Islands was estimated to be 8.5 t in 2006 (Sumner, 2008). See also Harvey (2004) and (Telfer, 2010).

Commercial: A total of 34 t (live weight) of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). In 2011, the total catch of this species in the WCDSIMF was 16 t (Fairclough et al., 2012). Total catch from the DGDLF in 2010/11 was 3.5 t in the South Coast bioregion and 3.3 t in the West Coast bioregion (McAuley and Rowland, 2012).

Management regulations

Recreational: Currently listed in the “large pelagic finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1958)</td>
<td>-</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>Statewide (1973/74)</td>
<td>-</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Statewide (1977)</td>
<td>10</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>2</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2004)</td>
<td>2</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>2</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>West Coast (2008)</td>
<td>2</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>3</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012). The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Acoustic data (Parsons et al., 2006); Parasites (Hutson et al., 2011); Tagging studies [South Australia] (Hutson et al., 2007).

References

Mahi mahi (Coryphaena hippurus)

Reviewed by Stephen Newman (DoF)

Scientific name: *Coryphaena hippurus* (Coryphaenidae; Dolphinfishes)

Common names: Mahi mahi also dolphinfish, dorado

Key identifying features: Distinctive hump-head with dorsal fin that extends from the head almost to the caudal fin, an anal fin that extends from about the midpoint of the body of the caudal fin, no sharp spines in the caudal and anal fins, short pectoral fins and, brightly coloured turquoise, yellow and silver body with black spots (Collette, 1999; Yearsley et al., 2001). Co-occurs with *C. equiselis* which is frequently misidentified as juvenile or female *C. hippurus* (Collette, 1999).

Distribution

Worldwide: Distributed widely in all oceanic tropical and subtropical waters, close to offshore islands and further offshore from continental masses, beyond the area of influence of water runoff (FAO, 1994). Also known to approach the coast (Collette, 1999).

Western Australia: Entire Western Australian coastline (Gomon et al., 2008).

Maximum length, weight and age: 1,620 mm, 22.4 kg (Hutchins and Swainston, 1986), [Florida] 4 years (Beardsley, 1967).

Length/weight relationship: [North Atlantic] \(\ln W = 2.71 \ln FL - 10.42 \) \((n=32,215, R^2=0.97)\) (Thompson, 1999). See also [Florida] Beardsley (1967), [Canary Islands] (Castro et al., 1999) and [Puerto Rico] (Rivera and Appeldoorn, 2000).

<table>
<thead>
<tr>
<th>FL (cm)</th>
<th>50</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>1.2</td>
<td>7.8</td>
<td>23.5</td>
</tr>
</tbody>
</table>

Length relationship: [Pacific Coast, Panama and Columbia] \(FL = 0.8278 TL \) \((n=522, r=0.979)\) (Lasso and Zapata, 1999). See also Rivera and Appeldoorn (2000).

Growth: [North Carolina, FL] Females \(L_\infty = 1,250 \) mm, \(k=1.24 \) year\(^{-1} \), \(t_0=-0.059 \) years \((n=146)\)
Males \(L_\infty = 1,286 \) mm, \(k=1.33 \) year\(^{-1} \), \(t_0=-0.016 \) years \((n=189)\) (Schwenke and Buckle, 2008). For a comprehensive review of growth parameters see Chang and Maunder (2012).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>914</td>
<td>1,153</td>
<td>1,222</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>953</td>
<td>1,198</td>
<td>1,263</td>
</tr>
</tbody>
</table>

Length and age at maturity: [North Carolina, FL] Females \(L_{50}=457 \) mm; Males \(L_{50}=476 \) mm (Schwenke and Buckle, 2008). See also Beardsley (1967), Massuti and Morales-Nin (1997), Oxenford (1999), Wu et al. (2001) and, Schwenke and Buckle (2008).

Adult sex ratio: [Mexico, commercial] Sex ratio varies seasonally and with length (Alejo-Plata et al., 2011).

Length and age at sex change: Not applicable.

<table>
<thead>
<tr>
<th>FL (mm)</th>
<th>500</th>
<th>1000</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>48,477</td>
<td>617,046</td>
<td>2,723,576</td>
</tr>
</tbody>
</table>

Spawning frequency: [Western Australia, aquaculture] Every 2 days (Nel, 1995); [Mexico] Every 2 days (Alejo-Plata et al., 2011).

Development and habitat use

Eggs: Pelagic (Richards, 2006).

Juveniles: [New South Wales] Attracted to fish aggregation devices and other floating debris (Dempster, 2004).

Migration: [New South Wales] Tagged fish moved up to 20 km per day (Kingsford and Defries, 1999). [Atlantic, Pacific and Mediterranean] Pre-spawning migration is likely (Massuti and Morales-Nin, 1995; Oxenford, 1999; Wu et al., 2001; Schwenke and Buckle, 2008).

Stock delineation: [New South Wales] Tagging studies indicate it is strongly site-associated (Kingsford and Defries, 1999). In Mexico and California, however, individuals have been shown to disperse widely. Large-scale migrations have resulted in high genetic variation and gene flow (Tripp-Valdez et al., 2010; Alejo-Plata et al., 2011). Populations probably panmictic throughout the Western Mediterranean and Eastern Atlantic (Pla and Pujolar, 1999).

Diet: [New South Wales] Mainly piscivorous but also consume invertebrate species, including those associated with floating debris (Dempster, 2004). [Atlantic, Eastern Caribbean] Forages on a range of small oceanic pelagic fish species (e.g. flying fish), juveniles of larger oceanic fish species (including tuna), pelagic fish larvae and invertebrate species (Oxenford, 1999; Oxenford and Hunte, 1999).
Fishery

Recreational: [New South Wales] Caught by trolling using baits or lures, especially in offshore waters around floating debris and fish aggregation devices (Kingsford and Defries, 1999; Dempster, 2004).

Commercial: Trolled or baited lines, and as by-catch of international long-lining vessels in offshore waters (Kingsford and Defries, 1999). Targeted to a small extent by the Christmas Island Line Fishery (Newman et al., 2012). A by-product species in the Commonwealth Western Tuna and Billfish Fishery (WTBF) (Patternson et al., 2011).

Age at full recruitment into the fishery: [New South Wales] 44% of fish caught were 360-420mm FL (Dempster, 2004).

Gear selectivity parameters: Not reported.

Management parameters

Natural mortality: [Barbados, Pauly’s (1980) equation] 2.56 year⁻¹ (Oxenford, 1985). See also Oxenford (1999).

Fishing mortality: Not reported in cited literature.

Biological reference points: Not reported.

Current status: Assessed in IUCN Red List in 2011 as a species of Least Concern (Collette et al., 2011).

Catch trends

Recreational: [New South Wales] Recreational catch may exceed commercial catch in some areas (Steffe et al., 1996).

Commercial: A total of 11 t of this species was caught as by-product in the WBTF from 2005-2011 (Patternson et al., 2011).

Management regulations

Recreational: Currently listed in the “large pelagic finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1988)</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2005)</td>
<td>4</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>West Coast (2006)</td>
<td>2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>3</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The Christmas Island Line Fishery, in which this species is infrequently targeted, is managed primarily through input controls (i.e., limited entry and gear restrictions) (Newman et al., 2012). Management arrangements for the WBTF include input controls such as limited entry, gear and area controls as well as output controls such as by-catch restrictions and total allocated catches (Patternson et al., 2011).
Current research: Ongoing data collection occurs through charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: *Aquaculture* (Hassler and Hogarth, 1977; Hagood et al., 1981; Ostrowski and Divakaran, 1990; Kraul et al., 1992; Kraul, 1993; Nel, 1995); *Biogenic amines* (Staruszkiewicz et al., 2004); *Precautionary management* (Mahon and Oxenford, 1999); *Economics* (Cannizzaro et al., 1999); *Parasitism* (Carbonell et al., 1999); *Morphometrics* (Castro et al., 1999); *Range shifts associated with water currents and ocean temperatures* (Norton, 1999).

References

Western Australian salmon (Arripis truttaceus)

Reviewed by Kim Smith (DoF)

Scientific name: *Arripis truttaceus* (Arripidae; Australian salmon)

Common names: Western Australian Salmon (juveniles often referred to as salmon trout)

Key identifying features: Single continuous dorsal fin with a notch after the last fin spine, no black tips on caudal fin lobes, yellowish pectoral fin with black blotch at base, smooth scales (Yearsley *et al.*, 2001).

Distribution

Worldwide: Western and southern coastline of Australia, rarely in Victoria and Tasmania (Paulin, 1993).

Western Australia: Kalbarri southwards to southern Western Australian border (Gomon *et al.*, 2008).

Maximum length, weight and age: 961 mm, 9.4 kg (Hutchins and Swainston, 1986), 9 years (Cappo, 1987).

Length/weight relationship: [Lower west coast and south coast] $W=1.3\times10^{-6}L^{3.36}$ ($n = 196$) (Gaughan *et al.*, 2006).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>500</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>70</td>
<td>1522</td>
<td>7385</td>
</tr>
</tbody>
</table>

Length relationship: [cm] $FL=-0.104+1.47*TL$ (Nicholls, 1973).

Growth: [Lower west coast] Female $L_\infty=1,012$ mm, $k=0.210$ year$^{-1}$, $t_0=$fixed at zero years ($n = 30$)
Male $L_\infty=881$ mm, $k=0.269$ year$^{-1}$, $t_0=$fixed at zero years ($n = 35$) (Gaughan *et al.*, 2006). See also (Gaughan *et al.*, 2006) for South Coast bioregion estimates and Nicholls (1973).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>347</td>
<td>575</td>
<td>725</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>367</td>
<td>581</td>
<td>706</td>
</tr>
</tbody>
</table>

Length and age at maturity: 60 – 65 cm, 3 – 5 years (Nicholls, 1973; Cappo, 1987).

Reproductive style: Gonochoristic. Serial batch spawner (Stanley, 1980).

Adult sex ratio: [Lower west coast, commercial] F1:M1 (Gaughan *et al.*, 2006).

Length and age at sex change: Not applicable.

Spawning season: February to June, mainly April to May, coinciding with strongest flows of the Leeuwin Current (Malcolm, 1960).
Spawning location and habitat: Southern part of west coast, southwards from Perth, but largely between Cape Leeuwin and Busselton (Walker, 1982).

Fecundity: Not reported.

Spawning frequency: Not reported.

Habitat

Adults: Form schools in exposed coastal waters near reefs and the surge zone (Cappo et al., 2000), with some movement into oceanic waters (Malcolm, 1960).

Migration: Maturing juveniles from south-eastern Australian waters migrate westwards just prior to their first spawning to join local pre-spawning adults in southern Western Australian grounds (as far north as Rottnest Island) in mid-late summer (Malcolm, 1959; 1966; Stanley, 1980; Walker, 1982; Cappo, 1987; Lenanton et al., 1991).

Stock delineation: Single stock over full range of species distribution (Ayvazian et al., 2004; Moore, 2011). Western Australian Salmon was previously thought to be a subspecies of Arripis trutta esper (Fairbridge, 1951; Malcolm, 1959; 1960; Roberston, 1982; Paulin, 1993).

Diet: Mainly piscivorous. Stomach contents include small fish, benthic crustaceans and seagrass (Thomson, 1957; Roberston, 1982). Feeding success is increased by forming small schools (Foster et al., 2001).

Fishery

Recreational: A popular recreational species targeted predominantly by shore-based rod and line fishers (Ayvazian et al., 1997; Henry and Lyle, 2003). Fishing effort along the south west coast of Western Australia is concentrated on spawning migrations which form in late summer/early autumn (Walker, 1982).

Commercial: A key commercial nearshore species commonly targeted using beach seines during pre- and post-spawning migrations as part of the South Coast Salmon Managed Fishery and South West Coast Salmon Managed Fishery (Malcolm, 1960; Walker, 1982; Smith et al., 2012a; Smith et al., 2012b). Due to low market demand, commercial fishers have not targeted this species in recent years.

Age at full recruitment: Fishery based on fish of ages 3+ to 8+ years, with most of the catch between 4+ to 6+ years (Malcolm, 1960; Stanley, 1980).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: Not reported.

Natural mortality: Not reported.

Fishing mortality: Not reported.

Biological reference points: Not reported.
Current status: Stock level is adequate in the West Coast bioregion (Smith *et al.*, 2012b). An indicator species for the nearshore zone in the South Coast bioregion (DoF, 2011). Overall risk to sustainability for the nearshore suite is low (DoF, 2011). Inherent vulnerability of the species is minimal and current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data. A national assessment by (Stewart *et al.*, 2012) lists the biological stock of this species in Western Australia as sustainable.

Catch trends

Recreational: In 1994/96, the highest catches of this species were obtained in autumn, coinciding with the commercial fishing season (Ayvazian *et al.*, 1997). The total estimated recreational boat-based catch in the West Coast bioregion was 12 t for 1996/97 and 17 t in 2005/06 (Sumner *et al.*, 2008). See also Harvey (2004), Smallwood *et al.* (2006), Prior and Beckley (2007) and Smallwood *et al.* (2012) for additional catch information.

Commercial: Total commercial landings in Western Australia have been declining since 1995 when a peak of 4,046 t was reported. Since 2000, 58% of total commercial landings has been taken in the South Coast bioregion, with the remaining 32% from the West Coast bioregion (Smith *et al.*, 2012a). The declining trend is driven by catches in the South Coast bioregion (where the majority of commercial landings are taken), where the annual catch steadily declined from an historical peak of 2,728 t in 1995 to 291 t in 2010 (Smith *et al.*, 2012a). This decline was largely caused by decreased fishing effort, which is attributed to weak market demand. By contrast, the catch trend in the West Coast bioregion was non-directional over the long term, although annual landings have varied widely from <1 t (in 2000) to 1,364 t (in 1968) (Smith *et al.*, 2012b). West Coast bioregion landings of 1,291 t in 1995 and 1,194 t in 2006 were close to the historical peak reached in 1968. A complete catch trend graph is shown in the 2010/11 State of the Fisheries and Aquatic Resources Report. See also (Stewart *et al.*, 2012).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (1958)</td>
<td>-</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Statewide (1975)</td>
<td>-</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (1979)</td>
<td>5</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: South Coast and West Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, spatial and gear restrictions) (Smith *et al.*, 2012a; Smith *et al.*, 2012b). Minimum legal size is 300 mm. Area restrictions are also used by the South Coast Salmon Managed Fishery and South West Coast Salmon Managed Fishery (Smith *et al.*, 2012a; Smith *et al.*, 2012b).

Current research: DoF has monitored recruitment (annual fishery-independent index of recruitment) since 1996 and intermittently surveys the age composition of commercial landings. Ongoing data collection occurs through commercial logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Genetic analysis of evolutionary history (Moore, 2011); Parasites (Bolton *et al.*, 2006; Catalano *et al.*, 2011; Hutson *et al.*, 2011); Biology of Eastern Australian Salmon (Neira *et al.*, 1998; Stevens and Kalish, 1998; Stewart *et al.*, 2011).
References

Australian herring (Arripis georgianus)

Reviewed by Joshua Brown (DoF)

Scientific name: Arripis georgianus (Arripidae; Australian salmon)

Common names: Australian herring also herring, tommy rough, ruff

Key identifying features: Prominent black tips on caudal fin, vertical rows of golden spots on upper surface, scales rough to touch, single continuous dorsal fin with a notch after the last fin spine (Yearsley et al., 2001).

Distribution of species
Worldwide: Southern Australian waters, from Shark Bay to Victoria.
Western Australia: Southern Western Australian border to Shark Bay (Gomon et al., 2008).

Maximum length, weight and age: 411 mm (Hutchins and Swainston, 1986), 0.876 kg, 12 years (Smith et al., in press).

Length/weight relationship: [Lower west coast and south coast] \(W = 1.44 \times 10^{-5} T L^{2.94} (n=2,963) \) (Gaughan et al., 2006). See also Ayvazian et al. (2000).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>11</td>
<td>84</td>
<td>276</td>
</tr>
</tbody>
</table>

Growth: [West Coast bioregion] Females \(L_{\infty} = 271.5 \text{ mm}, k=0.57 \text{ year}^{-1}, t_0=-0.30 \text{ years} (n=4,565) \); Males \(L_{\infty} = 236.7 \text{ mm}, k=0.86 \text{ year}^{-1}, t_0=-0.08 \text{ years} (n=2,731) \) (Smith et al., in press).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>198</td>
<td>264</td>
<td>271</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>197</td>
<td>235</td>
<td>237</td>
</tr>
</tbody>
</table>

See also Fairclough et al. (2000a), Orr (2000), Gaughan et al. (2006) and Potter et al. (2011).

Length and age at maturity: [West Coast bioregion] Females \(L_{50} = 194.1 \text{ mm}, A_{50} = 2.2 \text{ years} \); Males \(L_{50} = 174.4 \text{ mm}, A_{50} = 1.8 \text{ years} \) (Smith et al., in press). See also Fairclough et al. (2000b) and Orr (2000).

Reproductive style: [Western Australia/South Australia] Gonochoristic. Multiple spawner (Fairclough et al., 2000b).

Adult sex ratio: [West Coast bioregion] commercial F59.8:M40.2 (n=5,197); recreational F68.4:M31.6 (n=6,685) (Smith et al., in press).

Length and age at sex change: Not applicable.
Spawning season: [Western Australia/South Australia] Late May to early June (Lenanton, 1978; Fairclough et al., 2000b; Gaughan et al., 2006; Smith et al., in press).

Spawning location and habitat: South-western Australia (Fairclough et al., 2000b; Ayvazian et al., 2004). Does not spawn in estuaries (Potter et al., 2011).

Fecundity: [Western Australia/South Australia] Determinate. Annual fecundity $F=4619.3 e^{0.0114TL}$ ($n=37$, $R^2=0.84$) (Fairclough et al., 2000b). See also Lenanton (1978).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>45,200</td>
<td>79,900</td>
<td>141,200</td>
</tr>
</tbody>
</table>

Spawning frequency: Not reported.

Development and habitat use

Eggs: Pelagic (Neira et al., 1998).

Larvae: Sheltered nearshore waters (Ayvazian et al., 2004).

Juveniles: Sheltered nearshore waters, estuaries and bays (Lenanton, 1982; Valesini et al., 1997; Fairclough et al., 2000b; Ayvazian et al., 2004; Smith et al., in press).

Adults: Pelagic, in nearshore coastal marine waters, estuaries and bays (Lenanton, 1982; Hutchins and Swainston, 1986; Valesini et al., 1997).

Migration: Eggs and larvae are transported from spawning areas in south-western Australia to nursery areas in estuaries and shallow, coastal marine waters off southern Australia by the Leeuwin Current (Fairclough et al., 2000b; Ayvazian et al., 2004). Migrate along the south coast of Australia to spawning areas in south-western Australia at about 2 years of age (Fairclough et al., 2000b; Ayvazian et al., 2004).

Distribution of stock: Single stock over full range of species distribution (Ayvazian et al., 2000; Ayvazian et al., 2004; Moore, 2011).

Diet: Opportunistic carnivore which predominantly feeds on crustaceans and teleosts with some polychaetes, molluscs and macro-algae (Orr, 2000). See also Thomson (1957), Wallace (1976) and Lenanton (1982).

Fishery

Recreational: One of the most popular recreational fish species. Targeted predominantly by shore-based anglers in coastal and estuarine waters, especially during the spawning period from April – June (Lenanton and Hall, 1976; Sumner and Williamson, 1999; Henry and Lyle, 2003; Ayvazian et al., 2004; Smallwood and Sumner, 2007; Smallwood et al., 2012).

Commercial: One of the most frequently caught species in the nearshore and estuarine finfish commercial gill net, haul net, beach seine and trap net fisheries which operate in the South Coast and West Coast bioregions (Smith et al., 2012a; Smith et al., 2012b). This species is also caught by commercial fishers in South Australia, with negligible catch taken in Victoria (Smith et al., 2012b). See also Walker and Clarke (1987), Ayvazian et al. (2000), Gaughan et al. (2006) and Smith et al. (in press).

Age at full recruitment: Not specified.

Gear selectivity parameters: [WA, recreational] Females $L_{50}=215.6$ mm, $L_{95}=278.8$ mm; Males, $L_{50}=216.1$ mm, $L_{95}=269.4$ mm. [WA], commercial, haul net] Females, $L_{50}=197.0$ mm, $L_{95}=254.9$ mm; Males, $L_{50}=216.5$ mm, $L_{95}=255.7$ mm (Wise and Hall, 2000).
Management parameters

Total mortality: Not reported.

Natural mortality: [Maximum age] 0.4 year\(^1\) (Ayvazian et al., 2000).

Fishing mortality: Not reported but included in Smith et al. (in press).

Biological reference points: A preliminary population dynamics model was developed for this species but the results were inconclusive (further data required) (Wise and Hall, 2000).

Current status: Stock level is uncertain in the West Coast and South Coast bioregions (Smith et al., 2012a; Smith et al., 2012b). An indicator species for the nearshore zone in the West Coast and South Coast bioregions (DoF, 2011). Overall risk to sustainability for the nearshore suite is low in the South Coast bioregion and medium to high in the West Coast bioregion (DoF, 2011). Inherent vulnerability of the species is minimal and current risk to wild stock is high in the West Coast bioregion and moderate in the South Coast bioregion (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated recreational boat-based catch in the West Coast bioregion was 46 t for 1996/97 and 40 t in 2005/06 (Sumner et al., 2008). The total estimated recreational catch from boat and shore-based fishers in Western Australia in 2000/01 was estimated to be 523 t (Henry and Lyle, 2003). An estimated 4.1 t was retained within South Coast estuaries in 2002/03 (Smallwood and Sumner, 2007). See also Lenanton and Hall (1976), Ayvazian et al. (1997), Harvey (2004), Smallwood et al. (2006) and Smallwood et al. (2012).

Commercial: The total catch of this species by commercial fishers in Western Australia has declined from a peak catch of 1,537 t in 1991, to a historic low of 147 t in 2011 (Smith et al., 2012b). Since 2000, 83% of catch was taken in the South Coast bioregion with the remaining 17% in the West Coast bioregion (Smith et al., 2012b). A complete catch trend graph is shown in the 2010/11 State of the Fisheries and Aquatic Resources Report. From 2008 to 2011, landings of this species in South Australia have comprised 43% of the national catch (Smith et al., 2012b). Large fluctuations in the commercial catch probably reflect levels of targeting by commercial fishers, and annual recruitment variability (influenced by the strength of the Leeuwin current) (Jones and Nowara, 2000; Smith et al., in press). See also Gaughan et al. (2006).

Management regulations

Recreational: Currently included in the “all other species of finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Statewide (1937)</td>
<td>-</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: South Coast and West Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, gear restrictions, spatial and temporal closures) (Smith et al., 2012a; Smith et al., 2012b). A minimum legal size limit of 180 mm was removed in 2011. See also Ayvazian et al. (2000) and Smith et al. (in press).

Current research: Stock assessment (Fletcher and Santoro, 2012). Ongoing data collection occurs through commercial logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.
References

Black bream (*Acanthopagrus butcheri*)

Reviewed by Ben Chuwen (Institute for Marine and Antarctic Studies)

Scientific name: *Acanthopagrus butcheri* (Sparidae; Sea breams)

Common names: Black bream

Key identifying features: Upper body often has a blackish hue, anal and pelvic fins are grey-brown, and a small black spot is present at base of pectoral fin (Yearsley *et al.*, 2001).

Distribution of species

Worldwide: Endemic to southern Australia.

Western Australia: Southern Western Australian border to Shark Bay (Gomon *et al.*, 2008).

Maximum length, weight and age: 530 mm, 3.45 kg (Hutchins and Thompson, 1983), 31 years (Jenkins *et al.*, 2006; Potter *et al.*, 2008).

Length/weight relationships: [Swan River] \(\log_{10} W = -5.07 + 3.14 \log_{10} TL \) \((n=1,790, R^2=0.99)\) (Sarre and Potter, 2000). For other relationships, see Sarre and Potter (2000).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>143</td>
<td>511</td>
<td>1,260</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [Swan River] Females \(L_\infty =438 \text{ mm}, k=0.30 \text{ year}^{-1}, t_0=0.13 \text{ years} \) \((n=733, R^2=0.94)\)

Males \(L_\infty =419 \text{ mm}, k=0.31 \text{ year}^{-1}, t_0=0.15 \text{ years} \) \((n=894, R^2=0.94)\) (Sarre and Potter, 2000).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>207</td>
<td>368</td>
<td>417</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>204</td>
<td>357</td>
<td>401</td>
</tr>
</tbody>
</table>

Growth is highly variable between estuaries and can change markedly in the same estuary (Morrison *et al.*, 1998; Sarre and Potter, 2000; Cottingham, 2008). Growth not strongly influenced by genetics (Partridge *et al.*, 2004), but is apparently influenced strongly by density-dependent factors (Cottingham, 2008; Gardner *et al.*, 2010; Gardner *et al.*, in press). See also Sarre and Potter (2000), Hoeksema *et al.* (2006a) and Chuwen (2009) for growth parameters in other Western Australian estuaries.

Reproductive style: Rudimentary hermaphrodite, multiple spawner (Sarre and Potter, 1999). Individuals of this species in New South Wales were reported to exhibit different forms of hermaphroditism, including protogyny, depending on environmental conditions (Rowland and Snape, 1994).
Length and age at maturity: [Swan River] Females $L_{50} = 217.8$ mm, $A_{50} = 2.2$ years; Males $L_{50} = 211.9$ mm, $A_{50} = 2.1$ years (Sarre and Potter, 1999). See also Thomson (1957) and Chuwen (2009).

Adult sex ratio: [Swan River, seine net] F1.25:M1 (Sarre and Potter, 1999; 2000).

Length and age at sex change: Not applicable.

Spawning season: [Swan River] Spring to early summer, in widely ranging salinities of ~0 to 45 (Sarre and Potter, 1999). See also Sarre and Potter (1999) and Chuwen (2009).

Spawning location and habitat: Typically in upper reaches of estuaries (Sarre and Potter, 1999).

Fecundity: [Swan River] Determinate. Annual fecundity estimates; $\log_{10} F = -4.65 + 4.25 \times \log_{10} TL$ ($n=25$, $R^2=0.87$) (Sarre and Potter, 1999). See also Thomson (1959) and Holt (1978).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>134,703</td>
<td>754,684</td>
<td>2,563,038</td>
</tr>
</tbody>
</table>

Spawning frequency: Not reported.

Development and habitat use

Eggs: Pelagic, upper reaches of rivers and estuaries (Lenanton, 1977; Neira *et al.*, 1998).

Larvae: Coastal lakes, rivers and estuaries (Noriss *et al.*, 2002). Description of larval stages (Neira *et al.*, 1998).

Juveniles: Coastal lakes, rivers, estuaries (shallower regions of upper or middle reaches) and occasionally coastal marine waters (Noriss *et al.*, 2002; Smith, 2006).

Adults: Coastal lakes, rivers, estuaries and occasionally coastal marine waters. An estuarine species, *i.e.* it typically completes its life cycle in estuaries (Potter and Hyndes, 1999; Smith, 2006).

Migrations: Moves upstream into rivers to breed during summer (Sarre and Potter, 1999), although there is evidence of residency by some adult fish (Smith, 2006). Evidence of movement of individuals into nearshore waters at night (Young *et al.*, 1997) and away from highly saline areas (Young and Potter, 2002). [Victoria] Frequently undertakes movements >30 km day$^{-1}$ (Hindell *et al.*, 2008); [South Australia] Individuals within a population often exhibit different migratory behaviours (Elsdon and Gillanders, 2005); [Tasmania] Prefer brackish waters (Sakabe and Lyle, 2010).

Stock delineation: Local populations in eastern and western Australia are genetically distinct (Farrington *et al.*, 2000), while those in individual estuaries in Western Australia are also genetically distinct (Chaplin *et al.*, 1998). [Eastern Australia] Genetic divergence positively correlated with distance (Burridge and Versace, 2007). Hybridisation between *A. butcheri* and *A. australis* is common in some estuaries (Rowland, 1984; Roberts *et al.*, 2008).

Diet: Opportunistic carnivore which feeds on shellfish, worms, crustaceans, small fish and algae (Wallace, 1976; Holt, 1978; Sarre *et al.*, 2000a; Chuwen *et al.*, 2007).

Fishery

Recreational: Targeted by shore and boat-based rod and line fishers in rivers and estuaries in the West Coast and South Coast bioregions (Malseed *et al.*, 2000; Malseed and Sumner, 2001b; a; Smallwood and Sumner, 2007). It is the most commonly-retained fish species in the Swan-Canning Estuary (Smith, 2006). Some recreational netting was also undertaken in these areas (Heald, 1984).

Commercial: Important commercial species in Western Australia (Lenanton and Potter, 1987;
Smith, 2006). Frequently caught in the West Coast and South Coast estuarine finfish fisheries, including the South Coast Managed Fishery, using gill nets and haul nets (Smith et al., 2012a; Smith et al., 2012b). The number of commercial fishers catching black bream has declined markedly in many estuaries. For example, in the Swan-Canning Estuary, up to 130 fishers were engaged in commercial fishing in 1919. The number of registered vessels declined from ~30 vessels in the 1960s-70s to 4 vessels in 2000-2004 (Lenanton, 1978; Lenanton et al., 1984; Smith, 2006) and commercial activity is now negligible (Smith et al., 2012b).

Age at full recruitment: Not reported.

Gear selectivity parameters: [South Coast estuaries]. Gillnet selectivity parameters for the method of Kirkwood and Walker (1984) were $\theta_1 = 3.10$, $\theta_2 = 1506.30$. Total length ranges for which relative selectivity was > 0.2 were 80–189 mm (35 mm mesh), 100 – 239 mm (51 mm mesh), 130 – 269 mm (63 mm mesh), 170 – 309 mm (76 mm mesh), 210 – 349 mm (89 mm mesh), 250 – 279 mm (102 mm mesh) and 290 – 409 mm (115 mm mesh) (Chuwen, 2009).

Management parameters

Total mortality: [Wellstead Estuary, Poisson regression] 0.25 year$^{-1}$ (Chuwen, 2009). See also Chuwen (2009) for estimates at other locations.

Natural mortality: [Hoenig’s (1983) equation for fish] 0.134 year$^{-1}$ (Chuwen, 2009).

Fishing mortality: 0.116 year$^{-1}$ (i.e., $F = Z - M$).

Biological reference points: $F_{0.1} = 0.173$ year$^{-1}$ (Penn, 2000).

Current status: Stock status listed as acceptable in most estuaries of the West Coast and South Coast bioregion, where assessed (Smith et al., 2012a; Smith et al., 2012b). Evidence of increased abundance in shallow nearshore waters and reduced abundance in deeper, offshore waters in the Swan River since 1990 (Smith, 2006; Cottingham, 2008). Recent estimates of Z by Chuwen (2009) were highest for south coast estuaries where commercial fishing was greatest (Wilson Inlet and Oyster Harbour), and least for an estuary that has been closed to commercial fishing for more than 20 years (Wellstead Estuary). An indicator species for the estuarine suite in the West Coast and South Coast bioregions (DoF, 2011). Overall risk to sustainability for the estuarine suite is moderate in the South Coast and West Coast bioregion (DoF, 2011). Inherent vulnerability of the species and current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total catch from recreational fishers in the West Coast bioregion was estimated to be 24 t in 2000/01 (Henry and Lyle, 2003). Several studies also estimated the recreational catch of this species in specific estuaries, including 0.53 t in the Peel-Harvey Estuary in 1998/99, (Malseed and Sumner, 2001a), and 0.31 t in the Swan-Canning Estuary in 1998/99 (Malseed and Sumner, 2001b). The total estimated recreational catch from estuaries in the South Coast bioregion was 28 t in 2000/01 (Henry and Lyle, 2003) and 23.3 t in 2002/03 (Smallwood and Sumner, 2007). It is the most commonly retained fish species by recreational fishers in Swan-Canning Estuary (Smith, 2006).

Commercial: A total of 53 t of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). From 2001 to 2010, 93% was caught in the South Coast bioregion (mostly at Beaufort Inlet, Stokes Inlet, Wilson Inlet and Oyster Harbour) with the remaining 7% in the West Coast bioregion (mostly in the Swan Canning Estuary) (Smith et al., 2012b). Total catch of this species from estuarine fisheries in the West
Coast bioregion has remained relatively static with 0.9 t in 2007 and 0.7 t in 2011, with a high of 2.6 t in 2010 (Smith et al., 2012b). A complete catch trend graph is shown in the 2010/11 State of the Fisheries and Aquatic Resources Report. In 2011, a total of 44 t was taken from the South Coast bioregion, with a low of 30 t in 2000 and a peak of 70 t in 1993 (Smith et al., 2012a). Considered heavily depleted in 1990s in the Blackwood River Estuary (Lenanton, 1977; Valesini et al., 1997; Lenanton et al., 1999) prior to restocking in 2002/03 (Potter et al., 2008).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Statewide (1937)</td>
<td>-</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Statewide (1975)</td>
<td>-</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (1986)</td>
<td>30</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>20</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (2000)</td>
<td>20</td>
<td>250</td>
<td>Swan-Canning bag limit = 8 fish</td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>4</td>
<td>250</td>
<td>Swan-Canning = only 2 fish >400 mm</td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>6</td>
<td>250</td>
<td>Swan-Canning = only 2 fish >400 mm</td>
</tr>
</tbody>
</table>

Commercial: West Coast and South Coast estuarine finfish fisheries are regulated using various input controls (such as limited entry and gear restrictions) as well as seasonal and temporal closures, and size limits (Smith et al., 2012a; Smith et al., 2012b).

Current research: Temporal changes in growth and productivity (Alan Cottingham, PhD, Murdoch University) and restocking (Murdoch University/Challenger Institute of Technology). Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Aquaculture (Haddy and Pankhurst, 2000; Sarre et al., 2000b; Doupe et al., 2003; Sarre et al., 2003; Doupe and Lymbery, 2005a; b; Gardner, 2008); Restocking/stock enhancement (Dibden et al., 2000; Jenkins et al., 2006; Gardner, 2008; Gardner et al., 2010; Gardner et al., in press); Eye development (Shand et al., 1999); Otolith vs somatic growth (Chuwen, 2009); Otolith chemistry (Elsdon and Gillanders, 2004; 2005; 2006); Genetic primers (Yap et al., 2000); Reproductive biology (Haddy and Pankhurst, 1998); Age determination (Morrison et al., 1998). Habitat re-establishment (Hindell, 2007); Genetics of feed conversion efficiency (Doupe and Lymbery, 2004); Salinity tolerance/mass mortalities (Hoeksema et al., 2006a; Hoeksema et al., 2006b); Trophic interactions (Linke, 2011).

References

Pink snapper (*Pagrus auratus*)

Reviewed by Gary Jackson and Corey Wakefield (DoF)

Scientific name: *Pagrus auratus* (Sparidae; Sea breams). Note: same scientific name is used for the species in Queensland, New South Wales and New Zealand while confusingly, *Chrysophrys auratus*, is used in Victoria and South Australia (SA) (Gomon *et al.*, 2008).

Common names: Pink snapper also pinkie and snapper (elsewhere in Australia).

Key identifying species: Upper body is pale pink to dark red often with turquoise-blue spots (can be particularly pronounced in juveniles). Adult males may have prominent lump on forehead (Moran *et al.*, 1998), enlarged canine teeth at front (Yearsley *et al.*, 2001).

Distribution of species

Worldwide: Widely distributed throughout the western Indo-Pacific, from around southern Australia and northern New Zealand to China and Japan (Paulin, 1990).

Western Australia: Southern Western Australian border to Onslow (Gomon *et al.*, 2008).

Maximum length, weight and age: [Australia] 1,300 mm, 20 kg (Gomon *et al.*, 2008), 41 years (Norriss and Crisafulli, 2010); [New Zealand] 55 – 60 years (Horn, 1986; Francis *et al.*, 1992a).

Length/weight relationship: [West Coast and South Coast bioregion] \(W = 0.0000561 * FL^{2.827} \) (Wakefield, 2006). See also Moran and Burton (1990) and Jackson *et al.* (2010).

<table>
<thead>
<tr>
<th>FL (mm)</th>
<th>400</th>
<th>600</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>1,273</td>
<td>4,007</td>
<td>9,038</td>
</tr>
</tbody>
</table>

Length relationship: [West Coast and South Coast bioregion] Females \(FL = 0.897 * TL - 23.058 \) \((n=1,385, R^2=0.996) \); Male \(FL = 0.892 * TL - 23.797 \) \((n=1236, R^2=0.995) \) (Wakefield, 2006).

Growth: [Perth] Females \(L_{\infty} = 1,150 \) mm, \(k = 0.12 \) year\(^{-1} \), \(t_0 = 0.41 \) years \((n=872, R^2=0.89) \);

Males \(L_{\infty} = 1,127 \) mm, \(k = 0.12 \) year\(^{-1} \), \(t_0 = 0.46 \) years \((n=793, R^2=0.88) \) (Wakefield, 2006). See also Tapp (2003), Wakefield (2006), St John *et al.* (2007), Jackson (2007), Jackson *et al.* (2010) and [New Zealand] Sim-Smith *et al.* (2011). Juvenile growth varies seasonally, related to temperature (Lenanton, 1974).
<table>
<thead>
<tr>
<th>Age (years)</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>549</td>
<td>820</td>
<td>969</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>542</td>
<td>806</td>
<td>951</td>
</tr>
</tbody>
</table>

Reproductive style: [New Zealand] Functional gonochorist (Francis and Pankhurst, 1988). Serial batch spawner (Crossland, 1977a; Saunders et al., 2012).

Adult sex ratio: [Perth, commercial and recreational line fishers] F1:M1 (Wakefield, 2006). See also Jackson et al. (2011).

Length and age at sex change: Not applicable.

Spawning season: Season varies with geographic location: late-autumn through to early spring in Shark Bay region (Moran et al., 2003; Wakefield, 2006; Jackson et al., 2010; Wakefield et al., in prep), spring and summer on west coast, and summer on south coast (Wakefield, 2006; 2010; Wakefield et al., in prep). Spawning strongly associated with water temperature, mostly occurring between 19 – 21°C (Wakefield, 2010; Wakefield et al., in prep). In Cockburn Sound, spawning occurs at night during the 3 hours after the high tide, peaking around the new and full moons (Wakefield, 2010). In Shark Bay, spawning mostly in early afternoon to late evening (Jackson and Cheng, 2001). Evidence of localized spawning omission in New Zealand (Sim-Smith et al., 2011).

Spawning location and habitat: Spawning aggregations occur in Western Australian marine embayments and coastal areas such as Shark Bay, and in Perth Metropolitan waters, in Cockburn Sound, Owen Anchorage and Warnbro Sound (Jackson and Cheng, 2001; Moran et al., 2003; Wakefield, 2006; 2010). Significant spawning along the west coast also occurs in offshore locations outside these marine embayments. Spawning aggregations also observed in Victoria (Jenkins, 1986; Coutin et al., 2003; Hamer et al., 2011).

Fecundity: [New Zealand, South Australia] Indeterminate (Scott and Pankhurst, 1992; Zeldis, 1993; Saunders et al., 2012). A positive relationship exists between batch fecundity and fish size (Crossland, 1977a; Jackson, 2007). In Western Australia, batch fecundity between 2,000 – 660,000 was found for inner Shark Bay females between 172 – 725 mm FL (Mackie et al., 2009). Estimates also available for South Australia (Saunders, 2009) and New Zealand (Crossland, 1977a).

Spawning frequency: Spawning fraction data available for inner Shark Bay (Jackson et al., 2011) and Perth Metropolitan waters (Wakefield, 2006; 2010). Variation in spawning frequency found within, and between, seasons in the northern Spencer Gulf (Saunders et al., 2012).

Development and habitat use

Eggs: Pelagic. Eggs can be retained by eddies within embayment spawning areas (Neira et al., 1998; Nahas et al., 2003; Wakefield, 2010) but are transported by ocean currents in more open waters along west coast. See also [Western Australia] (Jackson and Cheng, 2001; Wakefield, 2010; Breheny et al., 2012); [New Zealand] (Crossland, 1980; Zeldis, 1993; Zeldis and Francis, 1998).

Larvae: Often retained within spawning areas in marine embayments (Neira et al., 2003; Breheny et al., 2012). Initially pelagic (Francis, 1994a; Fowler and Jennings, 2003), then settle over soft muddy bottoms at ~ 9-12 mm in length (Kingsford and Atkinson, 1994; Trnski, 2002; Breheny et al., 2012). Larvae capable of diel vertical migrations for feeding (Murphy et al., 2011). Use of olfactory cues (smell) to find settlement habitats shown in New Zealand (Radford et al., 2012). Description of larval stages (Neira et al., 1998).
Juveniles: Estuaries, coastal embayments and sheltered marine waters (Lenanton, 1974; Paul and Tarring, 1980; Gillanders, 2002; Wakefield, 2006; St John et al., 2007; Wakefield et al., 2013). In some locations (Cockburn Sound, Shark Bay) spawning areas constitute nursery areas for early juveniles. See also [Victoria] (Francis, 1995; Hamer and Jenkins, 2004; Fowler et al., 2005; Hamer et al., 2005; Hamer et al., 2011). [New Zealand] (Francis, 1993; Thrush et al., 2002; Ross et al., 2007).

Adults: Continental shelf waters out to 300-400 m, sheltered marine embayments and coastal rocky reefs (Kailola et al., 1993; Wakefield, 2006).

Migration: In shelf waters off the west coast, inshore-offshore migration for spawning (Moran et al., 2003; Wakefield, 2006; Wise et al., 2007; Wakefield et al., 2011). Individual movement patterns vary with fish moving up to 33 km west off Cockburn Sound and up to 92 km north and 134 km south (Wakefield et al., 2011). Distances travelled increase with increasing fish size (Wakefield et al., 2011). Most fish tagged off Shark Bay were recaptured with 20 km of release with few fish moving 200-400 km (Moran et al., 2003). Very limited movement inside Shark Bay (Moran and Kangas, 2003; Norriss et al., 2012) and in Queensland (Moran and Kangas, 2003; Sumpton et al., 2003) but up to 2,000 km in southern and eastern Australia (Sanders, 1974; Fowler et al., 2005).

Stock delineation: [West Coast bioregion] Single genetic stock in West Coast bioregion with genetic isolation by distance (Gardner, 2011). Some mixing of juveniles, relatively limited mixing of adults (Lenanton et al., 2009a; Fairclough et al., 2013). In Shark Bay, there are three separate stocks within the two gulfs which are distinct from the stock in adjacent oceanic waters (Johnson et al., 1986; Edmonds et al., 1989; Moran et al., 1998; Edmonds et al., 1999; Bastow et al., 2002; Moran et al., 2003). Stock structure is highly complex across Australian distribution (Jackson et al. 2012a).

Diet: Ontogenetic differences in diet between juveniles and adults. Identified as feeding on crustaceans, teleosts, echinoderms and molluscs (Ang, 2003; French et al., 2012). See also [New Zealand] (Coleman, 1972; Russell, 1983), [Victoria] (Winstanley, 1983), [South Australia] (Saunders, 2009).

Fishery

Recreational: A highly sought after species targeted predominantly by boat-based fishers (including charter operators) in the West Coast and Gascoyne Coast bioregions, especially Shark Bay (Telfer, 2010; Fairclough et al., 2012; Wise et al., 2012).

Commercial: Species has a very long history of exploitation, particularly in Shark Bay (Marriott et al., 2012). One of the key demersal target species in the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) (Fairclough et al., 2012), the Gascoyne Demersal Scalefish Managed Fishery (GDSF) (Jackson et al., 2012b). Also taken in the temperate Demersal Gillnet and Demersal Longline Fishery (DGDLF) (Fairclough et al., 2012).

Age at full recruitment: Variable temporally and spatially (due to variability in annual recruitment, individual growth and other factors) (Lenanton et al., 2009a).

Gear selectivity parameters: Not reported.

Length and age at maturity: [Perth metropolitan zone] Females $L_{50}=585$ mm, $L_{95}=752$ mm; Males $L_{50}=566$ mm, $L_{95}=730$ mm (Wakefield, 2006). See also Wakefield (2006), Lenanton et al. (2009b) and Jackson et al. (2010).
Management parameters

Total mortality: 0.72 – 0.76 year\(^{-1}\) (i.e., \(Z=F+M\))

Natural mortality: [Hoenig’s (1983) equation for fish] 0.12 year\(^{-1}\) (Wise et al., 2007). See also Wakefield et al. (2007).

Fishing mortality estimates: [Perth metropolitan zone, recreational] 0.60 – 0.76 year\(^{-1}\) (Wise et al., 2007). See also Wise et al. (2007) for other site, management area and sector-specific estimates.

Biological reference points: [Perth Metropolitan zone]
\[F_{\text{limit}} \approx 0.18 \text{ year}^{-1} \] (i.e., \(F=3/2M\))

\[\text{YPR}_{\text{max}} \approx F=0.15 \text{ year}^{-1} \]

\[\text{E/R, SPR}=20\% \text{ at } F=0.17 \text{ year}^{-1}, \text{ SPR } 40\% \text{ at } F=0.1 \text{ year}^{-1} \] (Wise et al., 2007).

Current status: \(F_{\text{limit}}\) exceeded in all management zones (Wise et al., 2007), i.e. prior to management changes for offshore demersal scalefish species. Stocks now treated as recovering after the introduction of a range of management measures for the WCDSIMF during 2007-2009 (Fairclough et al., 2012). In the Gascoyne Coast bioregion, snapper stocks are either recovering or recovered following management intervention (Jackson et al., 2012b; Jackson et al., 2012c). An indicator species for the inshore demersal suite in the Gascoyne Coast and West Coast bioregions, and a proposed indicator species in the South Coast bioregion (DoF, 2011). Inherent vulnerability of the species is moderate (West Coast, South Coast) and high (Gascoyne Coast) while the current risk to wild stock is moderate (Gascoyne Coast) and high (West Coast, South Coast) (DoF, 2011). See DoF (2011) for more detailed risk assessment data. Further detailed information on stock status for Western Australian stocks in (Jackson et al., 2012a).

Catch trends

Recreational: The total estimated recreational boat-based catch in the West Coast bioregion increased from 25 t in 1996/97 to 40 t in 2005/06 (Sumner et al., 2008). Following the introduction of a range of management measures during 2007-2009, estimated recreational boat-based catch decreased to 24 t in 2009/10 (Fairclough et al., 2012). Catch taken by charter vessels in 2010/11 was 8 t (Fairclough et al., 2012). The total estimated recreational boat-based catch in the Gascoyne Coast bioregion was 30 t in 2007/08 (Jackson et al., 2012b). Catch taken by charter vessels in 2010/11 was 12 t (Jackson et al., 2012b). Relatively small catches taken from the three separate stocks in the inner gulfs of Shark Bay (Jackson et al., 2012c). See also (Telfer, 2010).

Commercial: In 2010/11, approximately 190 t of this species was taken in the West Coast bioregion, 263 t in the Gascoyne Coast Bioregion (Fairclough et al., 2012; Jackson et al., 2012b) and a further 40 t in the South Coast Bioregion (Molony et al., 2012). A complete catch trend graph can be found in the 2010/11 State of the Fisheries and Aquatic Resources Report. See also (Jackson et al., 2012a).
Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013). A wide variety of recreational rules has been introduced for pink snapper (including spatial and temporal closures, maximum size limits, slot limit). Only bag limits and MLL are shown in the following table.

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>279</td>
</tr>
<tr>
<td>Statewide (1977)</td>
<td>10</td>
<td>380</td>
</tr>
<tr>
<td>Statewide (1978)</td>
<td>10</td>
<td>380<sub>SB</sub>, 280<sub>SC</sub></td>
</tr>
<tr>
<td>Statewide (1985)</td>
<td>10</td>
<td>380<sub>WC</sub>, 280<sub>SC</sub></td>
</tr>
<tr>
<td>Statewide (1988)</td>
<td>10</td>
<td>410<sub>WC</sub>, 280<sub>SC</sub></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>8</td>
<td>410</td>
</tr>
<tr>
<td>Statewide (1997)</td>
<td>8 except where 2<sub>EG</sub>, 4<sub>WG</sub></td>
<td>410 except where 500<sub>EG</sub>, 450<sub>WG</sub></td>
</tr>
<tr>
<td>Statewide (2001)</td>
<td>8 except where 2<sub>EG</sub>, 4<sub>WG</sub></td>
<td>410 except where 500<sub>EG</sub>, 450<sub>WG</sub>, 280<sub>Wt</sub></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>4</td>
<td>410</td>
</tr>
<tr>
<td>Gascoyne Coast (2004)</td>
<td>6 except where 1<sub>SB</sub></td>
<td>410 except where 500<sub>SB</sub></td>
</tr>
<tr>
<td>Gascoyne Coast (2005)</td>
<td>4 except where 1<sub>SB</sub></td>
<td>410 except where 500<sub>SB</sub></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>4</td>
<td>410 except where 280<sub>Wt</sub></td>
</tr>
<tr>
<td>South Coast (2007)</td>
<td>4</td>
<td>410</td>
</tr>
<tr>
<td>West Coast (2008)</td>
<td>2</td>
<td>410 except where 450<sub>South 31S</sub></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>410 except where 500<sub>South 31S</sub></td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>3 except where 2<sub>SB</sub></td>
<td>500</td>
</tr>
</tbody>
</table>

EG = Eastern Gulf of Shark Bay, WG = Western Gulf of Shark Bay, SB = Shark Bay (all gulfs), WI = Wilson Inlet, WC = West Coast, SC = South Coast, South 31S = south of 31oS latitude.

Commercial: Demersal scalefish fisheries (i.e. WCDSIMF, GDSF) in the Gascoyne Coast, West Coast and South Coast Bioregions are regulated using a range of input (restricted entry, total fishing time allocations, maximum number of lines and hooks), output controls (total allowable catch and individual quotas) and biological controls (minimum legal lengths) (Fairclough et al., 2012; Jackson et al., 2012b).

Current research: Ongoing stock status monitoring and research is being undertaken by DoF. Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published works: Sexual dimorphism (Moran et al., 1998); Depletion rates from trawling (Wakefield et al., 2007); Reproductive biology (Mackie et al., 2009), [Victoria] (Macdonald, 1982), [New Zealand] (Crossland, 1977a; b); Biomass [New Zealand] (Crossland, 1980; Zeldis, 1993; Zeldis and Francis, 1998); Age and growth [New Zealand] (Francis et al., 1992a; Francis et al., 1992b; Francis, 1994b), [New South Wales] (Fielder et al., 2005) (Bell et al., 1991; Pankhurst et al., 1991; Battaglene and Talbot, 1992; Fielder et al., 2005), [Global] (Kingsford and Atkinson, 1994); Stock structure [Victoria] (Sanders, 1974); Stock assessment [Queensland] (Ferrell and Sumpton, 1998), [Victoria] (Coutin et al., 2003); Survival after tagging [New South Wales] (Quartararo and Kearney, 1996), [Queensland] (Sumpton et al., 2003); Larval distributions [New South Wales] (Smith, 2003); Identification of juvenile habitats from otolith isotopes [New South Wales] (Gillanders and Kingsford, 2003); Pagrus
major [Japan] (Paulin, 1990; Tabata and Taniguchi, 2000); *Barotrauma* (Lenanton *et al.*, 2009b); *Length frequency using stereo-video techniques* (Langlois *et al.*, 2012).

References

Francis, M. P., 1994a. Duration of larval and spawning periods in *Pagrus auratus*; (Sparidae) determined from otolith daily increments. *Environmental Biology of Fishes* 39, 137-152.

French, B., Platell, M. E., Clarke, K. R., Potter, I. C., 2012. Ranking of length-class, seasonal and regional effects on dietary compositions of the co-occurring *Pagrus auratus* (Sparidae) and *Pseudocaranx georgianus* (Carangidae). *Estuarine, Coastal and Shelf Science* 115, 309-325.

Macdonald, C. M., 1982. Life-history characteristics of snapper Chrysophrys auratus (Block and Schneider, 1801) in Australian waters. Ministry for Conservation, Fisheries and Wildlife. Victoria, Australia.

Tapp, N., 2003. Do size differences of juvenile snapper (*Pagrus auratus*) in two regions of Shark Bay, Western Australia, reflect different environmental conditions, MSc thesis, Edith Cowan University, Perth, Western Australia. pp. 87.

Tarwhine (*Rhabdosargus sarba*)

Reviewed by Kim Smith (DoF)

Scientific name: *Rhabdosargus sarba* (Sparidae; Seabreams)

Common names: Tarwhine also silver bream, golden-lined seabream

Key identifying features: Deep body, upper profile convex, rounded head and thin wavy yellow lines along silvery sides, no black spot at base of pectoral fin, second and third anal fin spines similarly enlarged, 6 or 7 scale rows between lateral line and fourth dorsal spine (Yearsley *et al.*, 2001).

Distribution of species

Worldwide: Widely distributed throughout the Indo-Pacific (Kuiter, 1993).

Western Australia: Albany to Coral Bay (Hutchins and Swainston, 1986).

Maximum length, weight and age: 500 mm, 2.5 kg (Hutchins and Swainston, 1986), 13 years (Hesp, 2003; Hesp *et al.*, 2004a). See also Munro (1949).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>565</td>
<td>850</td>
<td>1,135</td>
<td></td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [Perth coastal waters] \(L_m=289.9 \) mm, \(k=0.59 \) year\(^{-1}\), \(t_0=0.12 \) years \((n=1,487)\) (Hesp *et al.*, 2004a). Parameters derived by fitting a modified form of von Bertalanffy growth function which takes into account size-related movements between habitats. See also Hesp *et al.* (2004a) for additional information for the Swan River Estuary and Shark Bay.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (mm)</td>
<td>194</td>
<td>281</td>
<td>289</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Perth coastal waters] Females \(L_{50}=218 \) mm; Males \(L_{50}=206 \) mm (Hesp and Potter, 2003).

Adult sex ratio: [Perth coastal waters, seine net] Close to parity in adults (Hesp and Potter, 2003).
Length and age at sex change: Not applicable for Western Australia.

Spawning location and habitat: Typically found in marine waters over reefs, but also in the lower reaches of estuaries. Spawning occurs in the lower Swan River Estuary at night at the commencement of ebb tide (Hesp and Potter, 2003; Hesp et al., 2004b).

Fecundity: [Swan River] Indeterminate. Batch fecundity $\ln BF = 5.0025 \times \ln TL - 17.557$ ($n=30$, $R^2=0.52$) (Hesp and Potter, 2003; Hesp et al., 2004b).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>180</th>
<th>220</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>7,691</td>
<td>58,464</td>
<td>346,545</td>
</tr>
</tbody>
</table>

Spawning frequency: [Swan River] Spawn ~45 times during a single spawning season, and, on average, every 2.7 days. Prevalence of spawning in the lower Swan River Estuary is greatest on days of highest tidal amplitude (Hesp et al., 2004b).

Development and habitat use

Eggs: [Japan] Pelagic (Neira et al., 1998)

Juveniles: Seagrass, sheltered nearshore reefs, exposed sandy beaches and estuaries (Hesp et al., 2004a; Hesp et al., 2004b). See also [Eastern Australia] (McNeill et al., 1992; Gray et al., 1996; Smith and Suthers, 2000)

Adults: Often form schools in estuaries, coastal lakes, bays or exposed reefs (Munro, 1949; Hesp et al., 2004a).

Migration: [Perth coastal waters] Migrate from sheltered nearshore waters, to exposed nearshore waters and then to reefs (Hesp et al., 2004a).

Stock delineation: Populations around the world may actually be different species (Hesp et al., 2004a). Individuals in Western Australia are likely to comprise a single stock (Smith, 2006)

Fishery

Recreational: Commonly taken as by-catch by boat and shore-based line fishers in coastal and estuarine systems within the West Coast and South Coast bioregions (Malseed and Sumner, 2001; Cusack and Roennfeldt, 2002). Occasionally targeted by fishers in some locations such as the lower Swan River Estuary and in Cockburn Sound (Hesp, 2003).

Commercial: Species of minor importance in the South Coast bioregion in nearshore estuarine gill net and haul net finfish fisheries (Smith et al., 2012).

Age at full recruitment: Not reported.

Gear selectivity parameters: Not reported.
Management parameters

Total mortality: Not reported.

Natural mortality: Not reported.

Fishing mortality: Not reported.

Biological reference points: Not reported.

Current status: Overall risk to sustainability for the nearshore suite is medium to high in the West Coast bioregion and low in the South Coast bioregion (DoF, 2011). Inherent vulnerability of the species and current risk to wild stock is minimal in the West Coast bioregion (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: Boat-based catch of this species was recorded during surveys in the West Coast bioregion in 1996/97 (5,337 retained fish) and 2005/06 (1,732 retained fish) (Sumner et al., 2008). It was estimated that <1 t was caught in the Swan River and Canning estuaries in 2000/01 (Henry and Lyle, 2003). The total catch from recreational fishers in estuaries within the South Coast bioregion was estimated to be 0.5 t in 2002/03 (Smallwood and Sumner, 2007). 1,093 fish were estimated to be retained in the Gascoyne Coast bioregion in 1998/99 (Sumner et al., 2002). See also Malseed and Sumner (2001), Smallwood et al., (2006) and Smallwood et al. (2011).

Commercial: A total of 5 t of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). The total catch of this species in the South Coast bioregion in the nearshore and estuarine fishery increased from 3.1 t in 2007 to 6.1 t in 2011, with a low of 2.7 t in 2009 (Smith et al., 2012).

Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Statewide (1973/74)</td>
<td>-</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>20</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>16</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2005)</td>
<td>16</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>West Coast (2005)</td>
<td>16</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>6</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: South Coast nearshore and estuarine finfish fisheries are regulated using various input controls (such as limited entry and gear restrictions) as well as seasonal and temporal closures, and size limits (Smith et al., 2012).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.
Comments/other published information: Reproductive biology [Eastern Australia] (Hughes et al., 2008); Identification of juvenile habitats from otolith isotopes [New South Wales] (Gillanders and Kingsford, 2003); Aquaculture [Taiwan] (1994); Age and growth [South Africa] (2001); Taxonomy [South Africa] (1979).

References

Mulloway (*Argyrosomus japonicus*)

Reviewed by David Fairclough (DoF)

Scientific name: *Argyrosomus japonicus* (Sciaenidae; Drums/Croakers), previously called *Argyrosomus hololepidotus*

Common names: Mulloway also river kingfish, silver kingfish, kingfish. Juveniles are termed “soapies” and fish of 2-5 kg are often termed “school mulloway” (Cusack and Roennfeldt, 2002; Farmer, 2008).

Key identifying features: Silvery bronze sides often with a dark streak along the lower part of body, dark spot above pectoral fin base, silver spots follow lateral line (Hutchins and Thompson, 1983).

Distribution of species

Worldwide: Widely distributed throughout the Indo-West Pacific (Trewavas, 1977; Griffiths and Heemstra, 1995).

Western Australia: Southern Western Australian border to Exmouth (Gomon *et al.*, 2008).

Maximum length, weight and age: 2,000 mm, 60 kg (Gomon *et al.*, 2008), 31 years (Farmer *et al.*, 2005).

Length/weight relationship: [West Coast and Gascoyne Coast bioregions] \(\ln W = 3.007 \ln TL - 11.637 \) (*n* = 328, \(R^2 = 0.997 \)) (Farmer, 2008). See also Farmer (2008) for South Coast bioregion estimates.

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>500</th>
<th>800</th>
<th>1,100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>1,162</td>
<td>4,777</td>
<td>12,447</td>
</tr>
</tbody>
</table>

Length relationship: Not applicable.

Growth: [West Coast and Gascoyne Coast bioregions] Females \(L_c = 1,213 \) mm, \(k = 0.274 \) year\(^{-1} \), \(t_0 = 0.049 \) years (*n* = 525, \(R^2 = 0.930 \)); Males \(L_c = 1,173 \) mm, \(k = 0.28 \) year\(^{-1} \), \(t_0 = 0.087 \) years (*n* = 512, \(R^2 = 0.928 \)) (Farmer, 2008). Estimates for South Coast bioregion, and a 4-parameter growth model, which provides a slightly better fit to the length-at-age data, are also available in Farmer (2008).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>909</td>
<td>1,136</td>
<td>1,193</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>891</td>
<td>1,103</td>
<td>1,156</td>
</tr>
</tbody>
</table>

Length and age at maturity: [West Coast and Gascoyne Coast bioregions] Females \(L_{50} = 903 \)
mm, $L_{95}=1,015$ mm ($n=291$); Males $L_{50}=873$ mm, $L_{95}=973$ mm ($n=292$) (Farmer, 2008). Both sexes attain maturity at a much smaller size and younger age in Oyster Harbour in the South Coast bioregion compared to the West Coast bioregion (Farmer, 2008).

Reproductive style: Gonochorist. Multiple spawner (Farmer et al., 2005).

Adult sex ratio: [West Coast bioregion, commercial wetline and recreational hook and line] F1.5:M1 (Farmer et al., 2005).

Length and age at sex change: Not applicable.

Spawning season: [West Coast and South Coast bioregions] November to April. Spawning is more protracted in the warmer waters of the Gascoyne Coast bioregion (Farmer et al., 2005). See also [South Australia] Hall (1986); [South Africa] Griffiths (1996).

Spawning locality: In the West Coast and Gascoyne Coast bioregions, spawning occurs at night, typically around reefs in inshore coastal waters. Spawning aggregations known to occur at depths of 20-30 m over reefs (Farmer et al., 2005). Also in the lower reaches of the Swan River Estuary at the commencement of the ebb tide, thereby dispersing eggs and larvae downstream (Farmer, 2008).

Fecundity: Indeterminate (Farmer et al., 2005).

Spawning frequency: Not reported.

Development and habitat use

Eggs: Pelagic, nearshore waters (Neira et al., 1998; Farmer, 2008).

Larvae: Nearshore waters (Farmer, 2008).

Juveniles: Nearshore waters <10 m deep in protected, low energy environments and in some permanently open estuaries in Western Australia (Farmer, 2008). In New South Wales (Silberschneider and Gray, 2005) and South Africa (Griffiths and Heemstra, 1995; Cowley et al., 2008) juveniles are far more common in estuaries. Description of pelagic larval stages (Neira et al., 1998).

Adults: Move between estuaries, rivers, exposed beaches, marine embayments and inshore and offshore reefs at depths of 20–200 m (Griffiths and Heemstra, 1995; Griffiths, 1996; Farmer, 2008).

Migration: Mature individuals migrate seasonally into the lower reaches of the Swan River Estuary between October and April. Catches in this environment peak in summer, when fish are in spawning condition. Mulloway are caught seasonally at depths of 80-110 m in coastal waters off Two Rocks and near Rottnest Island. As the fish caught near Rottnest Island are often “tannin stained”, they are thought to move between those waters and the Swan River Estuary, after the first of the freshwater flushes in late autumn (Holt, 1978; Farmer et al., 2005; Farmer, 2008).

Stock delineation: Based on morphological characteristics, Australian, South African and Japanese populations have previously been considered to constitute a single species (Griffiths and Heemstra, 1995). More recent studies indicate that the populations in Western Australia, Eastern Australia and South Africa are genetically distinct and may represent different species (Dixon, 1988; 1990; Klopper, 2005; Farmer, 2008).

Diet: [South Australia] Feed on a variety of fish species as well as sand crabs, prawns and worms (Hall, 1986).
Fishery

Recreational: Highly-prized recreational fish species, typically caught by rod and line fishing in estuaries and along beaches and in deeper, offshore coastal waters. Occasionally caught in gill nets and by spear fishing (Cusack and Roennfeldt, 2002; Henry and Lyle, 2003).

Commercial: Caught commercially by nearshore and estuarine finfish commercial gillnet, haul net and beach seine fisheries that operate in the South Coast and West Coast bioregions (Smith et al., 2012a; Smith et al., 2012b). Mulloway are also caught in temperate Demersal Gillnet and Demersal Longline Fisheries (DGDLF) (McAuley and Simpfendorfer, 2003; McAuley and Rowland, 2012), West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) (D. Fairclough, DoF, pers. comm., 2012) and Gascoyne Demersal Scalefish Fishery (GDSF) (Jackson et al., 2012).

Age at full recruitment: 3 years (Farmer et al., 2005).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [West Coast and Gascoyne Coast bioregions] Several estimates available. Estimate calculated using method of Hall et al. (2004) is 0.34 year⁻¹ (Farmer et al., 2005).

Natural mortality: [West Coast and South Coast bioregions] Several estimates available. Estimate calculated using Hall et al. (2004) is 0.24 year⁻¹ (Farmer et al., 2005).

Fishing mortality: [West Coast and Gascoyne Coast bioregions] Using \(F=Z-M \) is 0.11 year⁻¹ (Farmer et al., 2005).

Biological reference points: [West Coast and Gascoyne Coast bioregions] \(F_{0.1}=0.26 \) kg year⁻¹

\[SSB/R_{\text{current}}=8.8 \text{ kg year}^{-1} \]

\[YPR_{\text{current}}=0.95 \text{ kg year}^{-1} \]

\[SPR_{\text{current}}=0.50 \] (Farmer et al., 2005).

Current status: Overall risk to sustainability for the nearshore suite is medium to high in the West Coast bioregion and low in the Gascoyne Coast bioregion (DoF, 2011). Inherent vulnerability of the species moderate (Gascoyne Coast bioregion) or high (West Coast bioregion) and current risk to wild stock is minimal (Gascoyne Coast bioregion) or moderate (West Coast bioregion) (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated recreational catch in Western Australia was 360 t in 2000/01 (Henry and Lyle, 2003). Small recreational boat catches of this species in the West Coast bioregion were recorded in 1996/97 (56 kept) and 2005/06 (260 kept) (Sumner et al., 2008). Low numbers of this species were retained by shore-based fishers in Oyster Harbour in 2002/03 (Smallwood and Sumner, 2007).

Commercial: A total of 15 t (live weight) of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). The total catches of this species in the South Coast bioregion in the nearshore and estuarine fishery, including the Swan River Estuary, have ranged from 0.2 t in 2007 to 0.7 t in 2011 (Smith et al., 2012a). In past years (1912 – 1974), an average of ~2.5 t was caught each year in the Swan River Estuary (Riggert, 1978). Total catch from the DGDLF was 5.8 t, of which 2.0 t was taken from the South Coast bioregion and 3.7 t from the West Coast bioregion (McAuley and Rowland, 2012).
Management regulations

Recreational: Currently listed in the “nearshore/estuarine finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1913)</td>
<td>-</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Statewide (1975)</td>
<td>-</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Statewide (1983)</td>
<td>-</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Statewide (1989)</td>
<td>5</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>4</td>
<td>450</td>
<td>Only one fish >700mm (until 1996)</td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>2</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>South Coast (2003)</td>
<td>4</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2003)</td>
<td>4</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>2</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: South Coast and West Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, gear restrictions, spatial and temporal closures, and size limits) (Smith et al., 2012a; Smith et al., 2012b). The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012). The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012).

Current research: Studies at Murdoch University on morphological deformities is extending work undertaken by Farmer (2008). Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Aquaculture [New South Wales] (Battaglene and Talbot, 1994); Diseases, parasites [Western Australia] (Farmer, 2008; Hutson et al., 2011). Acoustic tagging [South Africa] (Childs et al., 2011); Commercial fishing by-catch exclusion [New South Wales] (Broadhurst and Kennelly, 1994; 1995); Trophodynamics [New South Wales] (Taylor and Mazumder, 2010); Release mortality [New South Wales] (Butcher et al., 2007).

References

Farmer, B. M., 2008. Comparisons of the biological and genetic characteristics of the Mulloway Argyrosomus japonicus (Sciaenidae) in different regions of Western Australia, PhD thesis, School of Biological Sciences. Murdoch University, Perth, Western Australia. pp. 217.

Klopper, A. W., 2005. Intraspecific genetic variation in the percoid teleosts *Argyrosomus japonicus* (Temminck and Schlegel, 1843) and *Pomadasys commersonii* (Lacepede, 1801) as inferred from the mitochondrial control region, MSc thesis, University of Pretoria, South Africa, Pretoria.

Blue morwong (Nemadactylus valenciennesi)

Reviewed by Peter Coulson (Murdoch University) and David Fairclough (DoF)

Scientific name: *Nemadactylus valenciennesi* (Cheilodactylidae; Morwongs)

Common names: Blue morwong also Queen snapper

Key identifying features: Silvery blue sides with yellow tinge, thick and rubbery lips, 1 pectoral fin ray much longer than others, bright blue and yellow lines around eyes (Yearsley et al., 2001).

Distribution of species

Worldwide: Endemic to southern Australia.

Western Australia: Southern Western Australian border to Lancelin (Gomon et al., 2008).

Maximum length, weight and age: 996 mm, 12 kg (Gomon et al., 2008), 21 years (Coulson et al., 2010).

Length/weight relationship: [South-western Australia] $\ln W = 2.969 \ln TL - 11.154 \ (n=330, \ R^2=0.991)$ (Coulson et al., 2007).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>500</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>324</td>
<td>1,476</td>
<td>4,008</td>
</tr>
</tbody>
</table>

Length relationship: [South-western Australia] $FL = 1.010 * TL - 0.219 \ (n=643, \ R^2=0.996)$ (Coulson et al., 2010). See also Coulson et al. (2007).

Growth: [South-western Australia] Females $L_\infty = 696$ mm, $k=0.29 \text{ year}^{-1}, \ t_0=0.36 \text{ years} \ (n=356, \ R^2=0.86)$; Male $L_\infty = 839$ mm, $k=0.22 \text{ year}^{-1}, \ t_0=0.52 \text{ years} \ (n=460, \ R^2=0.80)$ (Coulson et al., 2010).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>549</td>
<td>662</td>
<td>688</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>590</td>
<td>756</td>
<td>811</td>
</tr>
</tbody>
</table>

Length and age at maturity: [South-western Australia] L_∞ values have not been estimated but 89% of all females and 82% of all males caught on lower west coast were mature (all fish > 400 mm TL and 2 years old were mature) (Coulson et al., 2010). Fish mature at a larger size and older age on the south coast of Western Australia (Coulson et al., 2010).

Reproductive style: Gonochoristic (Coulson et al., 2007; Coulson et al., 2010).

Adult sex ratio: [South-western Australia, spearfishing] F1:M1.6 (Coulson et al., 2010).

Length and age at sex change: Not applicable.

Spawning season: January to April (Coulson et al., 2010).
Spawning location and habitat: Lower west coast (Coulson et al., 2010).

Fecundity: Indeterminate (Coulson et al., 2007).

Spawning frequency: Not reported.

Development and habitat use

Eggs: [Family Cheilodactylidae] Pelagic (Neira et al., 1998).

Larvae: Hypothesised to be transported southwards and distributed eastwards along the south coast (Coulson et al., 2010). Most species of Cheilodactylidae exhibit an extended pelagic ‘paperfish’ stage during which they attain lengths of 60-90 mm (Allen and Heemstra, 1976; Vooren, 1976).

Juveniles: Found predominantly in shallow coastal waters on the south coast, with very few observed along the lower west coast (Coulson et al., 2007; Coulson et al., 2010).

Adults: Rocky reefs in offshore waters (Coulson et al., 2007).

Migration: Proposed that juveniles either move offshore, on the south coast, or migrate north to offshore waters of the lower west coast, where spawning occurs (Coulson et al., 2010).

Stock delineation: Not reported.

Diet: [Family Cheilodactylidae] Carnivorous (Bell, 1979).

Fishery

Recreational: Frequently caught by boat-based rod and line fishers and spear fishers in the South Coast and West Coast bioregions (Sumner et al., 2008; DoF, 2010). This species is also one of the top species retained by charter boat operators in the West Coast and South Coast bioregions (Telfer, 2010).

Commercial: One of the top 15 demersal species caught by commercial fishers in the South Coast Demersal Line Fishery (Molony et al., 2012). Also caught in the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) and, temperate Demersal Gillnet and Demersal Longline Fisheries (DGDLF) (McAuley and Simpfendorfer, 2003; Fairclough et al., 2012; McAuley and Rowland, 2012).

Age at full recruitment: [Commercial, gillnets] 9 years (1 year after the peak in the age composition) (Coulson et al., 2007).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [Catch curve analysis] 0.40 year\(^{-1}\) (Coulson et al., 2007).

Natural mortality: [Hoenig’s (1983) equation for fish] 0.24 year\(^{-1}\). Modified value for natural mortality using method of Hall et al. (2004) 0.19 year\(^{-1}\) (Coulson et al., 2007).

Fishing mortality: 0.20 year\(^{-1}\) (Coulson et al., 2007).

Biological reference points: [Lower west coast] \(F_{\alpha,1} = 0.31\) year\(^{-1}\)

\[\text{YPR} = 0.54 \text{ kg}\]

\[\text{SSB}/R_{\text{current}} = 2.40 \text{ kg}\]

\[\text{SPR}_{\text{current}} = 0.57\] (Coulson et al., 2007).
Current status: An indicator species for the inshore demersal suite in the South Coast bioregion (DoF, 2011). Overall risk to sustainability for the suite is medium to high in the West Coast and South Coast bioregions (DoF, 2011). Inherent vulnerability of the species is moderate (West Coast bioregion) to high (South Coast bioregion) and current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends
Recreational: The total estimated recreational boat-based catch in the West Coast bioregion decreased from 19 t in 1996/97 to 10 t in 2005/06 (Sumner et al., 2008).

Commercial: The total catches of this species in the South Coast Demersal Line Fishery have ranged from 5.1 t in 2007 to 8.1 t in 2011, with a low of 4.4 t in 2010 (Molony et al., 2012). Total catch from the DGDLF was 51.1 t, of which 41.7 t was taken from the South Coast bioregion and 9.4 t from the West Coast bioregion (McAuley and Rowland, 2012). Some specimens are also taken in the WCDSIMF in 2011 (430 kg) (D. Fairclough, DoF, pers. comm., 2012).

Management regulations
Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1972)</td>
<td>-</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (1977)</td>
<td>10</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>8</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (1995)</td>
<td>8</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>4</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>4</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>410</td>
<td>Closed season: 15 Oct - 15 Dec</td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>3</td>
<td>410</td>
<td>Compulsory possession of release weight</td>
</tr>
</tbody>
</table>

Commercial: The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012). The South Coast Demersal Line Fishery is currently ‘open access’ for the holder of a valid Fishing Boat Licence (for the boat) and a Commercial Fishing Licence (for the fisher) (Molony et al., 2012).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Distribution linked to water temperature (Langlois et al., 2012); Fish assemblages (Langlois et al., 2010).

References

Yelloweye mullet *(Aldrichetta forsteri)*

Reviewed by Brett Crisafulli (Murdoch University)

Scientific name: *Aldrichetta forsteri* (Mugilidae; Grey mullets)

Common names: Yelloweye mullet

Key identifying features: Silvery body, well separated dorsal fins, bright yellow eye and large mouth (Yearsley *et al.*, 2001).

Distribution

Worldwide: New Zealand and southern Australia (Thomson, 1957a).

Western Australia: Southern Western Australian border to Murchison River. Abundant south of Geraldton (Thomson, 1954a; 1957a).

Maximum length weight and age: 500 mm, 1.15 kg (Hutchins and Swainston, 1986), 7 years (Thomson, 1957a).

Length/weight relationships: \(W=7.72 \times 10^{-6}TL^{3.02} \) \((n=4,236)\) (Gaughan *et al.*, 2006).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>69</td>
<td>234</td>
<td>557</td>
</tr>
</tbody>
</table>

Length relationship: \(TL=1.08-1.10*FL \) (Thomson, 1954a). See Thomson (1954a) for a range of other body measurements and Orr (2000) for length/girth measurements.

Growth: [West Coast bioregion] Females \(L_{\infty}=375 \) mm, \(k=0.585 \) year\(^{-1}\), \(t_0=\) fixed at zero years \((n=406)\); Males \(L_{\infty}=286 \) mm, \(k=0.953 \) year\(^{-1}\), \(t_0=\) fixed at zero years \((n=119)\) (Gaughan *et al.*, 2006). See also Chubb *et al.* (1981) for Swan River, Orr (2000), Gaughan *et al.* (2006) and Crisafulli (2008) for South Coast bioregion, and Thomson (1957b) for south-western Australia.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>166</td>
<td>310</td>
<td>355</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>176</td>
<td>270</td>
<td>284</td>
</tr>
</tbody>
</table>

Length and age at maturity: [West Coast bioregion] \(L_{50}=249 \) mm (Gaughan *et al.*, 2006). See also Orr (2000) and Crisafulli (2008).

Reproductive style: Gonochoristic.

Adult sex ratio: [Wilson Inlet, seine and gill nets] F2.4:M1 (Orr, 2000). See also Thomson (1957b).

Length and age at sex change: Not applicable.

Spawning location and habitat: Spawning occurs in protected coastal waters close to estuary mouths. It has been suggested that spawning may occur in estuaries if their mouths remain closed during winter and fish are prevented from migrating out into the ocean (Lenanton, 1974; Chubb et al., 1981). However, a study by Crisafulli (2008) in six seasonally-closed estuaries on the south coast of Western Australia provided no evidence that this occurs. Spawning is likely to occur predominantly along the lower West Coast (Potter and Hyndes, 1994).

Fecundity: Fish 245 – 391 mm TL produce an estimated 125,000-630,000 eggs (Thomson, 1957a).

Spawning frequency: Not reported.

Development and habitat use

Larvae: [Victoria] Late larvae/early juveniles immigrate to coastal embayments (Jenkins, 1986).

Juveniles: Coastal waters (including the surf zone), estuaries and riverine environments. Often greatest around the mouths of estuaries (Chubb et al., 1981; Lenanton, 1982; Potter et al., 1993; Ayvazian and Hyndes, 1995; Young et al., 1997).

Adults: Coastal waters and estuaries as well as riverine environments, with older adults found predominantly in coastal waters in deeper habitats such as channels (Potter and Hyndes, 1994; Smith, 2006).

Migration: During the warmer months of the year, older fish in the Swan River (1+ and 2+ years) move out of the estuary into coastal waters (Chubb et al., 1981).

Stock delineation: There are two distinct populations along east and west coasts of Australia (Thomson, 1957b; a). A single stock in estuaries and marine waters in Western Australia, with substantial mixing of eggs, larvae and adults (Smith, 2006).

Diet: Omnivorous. Major dietary items include small crustaceans, polychaetes, small molluscs, macro-algae, diatoms and plant detritus (Thomson, 1954b; 1957a; Edgar and Shaw, 1995; Orr, 2000; Platell et al., 2006).

Fishery

Recreational: Caught by recreational line fishers from boats and the shore in estuaries and nearshore waters of the West Coast and South Coast bioregions (Malseed and Sumner, 2001a; Smallwood and Sumner, 2007; Smallwood et al., 2011), including the Swan-Canning Estuary (Smith, 2006).

Commercial: Caught by set nets, haul nets and beach seines in estuaries and nearshore waters along the West Coast and South Coast bioregions, including the West Coast Beach Bait Managed Fishery (Smith et al., 2012a; Smith et al., 2012b). One of the most commercially important species in the Swan River Estuary (Lenanton, 1978; Smith, 2006).

Age at full recruitment: Not reported.

Management parameters

Total mortality: Not reported.
Natural mortality: Not reported.

Fishing mortality estimates: Not reported.

Biological reference points: Not reported.

Current status: Overall risk to sustainability for the nearshore suite is medium to high in the West Coast bioregion (DoF, 2011). Inherent vulnerability of the species and current risk to wild stock are both minimal (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: Total estimated catch for April – June 2011 from shore-based fishers in the Perth Metropolitan area was 5,772 fish (Smallwood et al., 2011). Low numbers recorded from the Swan-Canning Estuary (Malseed and Sumner, 2001a). In 2002/03, <1,000 were estimated to be caught by boat-based fishers in South Coast estuaries such as Walpole/Normalup Inlet, Irwin Inlet and Wilson Inlet (Smallwood and Sumner, 2007).

Commercial: A total of 22 t of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). The total catches in the West Coast bioregion nearshore and estuarine fishery have decreased from 37.0 t in 2007 to 11.5 t in 2011 (Smith et al., 2012b). The total catches in the South Coast bioregion nearshore and estuarine fishery have remained relatively static with 3.0 t taken in 2007 and 3.7 t in 2011, with a low of 2.6 t in 2010 (Smith et al., 2012a). See also Thomson (1957a), Chubb et al. (1981), Malseed (2000), Malseed and Sumner (2001a) and, Malseed and Sumner (2001b).

Management regulations

Recreational: Currently included in the “all other species of finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1958)</td>
<td>-</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: South Coast and West Coast nearshore and estuarine fisheries are managed primarily through input controls (limited entry, gear restrictions, spatial and temporal closures, and size limits) (Smith et al., 2012a; Smith et al., 2012b). Minimum size limit for commercial fishers is 230 mm.

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Morphology (Thomson, 1954b); Effects of thermal effluent (Jones et al., 1996); Mullet in the diet of birds in estuaries (Humphries et al., 1992); Biology and fisheries (Harris, 1968; Higham et al., 2005); Parasites (Hutson et al., 2011).

References

Lenanton, R. C. J., 1984. The commercial fisheries of temperate Western Australian estuaries, early settlement to 1975. Western Australian Department of Fisheries and Wildlife. Perth, Western Australia. Western

Sea mullet (*Mugil cephalus*)
Reviewed by Brett Crisafulli (Murdoch University)

Scientific name: *Mugil cephalus* (Mugilidae; Grey mullets)

Common names: Sea mullet also striped mullet, grey mullet, flathead grey mullet

Key identifying features: Transparent fatty eyelid covering most of eye, anal fin has 3 spines and 8 (rarely 9) soft rays in adults, dorsal fins widely separated, no dark spots at base of pectoral fin, second dorsal and anal fins with scales only on anterior and basal parts of fins (Harrison and Senou, 1999; Yearsley et al., 2001).

Distribution of species

Worldwide: Worldwide distribution, found almost entirely between ~ 42°N and 42°S (Thomson, 1963; 1966; Rossi et al., 1998).

Western Australia: Entire Western Australian coast (Gomon et al., 2008).

Maximum length, weight and age: 787mm, 4.9 kg (Hutchins & Swainston, 1986), 16 years (Thomson, 1963).

Length/weight relationship: [Lower west and south coast] \(W=4.72\times10^{-6}TL^{3.15} \) \((n=860)\) (Gaughan et al., 2006).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>83</td>
<td>300</td>
<td>742</td>
</tr>
</tbody>
</table>

Length relationship: [Florida] \(FL=1.112*SL+0.950 \) \((R^2=0.99)\) (Greeley et al., 1987)

Growth: [West Coast] Females \(L_0=509 \) mm, \(k=0.590\) year\(^{-1}\), \(t_0=\)fixed at zero years \((n=170)\)
Males \(L_0=398 \) mm, \(k=0.793\) year\(^{-1}\), \(t_0=\)fixed at zero years \((n=177)\) (Gaughan et al., 2006).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>203</td>
<td>325</td>
<td>398</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>218</td>
<td>317</td>
<td>361</td>
</tr>
</tbody>
</table>

Length and age at maturity: [West Coast] \(L_{50}=373 \) mm (Gaughan et al., 2006). See also (Thomson, 1951).

Reproductive style: Gonochoristic (Greeley et al., 1987).

Adult sex ratio: [Wilson Inlet, seine and gill nets] F1.5:M1 (Orr, 2000).

Length and age at sex change: Not applicable.
Spawning season: [South-western Australian] February to September (Chubb et al., 1981; Orr, 2000; Potter et al., 2000).

Fecundity: [Queensland] Determinate fecundity; $F=0.0007^{*}TL^{3.50}$ (presumed as TL) (Grant and Spain, 1975). Other estimates available for Florida (Greeley et al., 1987) and South Carolina (McDonough et al., 2003).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>79,195</td>
<td>327,358</td>
<td>896,000</td>
</tr>
</tbody>
</table>

Development and habitat use

Eggs: [New South Wales] Pelagic, hatching at ~ 48 h (Kesteven, 1942; Thomson, 1963; Smith and Deguara, 2002)

Larvae: [Taiwan] Sink during the first 10 days after hatching and then exhibit positive phototaxis (movement in response to light) (Liao, 1974). Can acclimate to salinities of up to 126 (Hotos and Vhlahos, 1998). [Hawaii] Description of larval stages (Leis and Carson-Ewart, 2000).

Juveniles: Nearshore, shallow areas of marine embayments and estuarine systems. Typically enter estuaries at 20-30 mm length (Chubb et al., 1981). Strong preference for low salinities all year round in estuaries (Cardona, 2000; Chang et al., 2004), although not necessarily all individuals.

Adults: Shallow coastal waters, marine embayments, estuarine systems and rivers (Chubb et al., 1981; Harrison and Senou, 1999; Allen et al., 2002; Smith, 2006; Crisafulli, 2008).

Migration: Migrate into upper reaches of estuaries. Mature fish move downstream in warmer months (Chubb et al., 1981). Migrations along the coast are typically northward on the west and east coasts of Australia (Thomson, 1951; Kesteven, 1953; Virgona et al., 1998; Smith and Deguara, 2002). Highly euryhaline (Thomson, 1966; Cardona, 2001).

Stock delineation: Low rates of gene flow between non-contiguous populations in the Indian and Pacific Oceans (but higher elsewhere). Highest genetic distance between populations for those of the Indian Ocean between Western Australia and South Africa (Rossi et al., 1998).

Fishery

Recreational: Infrequently targeted using nets in estuaries of the West Coast and South Coast bioregions (Smith, 2006; Smith et al., 2012a; Smith et al., 2012b).

Commercial: Caught by set nets, haul nets and beach seines in estuaries, and beach seines
in nearshore waters, along the West Coast and South Coast bioregions, including the West Coast Beach Bait Managed Fishery and South Coast Estuarine Managed Fishery (SCEMF) (Kesteven, 1942; Thomson, 1950; Smith et al., 2012a; Smith et al., 2012b). A complete catch trend graph can be found in the 2010/11 State of the Fisheries and Aquatic Resources Report. One of the most commercially important species in the Swan River Estuary (Lenanton, 1978; Smith, 2006). This species is also caught in the Gascoyne Coast bioregion, and is one of the key target species in the Shark Bay Beach Seine and Mesh Net Managed Fishery (SBBSMNMF) (Jackson et al., 2012). See also Ayvazian et al. (1997) and Gaughan et al. (2006).

Age at full recruitment: Not reported.

Gear selectivity parameters: Selectivity curves for gillnet stretched mesh sizes of 35, 51, 63, 76, 89, 102 and 155 mm presented by Crisafulli (2008), fitted using the method of Kirkwood and Walker (1986). Selectivity parameter values not reported.

Management parameters

Total mortality: [North Carolina, tag-return models] 1.71 year\(^{-1}\) (Bacheler et al., 2005).

Natural mortality: [Queensland] 0.33 year\(^{-1}\) (Bell et al., 2004).

Fishing mortality: Not reported.

Biological reference points: [Queensland] Stock assessments undertaken for this species include a statistical catch at age analysis and virtual population analysis (Bell et al., 2004).

Current status: Stock level acceptable in the West Coast bioregion (Smith et al., 2012b), adequate in the Gascoyne Coast bioregion (Jackson et al., 2012). A proposed indicator species for the nearshore zone in the South Coast bioregion (DoF, 2011). Overall risk to sustainability for the nearshore suite is medium to high in the West Coast bioregion and moderate in the Gascoyne Coast and South Coast bioregions (DoF, 2011). Inherent vulnerability of the species is moderate (all bioregions) and current risk to wild stock are minimal in the Gascoyne Coast bioregion and moderate in the West Coast and South Coast bioregions (DoF, 2011). See DoF (2011) for more detailed risk assessment data. A national assessment by (Rowling et al., 2012) lists the biological stock of this species in Western Australia as sustainable.

Catch trends

Recreational: No recreational catch information available for Western Australia.

Commercial: A total of 213 t of this species was taken by commercial fishers in Western Australia in 2010/11, down from a peak of 694 t in 1988 (Smith et al., 2012b). From 2001 to 2010, 42% of the commercial catch of this species was from the West Coast bioregion, 45% from the Gascoyne Coast bioregion, 11% from the South Coast bioregion and 1% from the North Coast bioregion (Smith et al., 2012b). In 2011, the total catch in the West Coast bioregion was 62 t, from an historic peak of 429 t in 1988 (Smith et al., 2012b). Catches of this species have been stable in the South Coast bioregion, with a catch of 31 t in 2011, and an annual average of 36 t since 1976 (Smith et al., 2012a). An additional 108 t was caught in the Gascoyne Coast bioregion in 2011 (Jackson et al., 2012). A complete catch trend graph is shown in the 2010/11 State of the Fisheries and Aquatic Resources Report. See also (Rowling et al., 2012).

Management regulations

Recreational: Not specifically listed, therefore included in the “all other species of finfish” category (DoF, 2013). Regulations for recreational netting also apply (DoF, 2012).
### Bioregion (Year)	Bag limit	MLL	Other
Statewide (1958) | - | 237 |
Statewide (1973/74) | - | 240 |
Statewide (1993/94) | 40 | - |
West Coast (2009) | 30 | - |
Statewide (2013) | 30 | - |

Commercial: The West Coast and South Coast nearshore and estuarine fishery and SBBSMNMF are managed primarily through input controls such as limited entry, gear restrictions (*i.e.*, net length and mesh size), spatial and temporal closures (Jackson et al., 2012; Smith et al., 2012a).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Heavy metal (Marks et al., 1980); Growth/sexual dimorphism (Grant et al., 1977); Phylogeny (Crosetti et al., 1994; Turan et al., 2005; Aurelle et al., 2008; Turan et al., 2011); Age [New South Wales] (Smith and Deguara, 2003); Aquaculture/stock enhancement (Thomson, 1966), [Hawaii] (Kuo et al., 1973; Leber, 1996), [Egypt] (Saleh, 2008); Reproduction [Croatia] (Bartulovic et al., 2011), [Israel] (Aizen et al., 2005); Diseases and parasitology [Queensland] (Burke and Rodgers, 1981; Callinan and Keep, 1989), [New South Wales] (Virgona, 1992); *Freshwater* [Israel] (Leventer, 1981; Torras et al., 2000).

References

Western blue groper \textit{(Achoerodus gouldii)}

Reviewed by Brett Molony (DoF)

Scientific name: \textit{Achoerodus gouldii} (Labridae; Wrasses)

Common names: Western blue groper

Key identifying features: Prominent fleshy lips, peg-like teeth, yellow spots around eyes (Hutchins and Swainston, 1986).

Distribution

Worldwide: Endemic to southern Australia.

Western Australia: Southern Western Australian border to Abrolhos Islands (Gomon \textit{et al.}, 2008).

Maximum length, weight and age: 1,750 mm (Gomon \textit{et al.}, 2008), 39.5 kg (Hutchins and Swainston, 1986), 70 years (Coulson \textit{et al.}, 2009).

Length/weight relationship: [South Coast] $\ln W = 3.041 \times \ln TL - 11.017$ ($n = 756, R^2 = 0.997$) (Coulson \textit{et al.}, 2009).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>600</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>560</td>
<td>4,610</td>
<td>18,820</td>
</tr>
</tbody>
</table>

Length relationship: [South Coast] $TL = 1.201 \times SL - 11.883$ ($n = 101, R^2 = 0.995$) (Coulson \textit{et al.}, 2009).

Growth: [South Coast] Females $L_\infty = 682$ mm, $k = 0.14$ year$^{-1}$, $t_0 = 0.06$ years ($n = 1,561, R^2 = 0.93$); Males $L_\infty = 982$ mm, $k = 0.08$ year$^{-1}$, $t_0 = -0.48$ years ($n = 132, R^2 = 0.93$) (Coulson \textit{et al.}, 2009).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>10</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>512</td>
<td>671</td>
<td>681</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>557</td>
<td>896</td>
<td>965</td>
</tr>
</tbody>
</table>

Length and age at maturity: [South Coast] $L_{50} = 653$ mm, $L_{95} = 926$ mm, $A_{50} \sim 17$ years (Coulson \textit{et al.}, 2007; Coulson \textit{et al.}, 2009)

Reproductive style: Monandric protogynous hermaphrodite (Coulson \textit{et al.}, 2009).

Adult sex ratio: [South coast, spear fishing, commercial gill nets] 1F: 0.05M (Coulson \textit{et al.}, 2009).

Length and age at sex change: [South Coast] $L_{50} = 821$ mm, $L_{95} = 930$ mm, 15 – 19 years=9% males: 35 – 39 years=67% males, ≥50 years=100% males (Coulson \textit{et al.}, 2009).
Spawning season: Early winter and mid-spring (Coulson et al., 2009).

Spawning location and habitat: Predominantly offshore coastal waters, over hard substrate (Coulson et al., 2009).

Fecundity: Indeterminate (Coulson et al., 2007). Batch fecundity ranged from 150,400 to 402,900 eggs in 12 fish ranging between 530 – 850 mm TL (Coulson et al., 2007).

Spawning frequency: Not reported (Coulson et al., 2007).

Development and habitat use

Larvae: Not reported.

Juveniles: Shallow and relatively protected waters, including estuaries (Crowe et al., 1999; Coulson et al., 2009).

Adults: Coastal to offshore (~20-100 m) rocky reefs, with both high and low profile characteristics to 40 m (Crowe et al., 1999; Chatfield et al., 2010).

Migration: Adult males are territorial and site-attached (Shepherd, 2005).

Diet: [South Australia] Crustaceans, molluscs and echinoderms (Baker, 2009).

Fishery

Recreational: Targeted by recreational anglers using lines and by spearfishing (Shepherd, 2005; Gomon et al., 2008).

Commercial: Second most frequently caught species in the temperate Demersal Gillnet and Demersal Longline Fisheries (DGDLF) which operate in the South Coast and West Coast bioregions (McAuley and Rowland, 2012). This species is also targeted in the South Coast Demersal Scalefish Fishery (Molony et al., 2012).

Length and age at first capture: Not reported.

Age at full recruitment: Not reported.

Recreational: Not reported.

Commercial: [South Coast, gillnet] ~15 years (Coulson et al., 2009).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [Catch curve analysis] 0.086 year\(^{-1}\) (Coulson et al., 2009)

Natural mortality: [Hoenig’s (1983) equation for fish] 0.072 year\(^{-1}\) (Coulson et al., 2009)

Fishing mortality: 0.039 year\(^{-1}\) (Coulson et al., 2009)

Biological reference points: \(F_{0.1}\) achieved at \(F=0.051\) year\(^{-1}\)

\(YPR_{\text{current}}=1.88\ \text{kg recruit}^{-1}\)

\(\text{SSB/R}_{\text{current}}\) (for females and males combined)=44.2 kg recruit\(^{-1}\)

\(\text{SPR}_{\text{current}}\) (SSB/R) (for females and males combined)=0.56 (Coulson et al., 2007)

Current status: A proposed indicator species for inshore demersal suite in the South Coast bioregion (DoF, 2011). Overall risk to sustainability for the inshore demersal suite is medium to high in the West Coast bioregion and South Coast bioregions (DoF, 2011). Inherent
vulnerability of the species is extreme in the South Coast bioregion and moderate in the West Coast bioregion while current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: Total estimated recreational boat-based catch in the West Coast bioregion was 2.7 t for 1996/97 (Sumner and Williamson, 1999).

Commercial: A total of 49 t (live weight) of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). Total catch from the DGDLF was 47.5 t, of which 30.9 t was taken from the South Coast bioregion and 16.6 t from the West Coast bioregion (McAuley and Rowland, 2012). The total catch of this species in the South Coast Demersal Line Fishery has remained static, with 1.1 t taken in 2007 and 1.3 t in 2011 (Molony et al., 2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1958)</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Statewide (1973/74)</td>
<td></td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Statewide (1975)</td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Statewide (1977)</td>
<td>10</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Statewide (1983)</td>
<td>1</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>South Coast (2003)</td>
<td>1</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>1</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>1</td>
<td>500</td>
<td>Closed season: 15 Oct - 15 Dec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsory possession of release weight</td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>1</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012). The South Coast Demersal Line Fishery is currently ‘open access’ for the holder of a valid Fishing Boat Licence (for the boat) and a Commercial Fishing Licence (for the fisher) (Molony et al., 2012).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

References

Foxfish (Bodianus frenchii)

Reviewed by Ross Marriott (DoF)

Scientific name: *Bodianus frenchii* (Labridae; Wrasses)

Common names: Foxfish also western foxfish, red groper, hogfish, pigfish

Key identifying features: Reddish body colour with two yellow splotches on back, black circular blotches on juveniles disappear with maturity (Hutchins and Thompson, 1983).

Distribution of species

Worldwide: Endemic to southern Australian waters (Gomon, 2001).

Western Australia: Southern Western Australian border to the Dampier Archipelago (Gomon et al., 2008).

Maximum length, weight and age: 483 mm, 2 kg (Hutchins and Swainston, 1986), 78 years (Cossington et al., 2010).

Length/weight relationship: [West Coast] $\ln TW = 2.996 \times \ln TL - 10.916$ ($R^2=0.993$, $n=183$, $ms=0.007$) (Cossington et al., 2010). See also Cossington et al. (2010) for South Coast.

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>143</td>
<td>480</td>
<td>1,134</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [West coast, Schnute growth curve] $y_1=0.00$ mm, $y_2=370$ mm, $a=0.02$, $b=3.6$, $\tau_1=1$ year, $\tau_2=50$ years ($R^2=0.83$, $n=301$) (Cossington et al., 2010). See also Cossington et al. (2010) for South Coast.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>10</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>256</td>
<td>336</td>
<td>370</td>
</tr>
</tbody>
</table>

Length and age at maturity: [West Coast] $L_{50}=223$ mm, $A_{50}=9.14$ years, $L_{95}=243$ mm, $A_{95}=14.1$ years (Cossington et al., 2010).

Reproductive style: Monandric protogynous hermaphrodite (Cossington, 2006; Cossington et al., 2010).

Adult sex ratio: [West Coast, hook and line and spear fishing] F1:M1 (Cossington, 2006).

Length and age at sex change: [West Coast] $L_{50}=365$ mm, $A_{50}=29.2$ years (Cossington et al., 2010). See also Cossington et al. (2010) for South Coast.

Spawning season: [West Coast and South Coast] October to February (Cossington et al., 2010).
Spawning location and habitat: Over reefs in West Coast and South Coast regions at depths ranging from at least 5-40 m (Cossington et al., 2010).

Fecundity: Indeterminate. [West Coast] Batch fecundity \(BF = 3.5102 \times TL - 10.444 \) \((R^2 = 0.502, n = 48) \); (Cossington et al., 2010). See also Cossington et al. (2010) for South Coast.

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>Annual fecundity (eggs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>982,000</td>
</tr>
<tr>
<td>300</td>
<td>1,960,000</td>
</tr>
<tr>
<td>400</td>
<td>4,606,000</td>
</tr>
</tbody>
</table>

Spawning frequency: [West Coast and South Coast] Approximately daily (using both the hydrated oocyte and post ovulatory follicle methods) (Cossington et al., 2010).

Development and habitat use

Eggs: [Labridae] Pelagic (Leis and Carson-Ewart, 2000).

Larvae: Not reported.

Juveniles: Shallow, nearshore waters under ledges and in limestone caves on the west coast and under overhangs of granite boulders on the south coast (Cossington, 2006).

Adults: Over reefs in coastal waters between 5–100m (Gomon et al., 2008). Also recorded over reefs with dense cover of large brown macroalgae (Harvey et al., 2004).

Migration: Not reported.

Stock delineation: There are no distinct morphological differences between \(B.frenchii \) in eastern and western Australia. Due to the spatial separation, it has been suggested there may be distinct stocks (Cossington, 2006).

Diet: Consume a wide variety of benthic prey, predominantly, crustaceans and echinoderms as well as small quantities of annelids, macrophytes, teleosts and protochordates (Cossington, 2006). Frequently ingests taxa attached to or lodged in reefs. Dentition indicates “biting” as its feeding mode. Differences in diet between the West Coast and South Coast regions are negligible (Platell et al., 2010).

Fishery

Recreational: Targeted by recreational line fishers and spear fishers (Cossington, 2006). Also caught by fishers on charter boats (Telfer, 2010).

Commercial: An inshore demersal species caught within the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF), but not of major commercial importance (Cossington, 2006).

Age at full recruitment: ~30 years (Cossington, 2006).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [Catch curve analysis incorporating age-based selectivity] 0.109 year\(^{-1}\) (Cossington, 2006).

Natural mortality: [Hall et al. (2004)] 0.062 year\(^{-1}\) (Cossington, 2006). See also Cossington (2006) for other estimates.

Fishing mortality: 0.057 year\(^{-1}\) (i.e., from \(F = Z-M \)) (Cossington, 2006).
Biological reference points: $YPR_{current} = 0.07$ kg recruit$^{-1}$

$SSB/R_{current} = 3.70$ kg recruit$^{-1}$

$SPR (SSB/R – females) = 0.88$

$SPR (SSB/R – males) = 0.44$, $SPR (SSB/R – sexes combined) = 0.69$

$SPR (E/R)_{current} = 0.86$

$SPR (M:F ratio) = 0.37$ (Cossington, 2006)

Current status: Overall risk to sustainability for the inshore demersal suite of species is medium to high in the West Coast bioregion and South Coast bioregions (DoF, 2011). Inherent vulnerability of the species is high while current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated annual recreational boat-based catch in the West Coast bioregion was 2 t for 1996/97 and 2 t in 2005/06 (Sumner et al., 2008). The overall estimated catch of this species in Western Australia was 8261 fish in 2000/2001 (Henry and Lyle, 2003). See also Harvey (2004) and Smallwood et al. (2006) and (Telfer, 2010) for additional catch information.

Commercial: No commercial catch information was reported in the most recent State of the Fisheries report (Fletcher and Santoro, 2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td></td>
<td>Closed season (15 Oct – 15 Dec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsory possession of release weight</td>
</tr>
<tr>
<td>South Coast (2010)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statewide (except West Coast)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012).

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Distribution linked to water temperature (Langlois et al., 2012).

References

Brown spotted wrasse (*Notolabrus parilus*)

Reviewed by David Fairclough (DoF)

Scientific name: *Notolabrus parilus* (Labridae; Wrasses)

Common names: Brownsptoted wrasse

Key identifying features: Variable base colour (from grey, green and red) usually with a row of white spots along the lateral line (Hutchins and Swainston, 1986).

Distribution

Worldwide: Endemic to southern Australia (Gomon *et al.*, 2008).

Western Australia: Southern Western Australian border to Carnarvon (Gomon *et al.*, 2008).

Maximum length, weight and age: 385 mm, 1.8 kg (Hutchins and Swainston, 1986), 12 years (Lek, 2012).

Length/weight relationship: [Perth] $\ln W = 2.998 \times \ln TL - 10.966$ ($n = 521$, $R^2 = 0.990$) (Lek, 2012). See also Lek (2012) for estimates for the Jurien Bay Marine Park.

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>58</td>
<td>137</td>
<td>267</td>
</tr>
</tbody>
</table>

Length relationship: Not applicable.

Growth: [Perth] Combined sexes (growth expressed in relation to length) $L_\infty = 410$ mm, $k = 0.15$ year$^{-1}$, $t_0 = 1.35$ years ($n = 495$), (growth expressed in relation to mass) $M_\infty = 835$ g, $k = 0.21$ year$^{-1}$, $t_0 = 0.8$ years ($n = 479$) (Lek *et al.*, 2012). See also Lek (2012) for Jurien Bay Marine Park. See also Lek (2012) data on instantaneous growth rates with respect to length and weight, for each location.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>3</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (mm)</td>
<td>196</td>
<td>274</td>
<td>323</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Perth, Female] $L_{50} = 195$ mm, $A_{50} = 2.9$ years, $L_{95} = 215$ mm, $A_{95} = 3.9$ years (Lek, 2012). See also Lek (2012) for Jurien Bay Marine Park.

Reproductive style: Protogynous hermaphrodites, probably monandric (Lek, 2012).

Adult sex ratio: [Perth, trapping, line and spear fishing] F1.9:M1 (calculated using sample sizes for growth curves) (Lek, 2012).

Length and age at sex change: [Perth] Females $L_{50} = 282$ mm, $A_{50} = 6.3$ years, $L_{95} = 323$ mm, $A_{95} = 8.1$ years (Lek, 2012). See also Lek (2012) for Jurien Bay Marine Park.

Spawning season: [Perth] Mid-winter to mid- or late spring (Lek, 2012).
Spawning location and habitat: Mature fish caught over reefs and seagrass (Fairclough et al., 2011; Lek et al., 2011). As seagrass sampling sites were sometimes a considerable distance from reefs, this species presumably spawns in both habitats (Fairclough et al., 2011).

Fecundity: Not reported.

Spawning frequency: Not reported.

Development and habitat use

Larvae: Not reported.

Juveniles: Macroalgae-dominated limestone or granite reefs and seagrass meadows in coastal waters (Harman et al., 2003; Hyndes et al., 2003; Harvey et al., 2004; Valesini et al., 2004; Bivoltsis, 2007; MacArthur and Hyndes, 2007; Fairclough et al., 2011).

Adults: Limestone or granite reefs and seagrass meadows in coastal waters (Harman et al., 2003; Hyndes et al., 2003; MacArthur and Hyndes, 2007; Vanderklift et al., 2007; Tuya et al., 2009; Chatfield et al., 2010; Lek, 2012). Fish in seagrass meadows are typically smaller than those on reefs (Bivoltsis, 2007; Fairclough et al., 2011).

Migration: Strong site association (Baker, 2009).

Stock delineation: Not reported.

Diet: Carnivorous, feeding predominantly on molluscs, gastropods, echinoderms and crustaceans (MacArthur and Hyndes, 2007; Lek et al., 2011).

Fishery
Recreational: Not targeted by recreational fishers but often caught as by-catch using lines from boats and the shore (Smallwood et al., 2006; Sumner et al., 2008) and sometimes used as bait (Pollard et al., 2010).

Commercial: Not targeted by commercial fishers but often caught as by-catch (Fletcher and Santoro, 2012).

Age at full recruitment into the fishery: Not applicable.

Gear selectivity parameters: Not reported.

Management parameters
Total mortality: Not reported.

Natural mortality: Not reported.

Fishing mortality: Not reported.

Biological reference points: Not reported.

Current status: Assessed in IUCN Red List in 2010 as species of Least Concern (Pollard et al., 2010).

Catch trends
Recreational: Catches of this species cannot often be determined as it is grouped together with all other wrasses (Labridae), which are more often released than retained by recreational boat and shore-based fishers (Sumner and Williamson, 1999; Malseed et al., 2000; Malseed and Sumner, 2001a; b; Sumner et al., 2002; Sumner, 2008; Sumner et
al., 2008). Low numbers of this species were recorded in catches from Rottnest Island (Smallwood et al., 2006), estuaries of the South Coast bioregion (Smallwood and Sumner, 2007) and along the Perth Metropolitan coast (Harvey, 2004; Smallwood et al., 2011).

Commercial: Commercial fishers retained 1 t of wrasses (Family Labridae) throughout Western Australia in 2010/11 (Fletcher and Santoro, 2012).

Management regulations

Recreational: Currently included in the “all other species of finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1991)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>South Coast (2003)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Statewide (2013)</td>
<td>8</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: Not applicable.

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Parasitology (Pichelin, 1999; Aken’Ova et al., 2003; Jones et al., 2004); Marine protected areas (Kleczkowski et al., 2008); Distribution linked to water temperature (Langlois et al., 2012); Behaviour towards SCUBA divers (Watson and Harvey, 2007). Response to baited video (Birt et al., 2012); Biology of co-occurring wrasse species (Lek, 2012; Lek et al., 2012).

References

Baldchin groper (*Choerodon rubescens*)

Reviewed by David Fairclough (DoF)

Scientific name: *Choerodon rubescens* (Labridae; Wrasses)

Common names: Baldchin groper also baldie, bluebone

Key identifying features: Abruptly pale/white chin with an additional pale/white pectoral peduncle, and two pairs of tusk-like forward teeth (Yearsley *et al.*, 2001; Allen, 2009).

Distribution of species

Worldwide: Endemic to Western Australia.

Western Australia: Geographe Bay to Coral Bay (Allen, 2009).

Maximum length, weight, and age: 650 mm TL, 6.3 kg (Allen, 2009), 26 years (D. Fairclough, DoF, unpublished data).

Length/weight relationship: [Abrolhos Islands] $\ln W=3.024*\ln TL–10.891$ ($n=373$, $R^2=0.998$) (Fairclough, 2005). See also Fairclough *et al.* (2004) and Nardi *et al.* (2006).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>200</th>
<th>400</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>160</td>
<td>1,347</td>
<td>4,621</td>
</tr>
</tbody>
</table>

Length relationship: Not reported.

Growth: [Abrolhos Islands] $L_\infty=534.7$ mm, $k=0.192$ year$^{-1}$, $t_0=0.162$ years ($n=580$, $R^2=0.789$) (Fairclough, 2005). See also Fairclough *et al.* (2004) and Nardi *et al.* (2006).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (mm)</td>
<td>336</td>
<td>459</td>
<td>506</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Abrolhos Islands] $L_{50}=279$ mm, $L_{95}=352$ mm; $A_{50}=4.1$ years, $A_{95}=6.2$ years (Fairclough, 2005). See also Fairclough *et al.* (2004) and Nardi *et al.* (2006).

Reproductive style: Monandric protogynous hermaphrodite. Multiple spawner (Fairclough, 2005; Nardi *et al.*, 2006).

Adult sex ratio: [Abrolhos Islands, rod and line and spear fishing, and commercial fishing] F1.5:M1 ($n=536$) (Fairclough, 2005). See also Fairclough *et al.* (2004) and Nardi *et al.* (2006)

Length and age at sex change: [Abrolhos Islands] $L_{50}=479$ mm, $L_{95}=595$ mm, $A_{50}=11.9$ years, $A_{95}=14.7$ years (Fairclough, 2005). For data on Shark Bay see Fairclough (2005).

Spawning season: Spring and early summer (Fairclough, 2005; Nardi *et al.*, 2006).
Spawning location and habitat: Spawn near or in benthic reef habitats (Wise et al., 2007) and at all depths throughout its distribution (Fairclough, 2005).

Fecundity: Indeterminate. [Abrolhos Islands] Batch fecundity $BF=5.050*\ln TL–19.614$ ($n=27$, $R^2=0.808$, $ms=0.127$) (Fairclough, 2005). For data on Shark Bay see Fairclough (2005).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>10,442</td>
<td>41,893</td>
<td>129,284</td>
</tr>
</tbody>
</table>

Spawning frequency: Not reported.

Development and habitat use

Larvae: Pelagic (Fairclough et al., 2011).

Juveniles: Juveniles have been observed in shallow, weedy rock habitats. They possibly exhibit an offshore movement (Fairclough, 2005).

Adults: Habitats overlapping and adjacent to juveniles as well as coral and rocky reefs with associated algae to depths of at least 100 m (Hutchins and Swainston, 1986; Fairclough, 2005).

Migration: Limited movements (Fairclough et al., 2011).

Stock delineation: Movement of juveniles and adults is likely to occur at a limited spatial scale (Fairclough et al., 2011). Microsatellite tagging suggests this species consists of a series of overlapping stocks connected mainly by larval dispersal within the West Coast bioregion, and possibly over its entire range (Gardner, 2011).

Diet: Predominantly invertebrates (crustaceans, bivalves, echinoderms and gastropods) (Lek, 2004).

Fishery

Recreational: Targeted predominantly by boat-based fishers (including charter operators) by spearfishing and line fishing, especially at the Abrolhos Islands (Sumner et al., 2002; Fairclough, 2005; Sumner, 2008; Telfer, 2010).

Commercial: One of the most frequently caught species in the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF), especially at the Abrolhos Islands, and is targeted using handlines and droplines (Crowe et al., 1999; Fairclough et al., 2012). Small numbers are also caught as by-catch in rock lobster pots (De Lestang et al., 2012) and in the temperate Demersal Gillnet and Demersal Longline Fisheries (DGDLF) (McAuley and Rowland, 2012).

Age at full recruitment: Varies with location, _i.e.,_ 8 years at the Abrolhos Islands and 11 years in the mid-West (D. Fairclough, DoF, unpublished data). Other estimates also found in Nardi et al. (2006) and Wise et al. (2007).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [West Coast bioregion, $Z=M+F$ using $M=0.21$ year$^{-1}$] 0.33 – 0.49 year$^{-1}$ (Wise et al., 2007). Estimates for the Abrolhos Islands also available in Nardi et al. (2006).

Natural mortality: Several estimates available including; [Abrolhos Islands, Pauly’s (1980) equation] 0.577 year$^{-1}$ (Nardi et al., 2006); [West Cost bioregion, maximum age method
of Hewitt and Hoenig (2005)1 0.21 year1 (Wise et al., 2007) and [West Coast bioregion, Hoenig’s (1983) regression method] 0.22 year1 (Wise et al., 2007).

Fishing mortality: [Abrolhos Islands] 0.12–0.28 year1 (Wise et al., 2007).

Biological reference points: YPR_{max} achieved at $F=0.3$ year1

$SPR = \text{(EPR)} = 0.2$ occurs when $F > 0.1$

$YPR_{\text{current}} \sim 140$ g recruit1

$SPR_{\text{current}} = \text{(EPR)} \sim 0.5$ (Wise et al., 2007).

Current status: Stock listed as recovering in the West Coast bioregion (Fairclough et al., 2012). An indicator species for the inshore demersal suite in the West Coast bioregion, which has a medium to high overall risk to sustainability (DoF, 2011). Inherent vulnerability of the species is moderate and current risk to wild stock is high (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: The total estimated recreational boat-based catch in the West Coast bioregion increased from 19 t in 1996/97 to 37 t in 2005/06 (Sumner et al., 2008), but decreased again 19 t in 2009/10 (Fairclough et al., 2012). In this same bioregion, catch from charter vessels was 9 t in 2010/11 (Fairclough et al., 2012). A total retained catch of 4,805 fish was recorded in the Gascoyne Coast bioregion in 1998/99 (Sumner et al., 2002).

Commercial: A total of 16 t (live weight) of this species was taken by commercial fishers in Western Australia in 2010/11 (Fletcher and Santoro, 2012). The catch of this species in the WCDSIMF was 15 t in 2010/11, with an additional 3 t caught in other commercial fisheries (i.e. DGDLF) (Fairclough et al., 2012). A complete catch trend graph is shown in the 2009/10 State of the Fisheries and Aquatic Resources Report. The total by-catch of this species in rock lobster pots was 1.1 t in 2010/11 (De Lestang et al., 2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1973/74)</td>
<td>-</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Statewide (1988)</td>
<td>10</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Statewide (1991)</td>
<td>8</td>
<td>400</td>
<td>Abrolhos (1 Nov – 31 Jan)</td>
</tr>
<tr>
<td>West Coast (2003)</td>
<td>4</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Gascoyne Coast (2004)</td>
<td>4</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>400</td>
<td>15 Oct – 15 Dec; Abrolhos (1 Nov – 31 Jan)</td>
</tr>
<tr>
<td>Gascoyne Coast (2009)</td>
<td>2</td>
<td>400</td>
<td>Compulsory possession of release weight</td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>3</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012). The DGDLF is regulated using various input controls (transferable time/gear effort, mesh and hook sizes, maximum net length), output controls as well as temporal (16 Aug – 15 Oct) and spatial closures (McAuley and Rowland, 2012).
Current research: A stock assessment will be conducted in 2012/2013 by DoF. Monitoring of abundance and size structure is being undertaken at the Abrolhos Islands by UWA. Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Effects of protection from fishing (Nardi et al., 2004; Watson et al., 2007; Watson et al., 2009); Abundance linked to increased water temperatures (Langlois et al., 2012a); Length frequency using stereo-video techniques (Langlois et al., 2012b); Behaviour towards SCUBA divers (Watson and Harvey, 2007); Barotrauma (Lenanton et al., 2009).

References

Blue-eye trevalla (*Hyperoglyphe antarctica*)

Reviewed by Corey Wakefield (DoF)

Scientific name: *Hyperoglyphe antarctica* (Centrolophidae; Medusafishes)

Common names: Blue-eye trevalla

Key identifying features: Blunt snout, eyes blue with golden ring, distinct spinous part of the dorsal fin with 7 – 9 spines and 18 – 21 soft rays, anal fin has 3 spines and 13 – 16 soft rays, no dark blotch above pectoral-fin base, long upper raw reaches to mid-eye (Hutchins and Swainston, 1986; Yearsley et al., 2001).

Distribution

Worldwide: Temperate waters of South America, South Africa, New Zealand and Australia.

Western Australia: Southern Western Australian border to Geraldton (Duffy et al., 2000; Gomon et al., 2008).

Maximum length, weight and age: 140 cm, 21.4 kg (Hutchins and Swainston, 1986), 32 years (Wakefield and Newman, 2008), [New Zealand] 76 years (Horn et al., 2010).

Length/weight relationship: [Western Australia] \(W = 0.000015897 * TL^{2.9908} \) (n=126) (C. Wakefield, DoF, unpublished data). New Zealand estimates also available (Horn et al., 2010).

<table>
<thead>
<tr>
<th>FL (cm)</th>
<th>50</th>
<th>70</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>1.9</td>
<td>5.2</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Length relationship: [Western Australia] \(TL = 1.0946 * FL + 12.708 \) (C. Wakefield, DoF, unpublished data)

Growth: [Tasmania] Females \(L_\infty =1,199 \) mm, \(k=0.03 \) year\(^{-1}\), \(t_0=13.8 \) years (n=1,148)

Males \(L_\infty =750 \) mm, \(k=0.07 \) year\(^{-1}\), \(t_0=11.7 \) years (n=1,178) (Morrison and Robertson, 1995). See also Horn et al. (2010) for New Zealand estimates.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>10</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females, TL (mm)</td>
<td>612</td>
<td>877</td>
<td>1,022</td>
</tr>
<tr>
<td>Males, TL (mm)</td>
<td>586</td>
<td>710</td>
<td>740</td>
</tr>
</tbody>
</table>

Length and age at maturity: [New Zealand] Females \(A_{50} =17 \) years; Males \(A_{50} =15 \) years (Horn and Sutton, 2010). See also [Tasmania] (Baelde, 1996).

Reproductive style: [Tasmania] Serial spawner (Baelde, 1996). Unclear if this species is gonochoristic or hermaphroditic. A study of a closely-related species has shown substantial
numbers of males containing both ovarian and testicular tissues, which may reflect hermaphroditism (whether functional or not) (Filer and Sedberry, 2008).

Sex ratio: [New Zealand] F1:M1.1 (obtained from number of fish used to construct growth curves) (Morrison and Robertson, 1995).

Length and age at sex change: Not applicable.

Spawning season: [Tasmania] Early March to early May. Fish begin aggregating prior to March (Baelde, 1996). The timing is likely to differ in Western Australia (C. Wakefield, DoF, unpublished data).

Spawning location and habitat: [Tasmania] Predominantly off the northeast coast of Tasmania, but also in other locations (Baelde, 1996) including waters of the continental slope throughout southern Australia (C. Wakefield, DoF, pers. comm., 2012).

Fecundity: [Tasmania] Determinate. Batch fecundity \(BF = 0.097 \times FL - 6.28 \) (Baelde, 1996). See also Horn and Massey (1989).

<table>
<thead>
<tr>
<th>FL (mm)</th>
<th>Fecundity (eggs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>510,000</td>
</tr>
<tr>
<td>800</td>
<td>1,480,000</td>
</tr>
<tr>
<td>900</td>
<td>2,450,000</td>
</tr>
</tbody>
</table>

Spawning frequency: [Tasmania] Individuals release 3 or 4 batches of eggs during a spawning season (Baelde, 1996).

Development and habitat use

Eggs: [Centrolophidae] Pelagic (Neira et al., 1998).

Larvae: [Centrolophidae] Often associated with jellyfish or inanimate floating objects in surface waters and are likely to be widely dispersed by currents (Neira et al., 1998).

Juveniles: [New Zealand] Surface and mid-water region in offshore waters, possibly dependent on drift algae for shelter (Last et al., 1993; Duffy et al., 2000). [Eastern Australia] Distinct morphological differences evident between juveniles ("small eye” and yellow in colouration) and adults (‘big-eye’) (Bolch et al., 1993; Last et al., 1993).

Adults: Benthic-pelagic and associated with rocky ground on the continental slope and seamounts at 200 – 600 m depth. Occasionally found over smooth muddy substrates (Hindell et al., 2005).

Migration: [New Zealand] Tagging studies indicate species is sedentary in the short term (6 – 8 months) but that fish can migrate vast distances (Horn, 2003). Possible vertical migration (Winstanley, 1978).

Stock delineation: [Eastern Australia] Single panmictic stock (Bolch et al., 1993; Robinson et al., 2008), although some evidence of subpopulations identified (Hindell et al., 2005).

Diet: [Eastern Australia] Pelagic tunicates and squid, small fish and crustaceans (Winstanley, 1978).

Fishery

Recreational: Boat-based recreational fishers target this species in Western Australian waters (DoF, 2011) and Commonwealth waters in eastern Australia (Griffiths et al., 2010).

Commercial: It is one of a suite of deepwater demersal species caught using drop lines and longlines in the West Coast Demersal Scalefish (Interim) Managed Fishery (WCDSIMF) and South Coast Demersal Line Fishery (Fairclough et al., 2012; McAuley and Rowland,
This species is also caught by the Commonwealth trawl and hook sectors along the eastern Australian coast and in the Great Australian Bight Trawl Sector (GABTS) (Tilzey and Rowling, 2001; Moore and Pham, 2011; Woodhams et al., 2012).

Age at full recruitment into the fishery: [GABTS] 2 – 3 years, *FL* = 50 cm (BRS, 2008).

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: [New Zealand, 1984-86] 0.11–0.26 year\(^{-1}\) (Horn and Sutton, 2011).

Natural mortality: [New Zealand, 1984-86] 0.07–0.14 year\(^{-1}\) (Horn and Sutton, 2011).

Fishing mortality: Not reported.

Biological reference points: Not reported.

Current status: Not overfished in the Commonwealth trawl and scalefish hook sectors (Woodhams et al., 2012). A proposed indicator species for West Coast and South Coast offshore demersal suite (DoF, 2011), whose overall risk to sustainability is medium to high (DoF, 2011). Inherent vulnerability of the species is high while current risk to wild stock is moderate (DoF, 2011). See DoF (2011) for more detailed risk assessment data.

Catch trends

Recreational: No recreational catch information available for Western Australia.

Commercial: The total catch of this species by commercial fishers in 2009/10 in Western Australia was 3 t (Fletcher and Santoro, 2012). The WCDSIMF took <1 t (Fairclough et al., 2012). Commercial catches in the South Coast Demersal Line Fishery have decreased from 4.9 t in 2007 to 3.4 t in 2011, with a low of 2.4 t in 2009 (Molony et al., 2012). Prior to 1992 it was seldom caught by commercial fishers (Duffy et al., 2000). A total of 351 t was caught in 2011/12 by the Commonwealth trawl and scalefish hook sectors (Woodhams et al., 2012).

Management regulations

Recreational: Currently listed in the “demersal finfish” category (DoF, 2013).

<table>
<thead>
<tr>
<th>Bioregion (Year)</th>
<th>Bag limit</th>
<th>MLL</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide (1991)</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>South Coast (2005)</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2005)</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>West Coast (2009)</td>
<td>2</td>
<td>-</td>
<td>Closed season (15 Oct – 15 Dec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compulsory possession of release weight</td>
</tr>
<tr>
<td>Statewide (except West Coast) (2013)</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Commercial: The WCDSIMF is regulated using various input controls (restricted entry, total fishing time allocations, maximum number of lines and hooks) (Fairclough et al., 2012). Management arrangements for commercial fisheries include input controls such as limited entry, gear restrictions and catch limits (Woodhams et al., 2012). The South Coast Demersal Line Fishery is currently ‘open access’ for the holder of a valid Fishing Boat Licence (for the boat) and a Commercial Fishing Licence (for the fisher) (Molony et al., 2012).
Current research: There is ongoing research on this species by DoF in the West Coast and South Coast bioregions, including studies investigating age-based demography, reproductive biology and fish ecology with respect to latitude and depth (C. Wakefield, DoF, pers. comm., 2012). Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Systematics of Family Centrolophidae [Eastern Australia] (Bolch et al., 1994).

References

Banded toadfish (*Torquigener pleurogramma*)

Reviewed by Ian Potter (Murdoch University)

Scientific name: *Torquigener pleurogramma* (Tetradontidae; Pufferfish)

Common names: Weeping toadfish also banded toadfish, common blowfish, striped toadfish, blowie

Key identifying features: Dark brown line on side with narrow bars down cheek (Hutchins and Thompson, 1983).

Distribution

Worldwide: Endemic to southern Australian and New Zealand waters

Western Australia: Southern Western Australian border to Coral Bay (Gomon *et al.*, 2008).

Maximum length, weight and age: 230 mm, 0.22 kg, 6 years (Potter *et al.*, 1988)

Length/weight relationships: Not reported.

Length relationship: Not reported.

Growth curves: [Swan River, combined sexes] $L_\infty=255$ mm, $k=0.24$ year$^{-1}$, $t_0=0.56$ years ($n=991$) (Potter *et al.*, 1988). Note that the growth curve was based on back-calculated lengths at ages, determined from counts of growth rings in scales.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined, TL (mm)</td>
<td>117</td>
<td>170</td>
<td>202</td>
</tr>
</tbody>
</table>

Length and age at maturity: [Swan River Estuary] Very few females and males mature by 1 year. All fish are mature by 2 years (Potter *et al.*, 1988).

Reproductive style: Gonochoristic (Potter *et al.*, 1988).

Sex ratio: Not reported.

Length and age at sex change: Not applicable.

Spawning location and habitat: Moves from estuarine waters to marine waters to spawn.

Fecundity: [Swan River Estuary] Determinate. Annual fecundity $\log_{10} F = -2.972 + 3.602 \times \log_{10} TL$ ($n=33, r=0.95$) (Potter *et al.*, 1988).

<table>
<thead>
<tr>
<th>TL (mm)</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundity (eggs)</td>
<td>17,000</td>
<td>73,500</td>
<td>207,000</td>
</tr>
</tbody>
</table>

Spawning frequency: Not reported.
Development and habitat use

Eggs: Small, demersal adhesive eggs (Leis and Carson-Ewart, 2000).

Larvae: Pelagic (Leis and Carson-Ewart, 2000).

Juveniles: Estuaries (Potter et al., 1988).

Adults: Coastal waters, including marine embayments and estuaries (Loneragan et al., 1986; Potter et al., 1988; Loneragan and Potter, 1990). Found predominantly over bare sand and some seagrass (Travers and Potter, 2002; Hyndes et al., 2003; Heithaus, 2004). In estuaries, this species is most abundant over sand and seagrass habitats (Potter et al., 1988). Common in nearshore surf zones (Ayvazian and Hyndes, 1995). In marine waters, it is most abundant in habitats that are highly sheltered and contain dense seagrass or are moderately sheltered and contain sparse seagrass (Valesini et al., 2004a).

Migration: [Swan River] Migrates out of estuaries to spawn and is more active at night (Valesini et al., 2004b), moving into shallower waters during this time (Potter et al., 1988).

Stock delineation: Not reported.

Diet: Molluscs, crustaceans and polychaetes (Potter et al., 1988).

Fishery

Recreational: Not targeted by recreational fishers, but often taken as by-catch (Smith, 2006).

Commercial: Not targeted by commercial fishers, but often taken as by-catch (Fairclough et al., 2012).

Age at full recruitment: Not reported.

Gear selectivity parameters: Not reported.

Management parameters

Total mortality: Not reported.

Natural mortality: Not reported.

Fishing mortality estimates: Not reported.

Biological reference points: Not reported.

Current status: Not reported.

Catch trends

Recreational: 4,052 individuals of this species were kept in the West Coast bioregion by recreational boat-based fishers in 2005/06, compared with 1,035 in 1996/97 (Sumner et al., 2008). An additional estimated 96, 027 fish were released in 2005/06 compared with 19,545 in 1996/97. Substantially greater numbers of this species were released than kept by boat and shore-based recreational fishers in the Swan-Canning Estuary and Peel-Harvey Estuary during 1998/99 (Malseed and Sumner, 2001a; b). See also Malseed et al. (2000), Smith (2006), Smallwood et al. (2006), Smallwood and Sumner (2007), Sumner (2008) and Smallwood et al. (2012).

Commercial: Quantity of by-catch of this species is not reported.

Management regulations

Recreational: Currently included in the “all other species of finfish” category (DoF, 2013).
Bioregion (Year)	Bag limit	MLL	Other
Statewide (1991) | 40 | - | -
West Coast (2009) | 30 | - | -

Commercial: Not applicable.

Current research: Ongoing data collection occurs through commercial and charter fishing logbooks. A survey of boat-based fishing in the West Coast bioregion during 2009/10 together with a statewide phone/diary survey of boat-based fishing in 2011/12 may also provide additional catch information.

Comments/other published information: Ecosystem modelling (Platell and Hall, 2006); Visualisation (Collin et al., 2000); Habitat utilization [Queensland] (Miller and Skilleter, 2006); Parasites (Williams, 1986); By-catch in commercial fisheries [South Australia] (Steer et al., 2011).

References

Valesini, F. J., Potter, I. C., Clarke, K. R., 2004a. To what extent are the fish compositions at nearshore sites along a heterogeneous coast related to habitat type? *Estuarine, Coastal and Shelf Science* 60, 737-754.

