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Executive Summary
The Gascoyne Coast Bioregion, which extends from Kalbarri (27°S) northwards to Onslow 
(114°50'E), includes the iconic Shark Bay and Ningaloo World Heritage areas plus the regional 
centre of Carnarvon and coastal towns of Denham, Coral Bay and Exmouth. The Gascoyne 
Bioregion is a transition zone between tropical and temperate waters and supports a diverse range 
of commercial invertebrate and scalefish fisheries and provides a large variety of recreational 
fishing opportunities. This report investigates the stock status of the inshore demersal scalefish 
“suite” of species for the Gascoyne region. These bottom dwelling fish are primarily taken by 
line fishing in waters of 20-250 m depth by both the commercial and recreational sectors.

The inshore demersal scalefish resource of the Gascoyne Coast Bioregion has been identified, 
along with the West Coast demersal scalefish resource, as one of the highest priority finfish 
resources to be brought under the Integrated Fisheries Management (IFM) framework in WA 
(DoF 2000a). The IFM framework seeks to set total sustainable harvest levels for each stock 
that allows for ecologically sustainable fishing and then allocate explicit catch shares among 
the commercial, recreational and indigenous sectors. This report presents assessments of the 
current status of the key indicator stocks for the inshore demersal scalefish fishery resource of 
the Gascoyne Coast Bioregion. Any identified risks to sustainability can then be used to assist 
the setting of a total sustainable harvest level for the entire suite of inshore demersal scalefish 
species, which is one of the first steps of the IFM process. This is especially important, given the 
potential for increasing levels of demersal scalefish catches from all sectors in this Bioregion.

Commercial line-fishing for finfish in oceanic waters off Shark Bay dates back to the early 
1900s, with vessels sailing northwards from Geraldton and later, from Fremantle, to target pink 
snapper (Pagrus auratus) spawning aggregations in winter. The fishery that is now managed as 
the Gascoyne Demersal Scalefish Fishery (GDSF, commenced in November 2010) first came 
under formal management in 1987 with the creation of the Shark Bay Snapper Managed Fishery 
(SBSF). Since 2001, the commercial fishery for pink snapper has been fully quota-managed, 
using an explicit Total Allowable Commercial Catch (TACC) for the oceanic stock. GDSF vessels 
are not permitted to fish in the inner gulfs of Shark Bay. The composition of the catch taken by 
the GDSF has now expanded to include a range of other demersal scalefish species including 
goldband snapper (Pristipomoides multidens), ruby snapper (Etelis carbunculus), redthroat 
emperor (Lethrinus miniatus), various cod species (Serranidae), trevallies (Carangidae), and 
mulloway (Argyrosomus japonicus). No State-licensed commercial vessels, including the 
GDSF, are permitted to fish in waters of the Gascoyne Bioregion between Point Maud and 
Tantabiddi Well, which is offshore of the Ningaloo Marine Park.

Shark Bay and Ningaloo are both very popular tourist destinations, especially during the 
winter months and school holidays. A significant component of this tourism is based on water 
related activities; a large proportion of which is recreational fishing (Smallwood 2009). Large 
numbers of recreational vessels plus a limited number of licensed charter vessels fish in these 
waters both inside and outside Shark Bay, off Carnarvon and around Ningaloo. These vessels 
target the same suite of demersal scalefish species that are also taken by the GDSF and are 
broadly managed using a combination of daily bag, possession, trip and size limits coupled 
with limitations on the use of certain fishing gears. Within the inner gulfs of Shark Bay more 
complex arrangements apply for the pink snapper stocks including recreational quotas. More 
fine-scale spatial management arrangements also apply in specific conservation areas (e.g. 
sanctuary zones) in both the Shark Bay and Ningaloo Marine Parks. 
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The demersal scalefish species taken by commercial, recreational and charter fishers in the 
Gascoyne Bioregion includes approximately 70-80 species. Consistent with the Department’s 
Ecosystem Based Fisheries Management (EBFM) (Fletcher et al. 2010) and Resource 
Assessment Frameworks (RAF) (DoF 2011), assessment of the status of the entire Gascoyne 
demersal scalefish resource is based on the status of three indicator species: four stocks of 
pink snapper, spangled emperor (Lethrinus nebulosus) and goldband snapper. These three 
species were identified as the best representatives of the inshore demersal scalefish suite in 
the Gascoyne using a comprehensive risk based process that considers species biological 
vulnerability (longevity, age at maturity, spawning strategy). Only the more vulnerable species 
in the suite can be selected and especially those that form a significant component of the catch 
are most appropriate as indicators to ensure that they can be monitored efficiently. 

There are four genetically separate stocks of pink snapper in the Gascoyne region (Oceanic, 
Freycinet, Denham Sound and Eastern Gulf) (MacDonald 1980; Johnson et al. 1986; Whitaker 
and Johnson 1998; Baudains 1999). There is only a single genetic stock of spangled emperor in 
the Gascoyne (Johnson et al. 1993; Moran et al. 1993; Berry et al. 2012) and likely to be only 
one genetic stock for goldband snapper.

The stock assessment methods used to determine the status for the seven indicator stocks were 
dependent upon the existing biological and fishery information (commercial, recreational and 
charter sectors). The available information on the biology, catches, and catch rates of each indicator 
species and stocks, plus changes in the fishing behaviour and methods for each fishery sector 
were assessed. The availability of suitably long time-series of data has enabled age-structured, 
integrated models to be developed to assess the status of each of the four separate stocks of pink 
snapper. The status of each pink snapper stock was assessed against a management target level of 
spawning biomass (B) defined as 40% of the unexploited levels of spawning biomass.

For goldband snapper and spangled emperor the lack of long time series of data meant that their 
assessments could only be based on the estimation of the current levels of fishing mortality (F) 
and other relevant information using a ‘weight-of-evidence’ approach (see Wise et al. 2007). 
The ratios of the various estimates of F and natural mortality (M) (performance indicators) 
for goldband snapper and spangled emperor stocks were compared to the standard Target  
(F = 2/3M), Threshold (F = M), and Limit (F = 1.5M) management reference points that have 
been adopted by the Department for these types of species.

The oceanic stock of pink snapper was assessed as being in recovery. The spawning biomass 
was estimated to be at approximately 30% of the unexploited level of spawning biomass 
(Threshold) in 2008 but it is projected to reach the Target level (40%) by 2014 if catches are 
maintained around the current level of 300 tonnes year-1. Commercial catches are managed 
to the TACC while the recreational/charter catch on this stock (12%) is currently managed by 
regulation, using a combination of minimum size, bag and boat/trip limits.

The assessment of the two of snapper stocks located within the inner gulfs of Shark Bay (Eastern 
Gulf and Denham Sound) were assessed in 2008 to be above the management target (i.e. greater 
than 40% of the unexploited level of spawning biomass). The Freycinet Estuary stock, however, 
was at that time close to the Threshold level (i.e. 30% unexploited level of spawning biomass) 
but recovering, and was projected to reach the management target level (40%) by 2012. 

Pink snapper catches in the inner gulfs are managed to conservative TARCs using a combination 
of size limits, bag limits, spawning closures and, in the Freycinet Estuary, where the most 
depleted stock resides, by using a relatively novel quota-tag system. In conclusion, the current 
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risks to sustainability based on these assessments have already been factored into the ongoing 
adaptive management arrangements for the recovery of the four pink snapper stocks within the 
Gascoyne Coast Bioregion.  

For both spangled emperor and goldband snapper a ‘weight-of-evidence’ approach , which is 
consistent with the Department’s Level 3 assessment were used to complete the first formal 
assessment of their risk status.

The level of fishing mortality for spangled emperor was assessed for two parts of the Gascoyne 
region, north and south of Pt Maud (i.e., “North Gascoyne”, “South Gascoyne”). This was 
done because of known differences in biology (Marriott et al. 2011a) and historical fishing and 
management between these two study regions, and because there was a need to obtain specific 
information about the sustainability of fishing on demersal scalefish in the Ningaloo Marine 
Park (i.e., part of the inshore demersal scalefish fishery resource, within the North Gascoyne). 
Spangled emperor are mostly (67% of total catch) taken by recreational fishers, especially in 
the North Gascoyne. 

Estimates of F for spangled emperor in 2007/08 from the North Gascoyne ranged from 0.9M to 
1.7M, which all exceeded the Threshold reference level (i.e. F >> M). Some of these estimates 
marginally exceeded the Limit reference level (F > 1.5M).  The yield- and egg production-
per recruit was determined to be minimally impacted at this level of F. However, the per-
recruit analyses did not account for unknown temporal dynamics of the fish population so 
results should be treated only as preliminary estimates until sufficient data are available for 
a more comprehensive analysis. Based on the behavioural attributes and catch history of this 
species suggests that there is likely to be localised over-fishing of spangled emperor occurring 
in the North Gascoyne. Given the lack of increase in catch levels over the ten year period 
since sanctuary zones were first established but an increase in F over this time suggests that in 
addition to there being no evidence of any spillover benefits to stocks outside of the sanctuary 
zones in the Ningaloo Marine Park, it is possible that the concentration of fishing effort into a 
smaller area may have exacerbated local depletion. However, in terms of the breeding stock, the 
component residing within sanctuary zones (and not assessed) is largely protected from fishing 
and is likely to assist in buffering the stock against potential recruitment overfishing.

Estimates of F for 2007/08 from the South Gascoyne ranged from ~0 to 0.8M, which were either 
below the Target reference level (F < 2/3M) or between the Target and Threshold reference 
levels (2/3M < F < M). Based on the behavioural attributes and catch history of this species 
suggests that the part of the spangled emperor stock in the South Gascoyne is currently (as at 
2007/08) being fished at a sustainable rate. 

At the Bioregion level, however, there exists one single genetic stock of spangled emperor. 
If we assume similar abundances of spangled emperor in the North and South Gascoyne, the 
Bioregion level of F should be approximately mid-way between presented estimates of F for 
the North and South Gascoyne. In that case, the median of those presented estimates of F, 
which lies between the Target and Threshold reference levels (2/3M < F < M), would be  an 
appropriate representation for spangled emperor at the Bioregion level. This would suggest 
that the spangled emperor breeding stock in 2007/08 was estimated to be at an acceptable 
level for the Bioregion overall, noting significant reductions in the relative numbers of older 
(breeding age) spangled emperor in the North Gascoyne, outside of sanctuary zones, due to 
localised depletions. It is also noteworthy that the component of the breeding stock in the North 
Gascoyne residing within sanctuary zones of the Ningaloo Marine Park (and not assessed) may 
contribute towards buffering against potential recruitment overfishing. Although differences in 
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growth were observed between the North and South Gascoyne, the overall inherent biological 
productivity (indicating vulnerability) for spangled emperor in the Bioregion was Medium. 
This suggests that, if an appropriate range of catch reduction is selected (i.e., based on estimated 
levels of F) the level of reduction should be refined towards the middle of that range. 

The level of fishing mortality for goldband in 2007/08 was estimated to be at an acceptable 
level being much less than the Target (i.e. F<2/3 M). Based on the decision rules for these 
stocks, and incorporating the biological attributes of goldband snapper, at catch levels of around 
100-120 year-1 for Zones 1-4 (2007/08 level) there would be a negligible risk to sustainability of 
this stock. As the commercial catch of goldband snapper across the entire Gascoyne increased 
by around 20% in 2008/09 compared with the previous year (from ~121 tonnes to ~144 tonnes, 
Jackson et al. 2010a) the risk profile for this species has possibly increased but not to levels that 
should generate management concern. However, given that the targeting of goldband snapper 
has only occurred in recent years, the flow through of these catches to the age structure may 
not yet be complete. Therefore, ongoing monitoring based on age structured sampling allowing 
Level 3 or higher stock assessments needs to be completed to confirm this low risk profile. In 
addition, the collection of data to use for developing a suitable index of abundance time series 
(e.g., from high resolution commercial catch rate data), and biological data to refine biological 
parameter estimates would assist our understanding of the Gascoyne stock of goldband snapper.

Summary

Status

Stock level

Pink snapper 

Oceanic	 Recovering

Freycinet	 Recovering

Denham Sound	 Adequate

Eastern Gulf	 Adequate 

Goldband snapper	 Adequate

Spangled emperor	 Adequate

Fishing Level

Pink snapper (all Stocks)	 Acceptable

Goldband snapper	 Acceptable

Spangled emperor

North Gascoyne	 Unacceptable

South Gascoyne	 Acceptable
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1.0	 Introduction 

1.1	 Background
To manage the cumulative impacts of fishing and other pressures including population growth, 
increased coastal development, and meet the broader requirements of Ecological Sustainable 
Development (DoF 2002) and Ecosystem Based Fisheries Management (EBFM; Fletcher et al. 
2010), an integrated fisheries management (IFM) framework was adopted by the Department 
of Fisheries in the early 2000s (DoF 2000a). This approach seeks to set total sustainable 
harvest levels for each major fishery resource (stock or suite) within a region that allows for 
an ecologically sustainable level of fishing and to allocate explicit shares of this level among 
the commercial, recreational and indigenous sectors. Prior to the IFM process commencing, 
information on the current status and risks to sustainability of the fishery resource is required 
by fishery managers, to set sustainable harvest levels.

To facilitate adoption of IFM the Department of Fisheries has divided its extensive marine 
jurisdiction into four Bioregions based on species compositions and ecosystem structure. The 
West Coast and Gascoyne Coast demersal scalefish were identified as the highest priority finfish 
resources to be brought under the IFM-framework. This includes those finfish species whose 
adult individuals, particularly the spawning stock, reside in or proximal to benthic habitats in 
waters greater than 20 m depth and are generally a major target of line based fishing.

The completion of IFM for demersal scalefish in each of the four marine Bioregions presents 
a significant challenge given that there are always multiple target species in this suite with 
multiple fishing sectors targeting these stocks which generates a high level of community 
interest in the outcomes (Lenanton et al. 2006). Sector allocation of these demersal scalefish 
resources in the West Coast Bioregion has recently been addressed through the release of a 
Draft Allocation Report prepared by the Integrated Fisheries Allocation Advisory Committee 
(IFAAC) (DoF, 2010b): This followed the implementation of revised fisheries management 
arrangements for the recreational and commercial sectors (DoF, 2010a) which were based upon 
the stock assessment advice generated by Wise et al. (2007) and Lenanton et al. (2009a & b).

This report outlines the stock assessment information for the demersal scalefish resources of 
the Gascoyne Coast Bioregion. This bioregion extends for approximately 1,000 km between 
Kalbarri and Onslow, from north of 27°S to 114°50'E, and includes the iconic regions of Shark 
Bay and Ningaloo World Heritage Areas plus the regional centre of Carnarvon and the coastal 
towns of Denham, Coral Bay and Exmouth (Figure 1.1). This marine bioregion represents 
a major transition between the tropical and temperate zones of the Western Australian coast 
and has a diverse set of fish species. Full details of the demersal scalefish resource within the 
Gascoyne are listed in Appendix 1 which was compiled from records of the landed catches 
reported by commercial, recreational and charter fishers in the Gascoyne, and represents those 
demersal scalefish species directly impacted by fishing.

The need to address IFM issues for demersal scalefish resources has previously been identified 
(DoF, 2000c; Rogers and Curnow 2002; Toohey 2002). Given the social and economic value of 
Gascoyne demersal scalefish to commercial (DoF, 2005; 2006), recreational (DoF, 1998, 2000b; 
Curnow and Harrison 2001), indigenous fishing (Franklyn 2003) and to the tourism industry 
(Shaw 2000) in the Bioregion, this fishery resource has been given high priority.

This report presents assessments of the current status of the inshore demersal scalefish resources in the 
Gascoyne Coast Bioregion. These assessments should generate the scientific information necessary 
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to enable advice to be provided to fisheries managers, who, in consultation with stakeholders and 
the general public, can establish sustainable harvest levels for the Gascoyne Inshore Demersal 
Scalefish resource. IFM allocation strategies may then be implemented for the ongoing ecologically 
sustainable and equitable use of the demersal scalefish resource in the Gascoyne.

Figure 1.1.	 Gascoyne Coast Bioregion showing the main populations centres and the 
assessment zones* used in this report. 

*	 Note: the term ‘zone’ is used in this report with reference to stock assessment purposes and does not relate to management zones. 
See Section 4.4 for an explanation of assessment zone boundaries.
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1.2	 Indicator species approach
Completing stock assessments for use in the sustainable management of multi-species, multi-
sectoral fisheries such as the Gascoyne demersal scalefish resource presents many challenges 
in both scale and complexity. To address this issue, the Department has adopted the use of a 
risk based, EBFM process to better manage resources at a whole of region level (Fletcher et 
al. 2010) This involves using the status of one or more indicator species as being indicative 
of the status of an entire suite (DoF 2011). Where multiple indicator species are in each 
suite, a precautionary management approach is applied whereby the species with the poorest 
status determines the overall status of the entire suite. This approach was initially applied to 
the assessment of demersal scalefish in the West Coast Bioregion by adopting a ‘weight-of- 
evidence’ approach to a limited number of indicator species (Wise et al. 2007).

The benefits of assessing and managing stocks based on this indicator species approach are 
twofold: (i) if resources are limited they can be prioritised to allow more frequent assessments 
for those indicator stocks in order to determine the status of the entire suite/resource and (ii) 
monitoring and management of fishing on the species that comprise the suite of demersal scalefish 
stocks is simplified.

Indicator species for the inshore demersal suite (20-250 m) and offshore suite (>250 m) were 
identified using the risk-based approach outlined in the Department’s Resource Assessment 
Framework (DoF 2011). This approach is based on three criteria including the vulnerability 
of the species/stock to fishing; their relative contribution to the catches of fishing sectors and 
importance to support current and future management needs (Lenanton et al. 2006, DoF 2011). 
Through this risk-based assessment process, pink snapper (Pagrus auratus), goldband snapper 
(Pristipomoides multidens), and spangled emperor (Lethrinus nebulosus) were chosen as the 
key indicator species for the inshore suite of demersal scalefish of the Gascoyne Coast Bioregion 
(Appendix 1). Although Spanish mackerel (Scomberomorus commerson) is an important 
component of recreational and commercial catches in the Gascoyne, it was not selected as an 
indicator species for assessing inshore demersal scalefish stocks as the species is part of the 
pelagic suite in the Bioregion.

1.3	 Need
Commercial fishing for pink snapper (oceanic stock, see 5.1.1), which is one of the Gascoyne 
inshore demersal indicator species, has been under formal management since at least the 1980s. 
In recent years, several factors have contributed to increased commercial catches of other 
demersal scalefish in the Gascoyne, including increased effort in deeper waters (>200 m) and 
increased efficiency due to technological advances (fishing gear, fish finding aids, improved 
vessel capabilities). This trend was particularly apparent for goldband snapper, where catches 
rose from low levels to very high levels over a short period (2000-2005, Jackson et al. 2010a).

Participation in recreational fishing has also increased, along with an increase in the number 
of residents living within the region. Improved infrastructure (e.g. sealed roads) has led to 
increasing levels of domestic and international tourism (Smallwood 2009). Enhanced access 
to coastal waters via new boat ramps (e.g. Bundegi, Coral Bay) and camping sites/facilities 
(Gnaraloo) and the sustained popularity of recreational fishing (through increased disposable 
income of residents employed in developing mineral and petroleum industries) also contribute 
to pressure on local fish stocks. This trend of increasing levels of recreational fishing effort 
and catches is also in part related to the recent increased levels of regulation and constraint on 
recreational fishing in the West Coast Bioregion.
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To enable the implementation of IFM for demersal scalefish in the Gascoyne Coast Bioregion, 
there is a need to gain a better understanding of the biology of the key target species as indicators 
of the suite of inshore demersal scalefish species, determine the current status of the inshore 
demersal scalefish resource and assess associated risks to ongoing sustainability. A reliable 
estimate of current status of the demersal scalefish resource is required to ensure that subsequent 
management strategies are appropriate for ensuring future levels of total catch by all sectors are 
sustainable. This is especially important, in light of the abovementioned current pressures on 
inshore demersal scalefish fisheries in the Gascoyne. 

1.4	 Objectives 
The main objectives of this study were to: 

1.	 Characterise the major fisheries exploiting the demersal scalefish resources in the Gascoyne 
Coast Bioregion

2.	 Investigate the population biology of spangled emperor to fill existing knowledge gaps 
required for stock assessment of this indicator species.

3.	 Obtain and assess representative catch-at-age distributions for Level 3 assessments, 
consistent with a ‘weight-of-evidence’ approach (Wise et al. 2007) for goldband snapper 
and spangled emperor stocks in the Gascoyne Coast Bioregion.

4.	 Undertake stock assessments of key indicator species and thus assess the status of the 
inshore demersal suite, to provide advice on the stock status and risks to sustainability, 
for the management of demersal scalefish resources and fisheries in the Gascoyne Coast 
Bioregion, within an IFM framework. 

The stock assessment approaches that could be used to determine the status of the three indicator 
species were dependent upon the biological and fishery information (commercial, recreational 
and charter sectors) that were available for each species. Accordingly, all available information 
on the biology, catches, and catch rates of each indicator species, and of the effort characteristics 
of each sector, are presented and summarised in this report. Stock assessments that are based 
on this information are then reported in context of implications for future IFM of the inshore 
demersal scalefish resource of the Gascoyne Coast Bioregion.



10	 Fisheries Research Report [Western Australia] No. 228, 2012

2.0	 The Gascoyne Marine Environment 
The comprehensive Fisheries Environmental Management Review of the Gascoyne Region 
(Shaw 2000) provided a thorough account of environmental and socio-economic settings for 
fisheries management in the Bioregion, including an account of the history and a description of 
each of the fisheries within each sector, together with an account of the environmental impacts 
of fishing. 

The coastline varies throughout the Bioregion. Fringing coral reefs, some of which are adjacent 
to high cliffs, dominate the northerly exposed half of the mainland coast. The protected waters 
of Shark Bay dominate the southern half of the bioregion, where the exposed high-energy 
marine coast is composed almost entirely of high cliffs, with low relief sandy shorelines and 
mangroves dominating within Shark Bay. The northern area of the Bioregion (Ningaloo/
Exmouth area) is seasonally influenced by tropical cyclones, while the southern area (Shark 
Bay) rarely experiences cyclones, but is affected by the more intense southerly winter frontal 
systems, and at times by significant river outflows, primarily from the Gascoyne and to lesser 
extent Wooramel River. The marine environment represents a transition from a tropical coral 
reef environment in the north, to a temperate seagrass dominated environment in inner Shark 
Bay to the south. The waters of the Gascoyne are inhabited by a diverse range of scalefish 
species distributed within and across different demersal habitats. 
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3.0	 The Gascoyne Fishery and Management 
Arrangements 

3.1 	 Spatial management and jurisdictions
A number of significant marine conservation and protected areas have been established in the 
Gascoyne Coast Bioregion. In the north, the Ningaloo Marine Park was gazetted under the 
CALM Act, 1984 in April 1987 and recently became part of the Ningaloo Coast World Heritage 
Area on 24 June 2011. In 1990, the Shark Bay Marine Park was gazetted and in the following 
year, the Shark Bay World Heritage Property was inscribed on the World Heritage List (1991). 
During the same year, the first recreational sanctuary zones were created within the Ningaloo 
Marine Park. In 2005, the southern boundary of Ningaloo Marine Park was extended from 
Amherst Point to Red Bluff and further re-zoning took place within the Park.

A commercial fishing closure between Point Maud and Tantabiddi Well was implemented in 
state waters in the early 1970s, and administered under a license condition (16) that prohibited 
engagement in State-managed commercial fishing in the area (DoF. 2005). Following the 
Offshore Constitutional Settlement (OCS) in 1995, state responsibility for the management of 
some of the fishery resources was allocated to Western Australia out to 200 nautical miles (the 
outer boundary of the Economic Economic Zone [EEZ]).

3.2	 Commercial 
Historically, pink snapper (oceanic stock), was the primary demersal scalefish target species in 
the Gascoyne Coast Bioregion. Commercial snapper fishing commenced in waters off Shark 
Bay around 1908 (Shaw 2000). The modern-day commercial fishery commenced after World 
War II, and was well established by the 1950s (Shaw 2000). The Shark Bay Snapper Fishery 
(SBSF) came under formal management in 1987, with 1988 the first full year of seasonal quota-
based management. A revised quota management system was introduced in 1994. In 2001, the 
fishery became a fully quota (i.e., pink snapper catch only) managed fishery on a year-round 
basis. Further management changes included prohibition firstly on line fishing from prawn 
trawlers in Shark Bay (2000), and subsequently, on non-quota commercial line fishing in waters 
of the SBSF (2004). 

As at 2007 (the focal assessment year for this report, see Section 4.4), commercial line fishing 
was almost entirely undertaken in the waters off Shark Bay (mainly Zone 2; Fig 1.1) by SBSF 
licensed vessels. These vessels used mechanised handlines* and, in addition to pink snapper, 
caught a range of other species including goldband snapper, red emperor (Lutjanus sebae), 
emperors (Lethrinidae, includes spangled emperor and sweetlip, L. miniatus), cods (Serranidae), 
ruby snapper (Etelis carbunculus), pearl perch (Glaucosoma burgeri), mulloway (Argyrosomus 
japonicus) and trevallies (Carangidae). Commercial ‘open-access’ wetline vessels† (without 
SBSF-quota) operated in waters outside of the SBSF management zone (from 23°34’S to 
26°30’S) and caught a similar variety of species.

On 1 November 2010 the Gascoyne Demersal Scalefish Fishery (GDSF) came into operation 
and replaced the SBSF. The GDSF encompasses a larger spatial area than the former SBSF, 
with the northern boundary being shifted from 23o34’S northwards to Point Maud (23o07’S) 
(coincides with Zone 2; Fig 1.1).

*	  A hydraulic or electric gunwhale-mounted handline reel 
†	  Vessels operating under a general permit for commercial fishing in state waters 
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In the extreme northern area of the Bioregion many of these species are also targeted by the 
Pilbara Line Fishery. Small catches of these species are also taken as by-product in several of 
the other state-based commercial fisheries that operate within the Gascoyne Bioregion (e,g, 
Shark Bay Beach Seine and Mesh Net Fishery).

Pink snapper and other scalefish species are a minor bycatch of the Shark Bay Prawn Fishery 
and to a lesser extent, the Shark Bay Scallop Fishery (Sporer et al. 2009). Very small catches 
of larger individuals of pink snapper and mulloway taken by trawling are retained. The effect 
of trawling in the more northerly waters of Shark Bay on various species that occur as non-
retained bycatch was formally assessed in an extensive survey conducted between 2002 and 
2004 (Kangas et al. 2007).

In the inner gulfs, a formal study determined that trawl fisheries in Denham Sound constituted an 
additional source of fishing mortality of juvenile pink snapper in that area (Moran and Kangas 
2003). Historically, small quantities of sub-adult and adult pink snapper have been retained as 
byproduct in the inner gulfs by the Shark Bay Beach Seine and Mesh Net Fishery.

A quantity of large individuals of the oceanic pink snapper stock, and other demersal scalefish are 
also retained as byproduct by the Commonwealth managed Western Deepwater Trawl Fishery that 
operates in waters of the Gascoyne in Commonwealth waters deeper that 200 m (AFMA 2006).

The key inshore demersal indicator species in the Gascoyne Coast Bioregion that are the focal 
species of this report are pink snapper, spangled emperor and goldband snapper. For these 
species, the relative magnitude of the catch varies among the sectors, due to the different 
targeting practices and catch compositions (Table 3.1). More detailed descriptions of historical 
levels of catch and effort for the commercial, recreational and charter sectors are provided in 
Section 6 with a brief summary of trends in catch levels as follows.

Table 3.1. 	 Indicator species catch for assessment year 2007: Gascoyne Coast Bioregion. See 
Section 6 for further details.

Recreational Charter Commercial Total

Pink snapper

Catch (T) 31 21 302 354

Catch (%) 9% 6% 85%

Spangled emperor

Catch (T) 30 8 7 45

Catch (%) 67% 18% 15%

Goldband snapper

Catch (T) Not available 5 119 >124

Catch (%)

The commercial pink snapper catch increased from 423 t in 1975/76 to an all-time peak of 1287 
t in 1984/85 before stabilising between approximately 400-600 t from 1987/88 to 2001/02, and 
following a series of quota-reductions, declining to 302 t by 2007/08. The recreational pink 
snapper catch (estimated) decreased between 1998/99 and 2007/08 with most of the catch taken 
in the inner gulfs of Shark Bay (i.e. Zone 1) during the early period compared with mostly from 
oceanic waters (i.e., Zone 2) in the more recent period. 

Charter catches have remained at around the same level (approximately 20 t) since 2001. The 
current status of the pink snapper oceanic stock is that the spawning biomass is rebuilding and 
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fishing is now at an acceptable level (Jackson et al. 2010a). Spawning biomass of pink snapper 
in the Easter Gulf and Denham Sound is adequate and in the Freycinet Estuary is recovering. 
Fishing levels for all three inner gulf stocks is at an acceptable level (Jackson and Norriss 2010).

Although the current commercial catch of spangled emperor is relatively small compared to 
its recreational catch, the commercial catch has historically been much higher. Annual catches 
of more than 100 t of spangled emperor were landed from the mid-1980s to the early 1990s 
(peaking at 215 t in 1988/89), which coincided largely with an increase in trap and line fishing 
north of the SBSF at the time (Moran et al. 1993; Section 6). This species has long primarily been 
a non-target by-product species of the SBSF, however, and a recent reduction in commercial 
catches of this species reflects a shift in targeting towards other, more high-valued species, such 
as goldband snapper, when not targeting pink snapper. The recreational catch was higher in 
1998/99 than it was in 2007/08 and the charter catch was higher in 2002/03 before declining to 
the 2007/08 level. The stock level of spangled emperor is adequate whilst the fishing level in 
the North Gascoyne is unacceptable and the fishing level in the South Gascoyne is acceptable 
(Jackson et al. 2010a). 

The historical commercial catch of goldband snapper was relatively low (< 50 t) prior to 2000/01, 
then increased rapidly to peak at relatively high levels (around 300 t) from 2002/03 to 2004/05, 
as a consequence of increased targeting of this species in deeper waters. Commercial catches 
then dropped in 2005/06 to 126 t and stayed at a similar level to 2007/08. Catches by charter and 
recreational sectors have been relatively low in comparison. Charter catches increased from 0.3 
t in 2002/03 to the 2007/08 level and the recreational catch was higher in 2007/08 than it was in 
1998/99 (estimated numbers of fish retained). The stock level of goldband snapper is adequate 
and the fishing level is acceptable (Jackson et al. 2010a).

3.3	 Recreational
A detailed description of recreational fishing in the Gascoyne can be found in Shaw (2000). 
Briefly, recreational fishing and tourism in the Gascoyne is relatively seasonal with the warm, 
dry winter climate making the area a popular winter recreational fishing destination for 
southern-based recreational fishers, especially from the Perth metropolitan region. Recreational 
fishing activities occur throughout most of the Bioregion, particularly in the Ningaloo Marine 
Park and Shark Bay and include beach and cliff fishing (e.g. Steep Point, Quobba station, 
Ningaloo Reef), embayment and shallow-water boat angling (e.g. Shark Bay, Exmouth Gulf 
and Ningaloo Reef lagoons), offshore boat angling for demersal and larger pelagic species, and 
some spearfishing. Recreational fishing is predominantly for tropical species such as spangled 
emperor, red emperor, coral trout (Plectropomus leopardus) and narrow-barred Spanish 
mackerel, but temperate species, such as pink snapper, mulloway, tailor (Pomatomus saltatrix) 
and yellowfin whiting (Sillago schomburgkii) are also targeted, particularly within the inner 
gulfs of Shark Bay (Zones 1, 2; Fig 1.1).

Recreational fishing in the Gascoyne has been managed via a bioregional specific management 
strategy since 2003 (Curnow and Harrison 2001). This strategy consists of a set of bag, possession 
and size limits, permitted gear types, and seasonal and area closures implemented under the Fish 
Resources Management Act 1994 (DoF. 2001, 2010c). With the exception of pink snapper in 
Shark Bay’s inner gulfs, these arrangements are largely based on social values and are not intended 
to manage the recreational catch to a target level. Specific strategies have been implemented in 
Shark Bay’s inner gulf to manage to recreational take of pink snapper to an explicit target catch 
level. This includes a novel management quota-tag based system for fishing for pink snapper in 
the Freycinet Estuary (Mitchell et al. 2008). All recreational fishing activities, including those of 
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the charter sector, are subject to the closures associated with the Ningaloo and Shark Bay Marine 
Park Sanctuary Areas, Nature Reserves, and Conservation areas. 

Most recently, a state-wide recreational boat-fishing license was introduced in March 2010.

3.4	 Charter
In order to ensure ongoing sustainability of the industry and the fish resources it exploits, formal 
management arrangements were introduced for the charter sector in 2001, including a ‘cap’ on 
the total number of operators state-wide (DoF. 2000c; Johnson 2008). Licensed operators that 
are engaged in extractive fishing (i.e. fishing tour operators) are required to submit trip-by-
trip catch and effort records. Otherwise, charter fishing is subjected to the same regulations as 
private recreational fishers. Key demersal species targeted in the Gascoyne Coast Bioregion by 
charter operators include pink snapper, sweetlip emperor and spangled emperor. The majority 
of the charter catch is taken over the autumn/winter period (April to August).

3.5 	 Indigenous
There are relatively large aboriginal communities within the Gascoyne Coast Bioregion, 
and fishing is a popular activity (Shaw 2000). People of aboriginal descent do not need a 
recreational fishing license if fishing using traditional methods. However they are required to 
fish within the recreational fishing rules. As such, their catches would be recorded as part of 
regional recreational surveys. To date, the only survey designed to document the indigenous 
catch was the national Recreational and Indigenous Survey carried out in 2000/01 (Henry and 
Lyle 2003). While this survey did not present data separately for regional Western Australia, 
what is clear from this report is that the vast majority of the indigenous catch is from inland and 
coastal waterways. Thus this sector is unlikely to retain many inshore demersal scalefish in this 
Bioregion.
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4.0	 General methods 

4.1	 Sample collection

4.1.1	 Fishery-dependent methods 
Samples of pink snapper (oceanic stock, see 5.1.1 for details) and goldband snapper were 
obtained from commercial catches landed by SBSF licensed vessels. These vessels use 
mechanised handlines and droplines in water depths of 30-300 m to catch a range of demersal 
scalefish species (Jackson et al. 2010a). Biological sampling of SBSF catches dates back to the 
early 1980s (Moran et al. 2005). More comprehensive routine sampling commenced in 2004 
following a major reduction in the oceanic pink snapper Total Allowable Commercial Catch 
(TACC) and in order to meet Environment Protection and Biodiversity Conservation Act 1999 
export-exemption related requirements (see below). 

Fishery-dependent samples of pink snapper (oceanic stock) collected between 1992-2008, and 
of goldband snapper collected between 2004-2008, were used in the stock assessments reported 
here (Tables 5.1.1, 5.3.1.). No samples of either species were obtained from recreational or 
charter catches as part of this study. Catch sampling of pink snapper and goldband snapper from 
oceanic waters was focussed on the commercial sector, which takes approximately 80-90% of 
the total catch of these two species. 

During the 1980s and 1990s, commercial catch sampling of oceanic pink snapper involved the 
measurement of large numbers of fish and sub-sampling to collect otoliths at fish processors 
in Carnarvon, mostly during the peak season (May-August). From 2004 onwards, a more 
comprehensive year-round sampling design was implemented. Craine et al. (2009) had 
determined that the target sample size for age structure monitoring was 300-500 specimens 
(otoliths) per stock per year. Based on this, and information on the seasonality of the commercial 
oceanic pink snapper fishery, a stratified sampling design was implemented with larger numbers 
of samples collected during the months of highest catch with an overall target of ca. 25-30 
otoliths from 20 separate catches per year/season (total 500-600 otoliths).

In the inner gulfs of Shark Bay, samples of pink snapper from the separate Eastern Gulf, 
Denham Sound, Freycinet Estuary stocks (see 5.1.1) were obtained from recreational catches in 
the Freycinet Estuary only (Table 5.1.1). 

Samples of spangled emperor used in the stocks’ assessments reported here were obtained from 
recreational, charter and commercial catches between June 2006 and June 2008 (Table 5.2.1.). 
The majority of specimens from the recreational catch in 2007 were donated as fish frames 
following interviews undertaken for the DoFWA Recreational Fishing Survey, 1 April 2007 to 
31 March 2008 (‘RFS’: See Section 6.1.2.2 for details). Collection points for frames donated 
during RFS interviews at boat ramps (‘RFS ramp’) or at other popular coastal fishing locations 
(‘RFS roving’) were located at Steep Point, Carnarvon, Quobba Station, Gnaraloo Station, 
Coral Bay and Exmouth (Fig. 1.1). Since the RFS sampling design was stratified spatially (boat 
ramp/shore fishing location) and temporally (month) in relation to recreational effort (Sumner 
et al. 2002) it was assumed that catches of spangled emperor were also directly proportional 
to this fishing effort in time and space. Accordingly, the RFS ramp and RFS roving samples of 
spangled emperor were assumed to be representative of the recreational catches in the Gascoyne. 

Spangled emperor were also collected from recreational fishers as fish frames donated at weigh-
in evenings during popular fishing tournaments (Gamex, Denham Fishing Fiesta, Carnarfin 
in 2007 and 2008) or donated at collection points at times other than during RFS interviews 
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(‘Donated/other’; Table 5.2.1.). Where possible, information was provided by fishers on the 
date, location (within ‘blocks’ delineated by five minute grids of latitude and longitude), 
depth of capture and the location of where catches were landed. Plastic bags and waterproof 
data labels were made available to recreational fishers at the collection points, which were 
often proximal to popular fish filleting areas, and signs were erected to provide instructions 
to recreational fishers on how to record data on waterproof labels and submit filleted frames 
for collection. Incentives (e.g. stubby holders, t-shirts, tackle shop vouchers) were offered as 
rewards for donating fish frames. Collections of spangled emperor from the landed catches of 
charter and commercial fishers were also undertaken. Relatively few commercial specimens 
were collected from the SBSF because spangled emperor is currently a commercial byproduct 
species and landed in relatively small amounts infrequently throughout the year (Table 5.2.1.).

The sampling targets determined by Craine et al. (2009) of 300-500 fish per stock per year were 
also used for spangled emperor and goldband snapper in this study. 

4.1.2 	 Fishery-independent methods
No fishery-independent samples of pink snapper (oceanic stock) were collected as part of this 
study, as the fishery-dependent sampling methods were more efficient and cost-effective for 
obtaining representative samples of the catches and describing biological parameters of the 
stock. Fishery-independent samples from the inner gulfs of Shark Bay (Eastern Gulf, Denham 
Sound, Freycinet Estuary, see 5.1.1) were obtained between 1998-2007 by DoFWA research 
staff assisted by volunteer recreational fishers, using rod and line fishing. Fishery-independent 
methods were employed with inner gulf pink snapper because since 1996, 90-100% of the 
catch has been taken by recreational vessels and opportunistic sampling of recreational catches 
landed at the public boat ramps was not cost-effective.

Fishery-independent samples of goldband snapper were collected by DoFWA research staff 
on board the RV Naturaliste using longlines and baited traps, in waters of depths of ~40-170 
m off Shark Bay, in 2005 and 2007 (see Table 5.3.1). These specimens were used primarily 
to supplement those collected by the more inexpensive fishery dependent sampling for 
estimating biological parameter estimates for the goldband snapper stock. Fishery-independent 
sampling was useful for sampling the stock without being constrained by the fishing patterns of 
commercial fishers, although the fishery-dependent sampling was considered to provide a better 
representation of stock demographics spatially and temporally. 

Fishery-independent (Research) samples of spangled emperor smaller than the minimum legal 
size limit (MLL: 410 mm total length, TL) were collected by deploying fine-meshed baited 
traps in shallow (2 to 5 m) lagoonal habitats of the Ningaloo Reef and by shore-based line 
fishing with small baited hooks in November 2006 and April 2007 (see Table 5.2.1). Targeted 
collections of small fish were made by fine-mesh trapping in shallow waters of Shark Bay in 
March 2008. Targeted collections of adult fish during the peak spawning period (between new 
moon of October 2007 and the full moon of November 2007) were undertaken by research line 
fishing in locations of the Ningaloo Reef that were suspected to be spawning aggregation sites. 
Thus, the more expensive fishery-independent sampling was done to address specific research 
questions concerning the estimation of biological parameters for the exploited stocks, whereas 
fishery-dependent sampling was done primarily to obtain representative samples of the catches 
(and stocks) for stock assessment.
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4.2	 Sample processing
All fish were measured (total length TL, and/or fork length FL, to nearest 1 mm) and weighed 
were possible (whole wet weight, nearest 1 g). 

4.2.1 	 Otoliths
For all three demersal indicator species, both sagittal otoliths were extracted, cleaned, dried, 
and stored in labelled paper envelopes. Sagittal otoliths were subsequently processed to produce 
high quality transverse sections (0.3-0.5 mm thick) following the methods described in Jenke 
(2002), Lewis and Mackie (2002) and Newman and Dunk (2003). Sections were examined 
microscopically (20-40 x magnification) under reflected light against a black background. 
Opaque zones were counted along an axis on the ventral margin of the sulcus acusticus for pink 
snapper (completed opaque zones only) and goldband snapper and along the dorsal margin of 
the sulcus acusticus for spangled emperor. A readability score and categorisation of the otolith 
outer margin (translucent or opaque) were also recorded. 

To ensure that opaque zones in otoliths were counted for estimating fish ages consistently among 
different age readers among years, the following quality control procedures were adopted for 
each species:

Pink snapper: Inner gulfs

All otolith sections were read twice, and in cases where the opaque zone counts differed, on a 
third occasion, by a single experienced reader (GJ). Counts were included in the subsequent 
analyses only in cases where there was agreement between any two or more readings. Precision 
in counts between the 1st and 2nd readings was estimated using an index of average percent error 
(IAPE, Beamish and Fournier 1981). A second experienced reader (JN) independently read a 
random sub-sample of sections from a representative size range of fish to investigate between-
reader bias using an age-bias plot (Campana et al. 1995). Further details of ageing protocols for 
pink snapper from the inner gulfs are given in Jackson (2007). 

Pink snapper: Oceanic stock

The sections of otoliths that were collected prior to 2006 were read by two independent readers, 
and the opaque zone counts compared as described by Moran et al. (2005). With otoliths collected 
more recently (i.e. 2006/07 and 2007/08 seasons), a single reader-reference collection approach 
was used. Here, prior to reading any batch of ‘new’ otoliths, an experienced reader read a subset 
of sections randomly selected from a reference collection (n = 150, ‘re-familiarisation reading’). 
Counts were compared with previously agreed counts, and bias and precision measured. In 
cases of clear bias or low precision (IAPE > ~8-9%), another 150 reference collection sections 
were read, and bias and precision again estimated. Once the required level of bias and precision 
had been achieved, all the ‘new’ sections were read once and a random selection (25%) read for 
a second time, and bias and precision again measured (‘production reading’). 

The estimated age of individual oceanic pink snapper was calculated using otolith increment 
counts as follows. Firstly, opaque zone counts for fish collected during the peak period of 
opaque increment deposition with either ‘opaque’ or ‘wide translucent’ otolith margins were 
adjusted by adding 1 to those counts. The age class (i.e., age of fish in whole years) was then 
determined as the adjusted count based on the knowledge that a single opaque zone is formed 
annually (Wakefield 2006). The biological age (i.e. age in decimal years), was determined by 
adding the period of time (in months, as a fraction of a year) between the assumed birth date 
(August 1) and month of capture (Wakefield 2006). 
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Spangled emperor

A reference set of otolith sections was created from otoliths that when read independently by 
three experienced readers achieved an acceptable level of precision (IAPE < 5.5%) and lack 
of significant drift as determined from age bias plots. The upper bound of acceptable IAPE 
was then revised to 5.78% for this species, derived from the largest unbiased IAPE from initial 
paired readings of the reference collection done by the experienced readers (where 47.2% of 
readings achieved exact agreement, 45.3% had discrepancies of 1 and 7.5% had discrepancies 
of 2, for counts ranging from 1 to 30 increments). Analysis of imprecision and bias (drift) of 
repeated readings from the reference set was used to assess competency of the primary age 
reader (Reader 1) prior to commencing subsequent age readings following a break of at least 
2 weeks. Once qualified as having acceptable precision and accuracy, Reader 1 then read all 
otolith sections once, followed by an independent set of repeated readings of a random 25% 
sub-sample. Otolith reading was done in batches of at least 200 otolith sections. Precision and 
drift were checked for these paired readings for each batch and if acceptable, the first set of 
opaque increment counts of that batch was accepted for age estimation. Otherwise, Reader 
1 re-trained prior to continuing with new counts until acceptable levels of precision and no 
significant drift were recorded.

The method for calculating age estimates from otolith increment counts is described in Marriott 
et al. (2010) and Marriott et al. (2011a). Firstly, counts of annually deposited opaque increments 
(annuli) on otoliths collected during the peak period of opaque increment deposition with “wide 
translucent” marginal increments were adjusted for late-forming opaque increments by adding 
1 to those counts. The age class (i.e., age of that fish in whole years) was then determined as 
the adjusted count, since the duration from birth to deposition of the first annulus, and from the 
deposition of one annulus to the next, was determined to be approximately annual (Marriott 
et al. 2011a). The biological age, in decimal years, was determined by adding to the age class 
the length of time (to the nearest month, as a fraction of a year) calculated from when the most 
recently formed annulus was deposited to the time when the fish died. 

Goldband snapper

A single set of counts of the opaque zones in otoliths was conducted by a single experienced 
reader (SN) following the necessary training or re-training using a reference collection of 
otoliths. The reference collection was comprised of otolith sections that had been interpreted in 
a manner that was consistent with those sampled and aged from the Kimberley fishery in North-
Western Australia, which had been previously shown to produce accurate estimates of fish age 
(Newman and Dunk 2003). To assess the repeatability of increment counts, a random set of these 
counts was then repeated by the primary age reader for 163 otoliths, which constituted 11.5% 
of the entire set of goldband otoliths collected, aged and analysed for this report.  Precision in 
opaque zone counts between repeated readings by the primary age reader was estimated using 
an IAPE while reader drift was investigated using age-bias plots. 

The method for calculating age estimates from otolith increment counts for goldband snapper 
in the Kimberley is described in Newman and Dunk (2003). For Gascoyne goldband snapper, 
counts of annually deposited opaque increments (annuli) on otoliths collected during the peak 
period of opaque increment deposition with “wide translucent” marginal increments were 
adjusted for late-forming opaque increments by adding 1 to those counts. From an analysis 
of the timing of the spawning season and annulus deposition, the average age when the first 
annulus was deposited in otoliths of goldband snapper sampled from the Gascoyne Bioregion 
was determined to be 5 months. The biological age, in decimal years, was determined by adding 
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to the adjusted annulus count the length of time (to the nearest month, as a fraction of a year) 
calculated from deposition of the most recently formed annulus to the time when the fish died 
and then subtracting from this the difference between 1 and the average fraction of a year (in 
months) lived until deposition of the first annulus. The age class was then calculated as the 
biological age rounded down to the nearest whole year. 

4.2.2	 Gonads
For the three demersal indicator species, paired gonads were dissected, examined 
macroscopically, sexed and weighed (nearest 1 g). Gonads of pink snapper and goldband 
snapper were macroscopically staged based on methods described in Mackie et al. (2009), and 
of spangled emperor based on the methods described in Mackie and Lewis (2001).  Samples of 
fresh, unfrozen gonads of pink snapper (inner gulf stocks only, females only), spangled emperor 
(both sexes), and a small number of goldband (females only), either whole or as 2-3 mm 
transverse medial sections, were fixed in 10% buffered formaldehyde-seawater for subsequent 
histological processing and microscopic analysis.

Transverse sections of pink snapper ovaries were prepared as described in Mackie et al. (2009). 
Sections were examined microscopically and staged on basis of their histological characteristics 
(Mackie et al. 2009). Transverse sections of preserved spangled emperor gonads were prepared 
and categorised into maturity stages based on microscopic criteria as described in Marriott et al. 
(2010). Batch fecundity was estimated using the hydrated-oocyte method (Hunter et al. 1985; 
Mackie et al. 2009) for pink snapper from the inner gulfs (see 5.1.4.2) and for a small number 
of spangled emperor only.

4.3	 Logbook data collection
Commercial (since 1975) and charter (since 2002) fishing catch and effort data were provided 
to DoFWA on a monthly basis in the form of statutory logbook returns that are completed 
and submitted by the skippers or the owner of the fishing licence. The landed form of product 
(eg. fillet, whole) and sum of unload weights for each species caught in a month are recorded 
separately for commercial fishing by different methods (eg. drop line, hand line) for each 
vessel.  Commercial fishing is also reported within grid map blocks delineated by degree lines 
of latitude and longitude (i.e. approximately 60 x 60 nautical mile ‘blocks’) for each vessel. 
Landed catches of pink snapper that are reported on commercial logbook returns (submitted 
every month) and on catch disposal records (CDRs: submitted after every trip) are compared 
for data checking and quality control. CDRs are required to be submitted for the purpose of 
monitoring catch quota of pink snapper upon completion of each fishing trip and, as part of 
the regulations for the SBSF, all pink snapper catch must be accurately weighed on unloading. 
Corresponding effort information (days fished, hours fished per day, etc.) was also recorded for 
each record of catch. On charter fishing logbook returns data were recorded on a daily basis and 
for fishing done within 5 x 5 nautical mile blocks or, for all fishing done in marine parks and 
reserves, by GPS coordinate for each fishing location. The lengths (TL, mm) of all, or a random 
sample, of fish that were retained by charter fishers were recorded on their daily/trip returns. 
Copies of the logbook returns for commercial and charter fishing are provided in Appendix 2.

Recreational fishing data were provided from surveys conducted by the DoFWA (e.g. RFS: see 
Section 6.1.2.2. for further details). Recreational data were also provided by volunteer fishers 
participating in the Research Angler Program (RAP). In 2007 a dedicated effort was made by 
the Department to implement the RAP in the Gascoyne Bioregion, including the use of RAP 
angler logbooks and RAP catch cards (not reported here) by recreational fishers. This work 
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was supported by an external grant provided by the NRM Rangelands Catchment Coordinating 
Group, enabling the appointment of a dedicated RAP coordinator to be based in the Gascoyne. 
Recreational fishers recorded the TL of each species caught and released or retained and details 
of the time and location of fishing and fishing gear used in RAP angler logbooks. RAP logbook 
data were used to estimate (given certain assumptions; see Section 6.3) the size-selectivity 
of spangled emperor caught by recreational fishers, but were not used directly in catch curve 
or per-recruit quantitative assessment models. This project also enabled the biological dataset 
for spangled emperor to be supplemented and a collaborative study between the DoFWA and 
CSIRO on fine-scale patterns in population genetics of spangled emperor at Ningaloo to be 
conducted (Berry et al. 2012).

4.4 	 Analyses – Rationale for spatial and temporal grouping of 
data

Because catch and effort data (C&E) from the three sectors were reported and collected within 
different time periods, much consideration was given to how best to group both the biological 
and fishery data to allow meaningful comparisons and the most appropriate representations for 
each sector. Grouping commercial data based on the Shark Bay Snapper Fishery quota-year (i.e. 
1 September to August 31) most appropriately represents annual totals of commercial C&E in 
the Gascoyne because it reflects historical periods of setting and allocating catch quota for this 
fishery (representing the major commercial demersal scalefish fishing activity in the Bioregion). 
Conversely, grouping recreational data based on the timeframe during which the Gascoyne 
recreational fishing survey data were collected, i.e. 1 April 2007 to March 31 2008, most 
appropriately represents the annual estimates of recreational C&E. Charter fishing is currently 
managed as part of the recreational sector and is therefore most appropriately represented over 
the same time period as recreational fishing (i.e. 1 April – 31 March).

Since peak fishing activity occurs in winter for all sectors in the Bioregion, primarily because 
strong winds in the off-peak season between October and May (AIMS unpublished data in 
Smallwood 2009) impede water-based activities, comparisons of annual C&E between sectors 
were made for ‘years’ with coincident winter periods (i.e. “Overlap period” in Fig. 4.1). Thus, 
data for the commercial year 1 September 2006 to 31 August 2007 were compared to data for 
recreational and charter years commencing 1 April 2007 ending 31 March 2008 (Fig. 4.1). 
In all cross-sector comparisons, the coincident months were April-August inclusive and the 
disparate months (occurring in different calendar years) were September-March inclusive. This 
approach assumed that the inter-annual influence of variation from C&E data reported for the 
months September to March had negligible influence on comparisons of the general properties 
of annual C&E estimates between sectors.



Fisheries Research Report [Western Australia] No. 228, 2012	 21

Figure 4.1. 	 Periods used for reporting annual catch, effort and biological statistics. Data from the 
commercial sector were reported for “Commercial” years (1 September to 31 August) 
and data from the recreational and charter sectors were reported for “Recreational” 
years (1 April to 31 March). “Overlap period” represents the periods of peak catches 
and fishing effort across all sectors.

This assumption was explored for catch curve assessments of spangled emperor and goldband 
snapper stocks, where the analyses were repeated for different types of assessment year 
(calendar, recreational, commercial). Those analyses revealed that results were relatively robust 
to decisions made concerning which monthly samples to include or exclude based on year type, 
supporting this assumption (Section 6.3; Appendices 3, 4). The sensitivity of the pink snapper 
assessment models to different year type groupings will be explored in future assessments (i.e. 
2012 onwards).

Fishery boundaries often do not match bioregional, zone or regional management boundaries, 
may not coincide with statistical catch and effort reporting block boundaries, or two or more 
existing fishery boundaries may not coincide or may overlap. These are true of the Gascoyne 
Coast Bioregion, where a range of existing managed fisheries harvest demersal scalefish species 
(Section 3.0). 

Extensive discussions among researchers and managers of the DoFWA resulted in the assessment 
zones presented in Figure 1.1. The justifications for these assessment zone boundaries are as 
follows:

•	 	Bioregional boundaries (e.g. the Gascoyne Coast Bioregion) were developed as part of the 
regional management initiative during the early 2000’s (DoF. 2000; Lenanton et al. 2006).

•	 	The Shark Bay Inner Gulfs comprise Zone 1. The boundary between the inner gulfs and 
oceanic waters of Shark Bay was developed through a protracted process that took into 
consideration the best available understanding of the distribution of the oceanic and inner 
gulf stocks of pink snapper (see 5.1.1 for details). 

•	 	The 250 m isobath boundary separating Zones 2 and 3 is consistent with that delineating 
the offshore demersal zone of the WCDSF (DoF 2010a), represents a common break in 
the distribution of fishes and habitats and shift in fishing activity as few recreational fishers 
currently operate beyond this depth. This boundary is also consistent with the recommended 
western management boundary for the GDSF (DoF 2005). 
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•	 	 The Pt Maud to Tantabiddi commercial fishing closure was implemented in the early 1970s 
in anticipation of the declaration of the Ningaloo Marine Park (DoF 2006). The line at Pt 
Maud is also the proposed northern boundary for the GDSF (DoF 2005) and thus was selected 
as the boundary separating Zones 1-4 (South Gascoyne) from Zones 5-7 (North Gascoyne). 

•	 	Zones 4 and 5 comprise waters within the Ningaloo Marine Park that are respectively 
adjacent to open, and closed commercial fishing areas. Preliminary data from RFS surveys 
suggest that some recreational fishers launching from Zone 4 access deep water adjacent to 
the zone, suggesting the break between Zones 4 and 5 be maintained for the purpose of these 
assessments.

The boundaries among the various management zones rarely match existing 1-degree CAES 
blocks (used to collect commercial catch and effort data), or the 5 x 5 nm blocks used to collect 
both angler, and charter catch and effort information. Thus a set of decision rules was developed 
to consistently enable the precise allocation of the available catch and effort data from each 
sector and assessment zone for reporting (see Section 6.1.2). Additionally, the Commonwealth-
managed Western Deepwater Trawl Fishery harvests demersal scalefish species and its area of 
operation is restricted to depths deeper than the 200 m isobath. No data from this fishery were 
included in this report.

4.5 	 Analyses – Rationale for adopting different assessment 
approaches for the different indicator species

Different assessment approaches were applied to the different stocks of indicator species in this 
report. The different approaches reported here reflected different amounts of data availability in 
each of these cases and thus were consistent in general concept with the multi-tiered approaches 
to assessment and monitoring adopted by Smith et al. (2008). The primary fishing sector 
(recreational, charter, commercial) from which landed catches were sampled and analysed 
for stock assessments varied among indicator species, reflecting the varying cross-sector 
compositions of landed catches among these species (Table 3.1). Accordingly, assessments for 
pink snapper stocks focussed primarily on commercial and recreational data, assessments for 
spangled emperor focussed mainly on recreational data, and assessments for goldband snapper 
focussed mainly on commercial data (Table 3.1). Catch and effort data, however, were analysed 
from all sectors for comparative purposes.

Because pink snapper has historically been the primary demersal scalefish target species in 
the Bioregion, DoFWA had implemented research and monitoring programs on those stocks 
since the 1980s. Thus, a much longer time series of datasets were available for this species. 
Additionally, a long time series of suitable CPUE data identified as representing a reliable index 
of relative abundance, once standardised, were also available for pink snapper. This meant that 
there were sufficient data available for an assessment of pink snapper stocks using an integrated 
age-structured model (Section 6.3.1). However, there were insufficient CPUE data available for 
spangled emperor and goldband snapper to use for this purpose (see Section 6.2), which meant 
that Level 3 ‘weight-of-evidence’ (Wise et al. 2007) assessment approaches were applied to 
those stocks (see Section 6.3 for details). Importantly, in developing the ‘weight-of-evidence’ 
approach, the DoFWA acknowledges that advice on stock status based on smaller datasets and 
simpler methods than for stocks assessed using an integrated age-structured model (e.g., as used 
for pink snapper stocks herein) have greater uncertainty. The ‘weight-of-evidence’ approach 
accounts for a higher unquantified level of uncertainty in simpler, lower-level assessments 
(represented in Tables 7.1 - 7.5 of this report).
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Separate assessments were done for each stock of indicator species. Assessments for the pink 
snapper stock in oceanic waters (Zone 2) and for each of the three pink snapper stocks in the 
inner gulfs of Shark Bay (Eastern Gulf, Denham Sound, Freycinet Estuary; Zone 1) were done 
using integrated models. A Level 3 weight of evidence assessment of the goldband snapper 
stock was done for its oceanic stock, comprising Zones 2 and 3 only, because commercial 
goldband catches north of Point Maud (Zones 5–7) represent commercial fishing by Pilbara 
fishers, which contribute to a separately managed fishery that is monitored and managed under 
separate processes.  A separate Level 3 ‘weight-of-evidence’ assessment was done for spangled 
emperor north (“North Gascoyne”: Zones 5-7) and south (“South Gascoyne”: Zones 2-4) of 
Point Maud because of known differences in biology (Marriott et al. 2011a) and historical 
fishing and management between these two study regions. 

Where possible, catch and effort statistics were reported for each sector and assessment zone 
for each indicator species. However, when there were insufficient data per zone or issues with 
assessment zone boundaries splitting spatial reporting units, these data were presented for 
groupings of assessment zones that were within or aligned with spatial stock assessment units 
(see Section 6). 
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5.0 	 Biological characteristics of key indicator species

5.1 	 Pink snapper
The biological information for pink snapper in the Gascoyne Coast Bioregion that is presented in 
this report was mostly derived from research undertaken by Wakefield (2006, for oceanic waters 
off Shark Bay) and Jackson (2007, for the inner gulfs of Shark Bay) and is cited accordingly. In 
contrast to the other two indicator species, intensive biological sampling of pink snapper was 
not specifically undertaken as part of the Gascoyne IFM project. 

5.1.1	 Distribution, structure and movement 
Pink snapper are widely distributed throughout the warm temperate and sub-tropical waters of 
the western Indo-Pacific (Paulin 1990). Around southern Australia, pink snapper inhabit marine 
embayments and coastal waters out to depths of ca. 250-300 m from Hinchinbrook Island in 
Queensland (18o S) to Barrow Island in Western Australia (21o S) (Kailola et al. 1993). The 
species has been reported in commercial catches from waters as far north as Derby (14o S, D. 
Gibson pers. comm.). 

The stock structure of pink snapper in the Gascoyne Coast Bioregion, which is located towards 
the northern extent of the abundant geographic range of the species on the west coast of 
Australia, has received considerable attention. Comprehensive stock identification studies, 
mostly focused in and around Shark Bay, and conducted over more than 20 years, have shown 
the stock structure of this species to be highly complex in this region (Jackson 2007). A number 
of independent genetic (allozymes) studies indicate that pink snapper in the oceanic waters off 
Shark Bay, in the Eastern Gulf and Freycinet Estuary, are reproductively isolated from each 
other, while fish in Denham Sound are partially isolated from the other populations (MacDonald 
1980; Johnson et al. 1986; Whitaker and Johnson 1998; Baudains 1999). Tagging studies 
(Moran et al. 2003; G. Jackson unpublished data) and otolith chemistry (Edmonds et al. 1999; 
Bastow et al. 2002; Gaughan et al. 2003) indicate little or no mixing of juvenile, sub-adult and 
adult pink snapper between oceanic waters and the inner gulfs, or between the two inner gulfs. 
Hydrodynamic modelling in combination with empirical data obtained via ichthyoplankton 
surveys showed that pink snapper eggs and larvae in the inner gulfs are retained within meso-
scale eddies (kilometres in diameter) effectively isolating the main spawning grounds from 
each other (Nahas et al. 2003). 

As a consequence of these studies, four separate fishable stocks of pink snapper are recognised 
within the Gascoyne Coast Bioregion: an oceanic stock found along the continental shelf 
outside Shark Bay and, in the inner gulfs, separate stocks in the Eastern Gulf, Denham Sound 
and Freycinet Estuary (Stephenson and Jackson 2005). The biological data reported here are 
presented for the oceanic and inner gulf stocks separately. The exact nature of the relationship 
between pink snapper off Shark Bay and along the west coast is being investigated as part 
of a Western Australian Marine Science Institute sub-project (WAMSI 4.4.2, ‘Implications 
of mobility, stock structure, and biology of West Coast indicator species for management’). 
Results of this WAMSI research will be used to re-assess stock and management boundaries for 
pink snapper in Gascoyne and West Coast Bioregions in the future. 
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5.1.2 	 Age and growth

5.1.2.1 	 Introduction
Age and growth of pink snapper have been comprehensively studied in New Zealand (Paul 
1992; Francis et al. 1992) and Australia (McGlennon et al. 2000; Sumpton 2002; Ferrell 2004; 
Fowler et al. 2004) including Western Australia (Wakefield 2006; Jackson 2007; Lenanton et al. 
2009a). The interpretation of annuli in sectioned sagittal otoliths is widely used for ageing pink 
snapper around Australia (Coutin et al. 2003; Fowler et al. 2004; Lenanton et al. 2009a). The 
species is long-lived and relatively slow growing. Maximum age recorded in Australia is ca. 40 
years (Norriss and Crisafulli 2010) compared with ca. 55-60 years in New Zealand (Francis et 
al. 1992).

5.1.2.2 	 Methods
For the pink snapper samples collected (Table 5.1.1), sex was determined and ages were 
estimated using the methods outlined in Chapter 4.0. Growth was modelled by fitting von 
Bertalanffy growth curves to length (FL, mm) at age data,

FL = 

	
  
L∞(1− e

−K (t−t0 ) )
for oceanic (Wakefield 2006) and inner gulf snapper (Jackson et al. 2010b). Juveniles for which 
sex could not be determined were randomly assigned to either the male or female sets of length-
at-age data. Growth curves and parameters were compared using a likelihood-ratio test (Kimura 
1980) under the assumption that the residual variances differed (Cerrato 1990).

5.1.2.3 	 Results

5.1.2.3.1 	Contribution of samples from each sector
Biological samples from the inner gulf stocks were mostly obtained by fishery-independent 
sampling undertaken by DoFWA (research program commenced in 1997) due to the absence 
of a significant commercial fishery for this species inside Shark Bay, difficulties in adequately 
sampling recreational catches and the highly restrictive management measures in place since 
ca. 1998 (e.g. moratorium on take of pink snapper in Eastern Gulf 1998-2003) (Table 5.1.1). 
The exception was the Freycinet Estuary where a significant proportion of the samples collected 
during 1997-2000 were obtained from recreational catches landed at the Nanga boat ramp. 
Since 2004, inner gulf samples have only been collected by DoFWA during DEPM surveys that 
are undertaken approximately every 3-5 years. 

All biological samples from the oceanic stock were obtained via fishery-dependent sampling 
of commercial catches taken by SBSF vessels, which take approximately 80-90% of the total 
overall catch. In general, greater numbers of samples were collected each year from 2004 
onwards following a reduction in the TACC to closely monitor stock recovery and meet 
requirements under the Environment Protection and Biodiversity Conservation Act 1999. 
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Table 5.1.1. 	 Number of biological samples of pink snapper from the Gascoyne Coast Bioregion by 
stock, sector and year used in the assessments reported. Sample numbers here only 
represent fish that were individually aged. 

Stock Sector

Year

19
92

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08 %

Oceanic Commercial 200 557 – – 88 – 242 – 201 610 477 687 323 618 98

Recreational – – – – – – – – – – – – – – 0

Research – – – – – – – – – – – – 13 67 2

Total 200 557 – – 88 – 242 – 201 610 477 687 336 685

Inner Gulfs

Eastern
Gulf

Commercial – – – – – – – – – – – – – – 0

Recreational – – – – – – – – – – – – – – 0

Research – – – 113 81 265 104 103 186 250 – – – – 100

Total 113 81 265 104 103 186 250 – – – –

Denham
Sound

Commercial – – 10 – – – – – – – – – – – 1

Recreational – – – 50 – – – – – – – – – – 7

Research – – 59 97 86 252 67 – 107 – – – – – 92

Total – – 69 147 86 252 67 – 107 – – – – –

Freycinet 
Estuary

Commercial – – – – – – – – – – – – – – 0

Recreational – – 76 54 79 179 9 11 – – – – – – 43

Research 11 10 48 2 57 70 – 119 – 106 110 – 57

Total 87 64 127 181 66 81 – 119 – 106 110 –

Grand total 200 557 156 324 382 698 479 184 494 979 477 793 446 685

5.1.2.3.2 	Bias and precision 

Oceanic stock

In general, otoliths of pink snapper from oceanic waters of Shark Bay are more difficult to 
interpret than otoliths from inner gulf fish. No significant trend in bias was evident from the age 
bias plot for the majority of the otoliths from the most recent year used in the assessment (i.e. 
2007/08 season) (Fig. 5.1.1). However, sections with more than 12 opaque zones (i.e. older fish) 
were generally poorly represented in commercial catches. The overall IAPE value at 4.18% was 
below the target level recommended for species with intermediate (10-30 years) to long (> 30 
years) life spans and with otoliths of moderate reading complexity.

Inner gulf stocks

Similarly, no significant trend in bias was evident from the age bias plots for otoliths of fish 
from the ‘age classes’ taken by the recreational fishery from the three inner gulf stocks (data 
for all years combined) (Fig. 5.1.1). Sections with more than 12 opaque zones were poorly 
represented in the Eastern Gulf and Denham Sound samples while sections with more than 20 
opaque zones were consistently represented in samples from the Freycinet Estuary. Measures 
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of precision were well below the target level for sections from the Eastern Gulf (IAPE = 2.3%) 
and Freycinet Estuary (IAPE = 4.4%) but higher for Denham Sound (IAPE = 6.2%) reflecting 
differences in otolith readability among the locations/stocks.

5.1.2.3.3	 Validation
The periodicity of increment formation in pink snapper otoliths from Gascoyne waters has been 
validated as annual using marginal increment analysis and oxytetracycline/calcein marking of 
otoliths (Wakefield 2006; Jackson 2007). Opaque zones are generally formed during late autumn 
to early spring; delineation typically was completed by August-September in oceanic waters and 
over a longer period, August-November, in the inner gulfs (Wakefield 2006; Jackson 2007).

5.1.2.3.4 	Length and age composition of stock 
There were no obvious sex-based biases in length frequency distributions with males and 
females observed equally across the length ranges sampled for all four stocks (Fig. 5.1.2).  The 
benefits of fishery-independent sampling in the inner gulfs were apparent with fish less than the 
minimum legal length (MLL, 500 mm TL) well represented in the Eastern Gulf and Denham 
Sound. Samples from the oceanic stock that were obtained from fishery-dependent sampling 
contained no fish less than the MLL (410 mm TL). Equal proportions of both sexes were taken 
above the MLL and in the case of inner gulf stocks, also above the maximum legal length (750 
mm TL).

Modal age was youngest at 4 years for the oceanic stock (samples from 2007/08 season) 
followed by 6 years in Denham Sound (samples from 2003), 8 years in Eastern Gulf (samples 
from 2004) and 10 years in Freycinet Estuary (samples from 2007) (Fig. 5.1.3). The age 
frequency distribution for the oceanic stock indicated a steady decline in age classes after the 
mode although fish older than 15 years were represented but in very low numbers. In the inner 
gulfs, fish older than ca. 15 years were absent in the Eastern Gulf and poorly represented in 
Denham Sound while fish of 20 years or more were observed in the Freycinet Estuary.
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Figure 5.1.1. 	 Age bias plots for repeat readings of pink snapper otoliths (i) upper left, oceanic 
stock, samples collected 2007/08 commercial season, single reader 25% re-read 
(total n=685, re-read n = 104, IAPE = 4.18), (ii) upper right, Eastern Gulf, single 
reader, all sections read twice (n=312, IAPE = 2.34), (iii) lower left, Denham 
Sound, single reader, all sections read twice (n=427, IAPE = 6.20), (iv) bottom 
right, Freycinet Estuary, single reader, all sections read twice (n=353, IAPE = 4.4). 
Numbers above points are sample sizes. Error bars represent ±2 SE; lack of bars in 
some cases indicates insufficient data for some count groups. 
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Figure 5.1.2. 	 Length frequency distributions for female (white bars, above x-axis) and male (grey 
bars, below x-axis) pink snapper from the oceanic stock (data from most recent year 
2007/08 in assessment), Eastern Gulf (from 2004), Denham Sound (from 2003) and 
Freycinet Estuary (from 2007). Hatched red lines indicate minimum and maximum 
legal lengths (applies only in inner gulfs) as FL equivalents of TL).



30	 Fisheries Research Report [Western Australia] No. 228, 2012

Denham Sound 2003
n = 107

   0    5    10    15    20    25    30

0

10

20

30

Freycinet 2007
n = 110

Age (years)

   0    5    10    15    20    25    30

0

10

20

30

Oceanic 2007/08
n = 686

   0    5    10    15    20    25    30

0

10

20

30

Eastern Gulf 2004
n = 250

   0    5    10    15    20    25    30

%
 f

re
q

u
en

cy

0

10

20

30

Figure 5.1.3. 	 Age frequency (%) distributions of pink snapper from oceanic stock, Eastern Gulf, 
Denham Sound and Freycinet Estuary.

5.1.2.3.5	 Growth
The von Bertlanffy growth curves fitted the length-at-age data reasonably well in all cases: 
coefficients of determination were generally high (> 0.8) and the mean extrapolated ages at 
zero length were close to zero in most instances (Table 5.1.2). In general, growth was rapid with 
fish up to ca. 4-5 years of age in all four stocks. Thereafter, growth slowed between 5-10 years 
prior to reaching an asymptotic length at ca. 9-10 years with oceanic fish and later, at ca. 14-15 
years with inner gulf fish (Fig. 5.1.4).  Maximum age was ca. 30 years in the Freycinet Estuary 
and oceanic stock compared with 19 years in Denham Sound and 17 years in the Eastern Gulf. 
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In the inner gulfs, sex-based differences in growth were not statistically significant in the Eastern 
Gulf and Freycinet Estuary but were in Denham Sound (Jackson et al. 2010b). Growth of 
both females and males was not significantly different between the Eastern Gulf and Freycinet 
Estuary but differed significantly for both sexes between these areas and Denham Sound 
(Jackson et al. 2010b). Growth in both sexes in Denham Sound was slower compared with 
the Eastern Gulf and the Freycinet Estuary. For oceanic fish, differences in growth between 
the sexes were also statistically significant (Wakefield 2006). (Note: stock assessment models 
for inner gulf pink snapper stocks are single sex. Although the last oceanic pink snapper stock 
assessment (2009) was modified to accommodate differences in growth between sexes based 
on evidence from Wakefield (2006), the benefits of sex-based differences in model parameters 
will be fully explored in the next full assessment (i.e. 2012)). 

5.1.2.3.6	 Natural mortality 
Natural mortality (M) was directly estimated, M = 0.22 (95 C.I. 0.09-0.34) year-1, by fitting 
catch curves to pink snapper age structure data collected during a 5-year fishing moratorium in 
the Eastern Gulf (Jackson 2007). For comparison, indirect estimates of M obtained using the 
empirical equations of Pauly (1980, assuming a mean water temperature of 23o C), Ralston 
(1987) and Hoenig (1983, assumed Z = M) were 0.51, 0.38 and 0.12 year-1, respectively (using 
a common maximum age of 35 years). The integrated stock assessment models currently 
used for management of the inner gulf snapper stocks employ values of M = 0.08–0.19 year-1 
(Stephenson and Jackson 2005). Stock assessment modelling with the oceanic snapper stock 
uses M = 0.13 year-1. In contrast, a value of M = 0.075 year-1is used in snapper stock assessments 
in New Zealand (Gilbert et al. 2000), where individuals of the species live to 55-60 years of age 
(Francis R.I.C.C. et al. 1992) compared with around 30 years in Shark Bay.
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Table 5.1.2. 	 von Bertalanffy growth parameters (± 95% CI) for pink snapper from the Gascoyne 
Coast Bioregion. 

	 L∞ 
(mm, FL)

k
(year-1)

to
(year)

Amax FLmax n r2

Oceanic
  Female

Estimate 599 0.214 -0.144 30.0 725 726 0.89

Upper 617 0.231 -0.075

Lower 580 0.199 -0.216

  Male

Estimate 561 0.244 -0.079 22.1 710 661 0.88

Upper 588 0.274 0.012

Lower 537 0.218 -0.156

Eastern Gulf
  Female

Estimate 755 0.178 0.035 17.2 698 523 0.91

Upper 782 0.192 0.146

Lower 732 0.165 -0.049

  Male

Estimate 751 0.172 -0.071 15.2 749 385 0.93

Upper 784 0.187 0.009

Lower 724 0.158 -0.133

Denham Sound
  Female

Estimate 762 0.142 -0.032 19.1 721 384 0.85

Upper 795 0.157 0.108

Lower 728 0.129 -0.170

  Male

Estimate 660 0.181 -0.055 17.1 563 297 0.84

Upper 722 0.209 0.091

Lower 615 0.151 -0.189

Freycinet Estuary
  Female

Estimate 773 0.166 0.125 29.7 730 392 0.94

Upper 791 0.176 0.205

Lower 759 0.156 0.044

  Male

Estimate 766 0.173 0.075 31.1 724 399 0.95

Upper 780 0.182 0.146

Lower 756 0.164 0.009

L∞ hypothetical asymptotic length at infinite age, FL, fork length, k, growth coefficient, to, hypothetical age at zero length, Amax, 
maximum age, FLmax, maximum fork length, n, sample size, r2, coefficient of determination.
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Figure 5.1.4. 	 von Bertalanffy growth curves (sexes combined) for pink snapper from Eastern Gulf 

(purple), Freycinet Estuary (green), Denham Sound (blue) and oceanic stock (red).

5.1.3	 Recruitment
During spawning, the pelagic eggs of pink snapper are released and fertilized within the upper 
layers of the water column (Smith 1986; Jackson 2007). The incubation period is influenced by 
environmental conditions, particularly water temperature, with hatching taking place after ca. 
20-30 hrs in the inner gulfs (Norriss and Jackson 2002). A pelagic larval phase of ca. 20-25 days 
(Tapp 2003) occurs prior to metamorphosis and settlement when the juveniles are ca. 8-10 mm 
in length (TL) (Fukuhara 1991; Battaglene and Talbot 1992).

Studies in Australia (Fowler and Jennings 2003; Hamer and Jenkins 2004; Saunders 2009) and 
New Zealand (Francis 1993) have shown high levels of inter-annual variability in 0+ recruitment. 
While the driving mechanism(s) are still not fully understood, environmental factors, in particular, 
water temperature, has been linked with recruitment variation. Warmer years either during the 
spawning season or shortly thereafter, have been linked with stronger recruitment, and conversely, 
cooler years with weaker recruitment in New Zealand (Francis 1993) and southern Australia 
(Fowler and Jennings 2003; Hamer and Jenkins 2004; Saunders 2009).

Research on recruitment variability with pink snapper in the sub-tropical Shark Bay region and 
possible linkages with environmental conditions is still at a preliminary stage. The distribution 
and abundance of juveniles in their first and second years (0+ and 1+) has been investigated in 
the inner gulfs using trawl (Moran and Kangas 2003) and trap surveys (Jackson et al. 2007). 
Moran and Kangas (2003) concluded that in the Freycinet Estuary, 0+ fish reside in the deeper 
basins (depth 10-12 m) over sandy/muddy bottoms from the time of settlement (ca. 20 days) 
until well after their first birthday. In contrast, and possibly due to the greater range of suitable 
habitat types that are available, in Denham Sound and the Eastern Gulf, 0+ fish delay their 
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movement into the deeper waters until their first summer (ca. 6 months of age) and remain there 
until their second summer (ca. 18 months of age).

Trawl surveys conducted in the deeper waters during February-March were judged to provide 
representative samples of 0+ abundance and were therefore determined to be the preferred 
method to be used to develop an annual index of 0+ abundance in all three areas (Jackson et 
al. 2007). The longest time series of recruitment data for pink snapper in the Gascoyne is that 
for the Freycinet Estuary that indicates a single strong recruitment year only (in 2000, Moran 
and Kangas 2003) in 13 years of trawl surveys (Fig 5.1.5). The 2000-year class was strongly 
represented in recreational catches landed at Nanga as 6 year olds in 2006 and 7 year olds in 
2007 (G Jackson unpublished data). Similar such time series of juvenile recruitment data are 
unavailable for the other two inner gulf stocks or the oceanic stock; establishing locations of 
higher densities of 0+ in Denham Sound, Eastern Gulf and waters off Carnarvon using trawl 
and trap surveys have been less successful (Moran and Kangas 2003; Jackson et al. 2007) but 
the research continues.
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Figure 5.1.5.	 Index of Pagrus auratus 0+ recruitment in Freycinet Estuary, Shark Bay, based 
on annual trawl surveys. Error bars are 1 SE and numbers above data points are 
number of trawl shots undertaken in each year.

Recruitment of oceanic pink snapper has also been investigated using more indirect methods. 
Moran et al. (2005) used a form of cohort analysis (i.e. Pope’s approximation, Pope 1972) 
to analyse a time series of catch-at-age data from the commercial SBSF snapper fishery for 
the period 1982-2003. Results showed a period of high recruitment in early 1990s followed 
by low recruitment through the mid-late 1990s and early 2000s (Moran et al. 2005). More 
recent stock assessment modelling (P. Stephenson, unpublished data) indicates only average 
or below average recruitment since 2000 (see 6.3.3).  At this time, and based on the very 
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limited information available, stronger recruitment years appear to occur approximately 8-10 
years apart for pink snapper populations in the sub-tropical waters of the Shark Bay region.  
Additionally, specific patterns in annual recruitment appear not to be consistent between the 
oceanic and inner gulf stocks.

5.1.4 	 Reproduction 

5.1.4.1 	 Introduction
The reproductive biology of pink snapper has been studied extensively in New Zealand (Cassie 
1956; Crossland 1977a, 1977b; Scott and Pankhurst 1992; Scott et al. 1993) and Australia 
(Sumpton 2002; Coutin et al. 2003; McGlennon 2003), including Western Australia (Wakefield 
2006; Jackson 2007; Lenanton et al. 2009a). The species is functionally gonochoristic with 
protogynous sex inversion occurring in some individuals prior to maturity (Francis and Pankhurst 
1988). The species has an annual reproductive cycle and is a batch spawner (Scott and Pankhurst 
1992; Jackson 2007). Spawning occurs around winter in sub-tropical waters (e.g. Queensland, 
Sumpton 2002; Shark Bay, Jackson et al. 2010b) and in spring-summer in temperate waters 
(e.g. New Zealand, Scott and Pankhurst 1992; South Australia, McGlennon 2003; south coast 
of Western Australia, Wakefield 2006). Pink snapper commonly form spawning aggregations 
where sex ratios (females by weight) range between 1:1 and 1:6 (Jackson et al. 2012). 

5.1.4.2 	 Methods
Gonadosomatic indices (GSIs) were calculated for males and females using, 

GSI = 100 x Wg/(WW - Wg)

where WW = whole wet weight of fish (g) and Wg = wet weight of gonads (g) for fish ≥ 
length at 50% maturity (L50). Mean monthly GSIs were compared with the monthly percentage 
frequencies of fish with developed (male stage 3, female stage 4) or spawning (male stage 4, 
female stage 5) gonads for all fish ≥ L50 (Jackson et al. 2010b).

Lengths (L50, L95) and ages at maturity (A50, A95) were estimated using logistic regression 
analysis with 95% confidence limits estimated using bootstrapping (Jackson et al. 2010b). 
Length and age at maturity for both sexes were compared using a likelihood-ratio test (Kimura 
1980; Cerrato 1990) with the significance level adjusted for multiple comparisons using the 
Bonferroni method (Quinn and Keough 2003).

Batch fecundity was estimated gravimetrically using the hydrated-oocyte method for inner gulf 
fish only (to provide information required for daily egg production method assessments, see 
6.3) (Mackie et al 2009). Non-linear regression models were used to describe the relationship 
between batch fecundity (F) and fork length (FL) for females from each inner gulf stock. 
Regression curves were compared among years 1998-2003 and stocks using the approach 
described by Jackson (2007).

5.1.4.3 	 Results

5.1.4.3.1 	Annual reproductive cycles

Oceanic stock

Seasonal trends in the mean GSIs and the monthly proportions of females with gonads in 
spawning condition indicated that spawning occurs between May-September and peaks in 
June-July (Wakefield 2006, Fig. 5.1.6).
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Figure 5.1.6. 	 Mean monthly gonadosomatic indices (±1 SE) and the percentage of mature (white 
bars) or spawning (grey bars) gonads of female (left) and male (right) Pagrus auratus 
from the oceanic stock off Carnarvon, Western Australia (from Wakefield, 2006). The 
data have been pooled for corresponding months (sample sizes shown) and are 
limited to fish ≥L50 for each sex separately. On the x-axis, open rectangles represent 
spring and autumn, and black rectangles winter and summer. 

Inner gulf stocks

Spawning in the Eastern Gulf and Denham Sound mostly occurs between May-July, whereas, 
fish in the Freycinet Estuary mostly spawn later in the year, between August-October (Jackson 
et al 2010, Fig. 5.1.7).

5.1.4.3.2 	Length and age at maturity

Oceanic stock

The differences in the mean length and age at 50% maturity between sexes were not significant 
(Table 5.1.3). Female size at maturity was lower in oceanic fish compared with inner gulf fish 
while for males size at maturity was higher in oceanic fish compared with Eastern Gulf and 
Denham Sound but not the Freycinet Estuary. Female age at maturity was higher in oceanic fish 
compared with Eastern Gulf but lower than for Denham Sound and the Freycinet Estuary. Male 
age at maturity was higher in oceanic fish than in all inner gulf fish. 

Inner gulf stocks

There were significant differences in the mean length and age at 50% maturity between sexes 
with females being consistently larger and older than males in all three areas (Table 5.1.3). 
Based on estimates derived using reproductive data pooled over the 8-year study, both sexes 
matured at significantly smaller lengths and younger ages in the Eastern Gulf compared with 
Denham Sound and the Freycinet Estuary (Jackson et al. 2010b). 
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Figure 5.1.7 	 Mean monthly gonadosomatic indices (±1 SE) for pink snapper from inner gulfs 
(Denham Sound, Eastern Gulf and Freycinet Estuary), based on fish with lengths 
≥ length at 50% maturity (from Jackson et al. 2010b). On x-axis, closed rectangles 
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Table 5.1.3. 	 Lengths and ages at which 50% and 95% (L50, L95, A50 and A95 respectively) 
of female and male pink snapper reach sexual maturity in the Gascoyne Coast 
Bioregion. Information is presented for oceanic stock (from Wakefield 2006) and inner 
gulfs stocks (from Jackson 2007). Lengths are FL (mm) and age (years) and n = 
sample size.

	 L50 L95 n A50 A95 n

Oceanic 

Female

Estimate 327 417 1010 4.0 6.0 406

Upper 336

Lower 317

Male

Estimate 305 418 938 3.9 6.2 418

Upper 317

Lower 294

Eastern Gulf 

Female

Estimate 348 484 689 3.2 5.6 309

Upper 365 500 3.5 6.0

Lower 330 464 2.7 5.0

Male

Estimate 243 403 599 1.6 4.2 225

Upper 267 429 2.2 5.2

Lower 218 374 1.0 3.1

Denham Sound 

Female

Estimate 401 601 482 5.5 9.9 202

Upper 417 629 6.1 11.8

Lower 384 572 4.9 8.4

Male

Estimate 276 397 380 2.7 7.1 139

Upper 295 423 3.3 8.9

Lower 259 369 1.6 5.5

Freycinet Estuary

Female

Estimate 420 566 580 4.5 8.4 213

Upper 452 587 5.1 9.2

Lower 392 542 3.8 7.4

Male

Estimate 330 465 522 2.7 5.9 178

Upper 352 436 3.3 7.5

Lower 301 489 2.0 4.4
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5.1.4.3.3	 Fecundity
Based on the female gonad samples (n = 408) collected in 1998-2003 from the inner gulfs 
(Table 5.1.4), batch fecundity (F) was positively related to female fork length (FL) in all cases. 
There was no significant difference in the non-linear relationship between FL and F either 
among sampling years or locations/stocks.  Batch fecundity data from all locations/years (Fig 
5.1.8) was therefore pooled and a common non-linear model derived as follows:

F = 9.436 x 10-5FL3.359

Estimated batch fecundity ranged from 2,749 hydrated oocytes (1 SE 577) for a 172-mm-FL 
female (Eastern Gulf, 1998) to 653,261 hydrated oocytes (1 SE 52,225) for a 710-mm-FL 
female (Freycinet Estuary, 1998) (Table 5.1.4).

Table 5.1.4.	 Estimates of batch fecundity (F) for pink snapper from inner gulfs of Shark Bay from 
samples collected 1998-2003. 

Area Year n FL range (mm) F range (eggs x 103)

Eastern Gulf 1998 91 172 - 696 3 - 429

1999 45 348 - 714 23 - 531

2000 41 284 - 706 18 - 424

2001 - - -

2002 14 396 - 710 22 - 293

2003 45 193 - 636 2 - 331

Denham Sound 1998 22 241 - 638 2 - 277

1999 - - -

2000 27 341 - 619 4 - 474

2001 - - -

2002 - - -

2003 22 437 - 701 21 - 416

Freycinet Estuary 1998 37 473 - 741 15 - 653

1999 18 343 - 685 8 - 543

2000 14 195 - 670 4 - 265

2001 - - -

2002 32 432 - 725 32 - 660

2003 - - -

n = sample size; FL = fork length
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Figure 5.1.8.	 Relationship between batch fecundity and fork length (mm) for pink snapper from the 

inner gulfs (Eastern Gulf, Denham Sound and Freycinet combined) pooled for years 
1998-2003. Solid line is common non-linear regression curve. 

5.1.5	 Other factors influencing susceptibility to exploitation
Size (length) and daily bag limits are used in the management of recreational fisheries for pink 
snapper in the Gascoyne, both in the inner gulfs (slot* and daily bag limit apply) and in oceanic 
waters (minimum legal length [MLL] and daily bag limit apply); the same MLL applies in the 
commercial SBSF in oceanic waters. Management arrangements involving limits on the size 
or numbers of fish that can be retained typically assume nil or very low levels of discard (post-
release) mortality. However, information on the post-release mortality is often unavailable. 

While a range of factors influence discard mortality, e.g. handling and hooking injuries, capture 
depth via barotrauma has been shown to be the most important factor (Stewart 2008; Lenanton 
et al. 2009b). Pink snapper are considered to be more robust than many other demersal species 
although discard mortality rates related to barotrauma still increase significantly with depth; in 
WA waters, mortality increased from ca 3% in shallow depths (5-30 m) to ca. 69% in deeper 
waters (45-65 m) (Lenanton et al. 2009b).

In the shallow waters of the inner gulfs (mostly < 20 m), discard mortality due to barotrauma 
is not considered to be significant, as with this species elsewhere (e.g. Stewart 2008; Grixti 
et al. 2009).  In oceanic waters, research has focussed on providing information on discard 
rates in the commercial SBSF; the fishery accounts for approximately 80-90% of the total pink 
snapper catch and operates to a greater extent in the deeper waters (30-300 m) compared to the 
recreational/charter fishery (mainly undertaken in waters 30-70 m).

*	  Minimum legal lengths for inner gulf and oceanic stocks are above the estimated lengths at 50% maturity.
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Preliminary analysis of data obtained from at-sea monitoring onboard SBSF vessels (n = 
170+ drops since 2003, DoFWA unpublished data) indicates that the proportion of undersized 
(discarded) pink snapper decreased with the size of the catch (as fishers find schools of spawning 
snapper that typically form over nearshore reef habitat in shallower waters) but increased with 
increasing depth of water fished. The mean proportion of undersized pink snapper increased 
from ca. 11% in shallower waters (mean depth 63 m) when the species was the main target, to 
ca. 19% in deeper waters (mean depth 160+ m) when goldband snapper were the main target 
(DoFWA unpublished data). 

The limited data available for recreational vessels fishing in similar oceanic waters (e.g. 
Levillian Shoals and off Steep Point, waters 30-60 m), obtained from exemption-returns lodged 
at the Denham Fisheries Office (2007), indicated that between 31% and 58% (average 47%) of 
pink snapper caught were discarded, i.e. significantly higher than discard rates with commercial 
vessels. Thus release mortality is likely a significant source of mortality for this species in 
deeper waters (i.e. > 30 m) across all fishing sectors in the Gascoyne Coast Bioregion.
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5.2	 Spangled emperor 

5.2.1	 Distribution, structure and movement
The spangled emperor has a circum-tropical distribution and in Western Australia (WA) is 
distributed from Rottnest Island northwards, typically in or near coral reef habitats (Allen and 
Swainston 1988). In WA, spangled emperor has been documented, from shallow water surveys 
(to 20 metres), to be most abundant in the Pilbara and Gascoyne Bioregions (Hutchins 2001). 
This includes areas such as the Monte Bello Islands, Muiron to Boodie Islands, Ningaloo to 
North-West Cape, Point Quobba to Coral Bay, and Western Shark Bay, as well as the South-
West Kimberley and the Houtman Abrolhos Islands. In these areas spangled emperor is often 
found in places where sandy substratum meets patches of coral reef (Ayling and Ayling 1987).

The population structure and movement of spangled emperor in WA has been studied by 
assessing spatial variation in allozymes (Johnson et al. 1993), otolith microchemistry (Moran 
et al. 1993), tagging and recapture (Moran et al. 1993), acoustic telemetry (R. Babcock, R. 
Pillans unpublished data) and DNA micro-satellite markers (Berry et al. 2012). Individuals 
generally demonstrate a limited home range of less than three nautical miles (Moran et al. 
1993). Relatively high site fidelity has been shown for at least some individuals in WA (R. 
Pillans unpublished data) and elsewhere (Chateau and Wantiez 2008). Limited mixing of post-
settlement individuals is also indicated from an analysis of otolith microchemistry of spangled 
emperor sampled from different sites (Moran et al. 1993). Genetic studies have demonstrated 
homogeneous genetic characteristics across broad spatial scales (i.e., 10-1500 km) throughout its 
WA distribution (Johnson et al. 1993). Analysis of fine scale patterns using high resolution micro-
satellite markers, however, has revealed that juveniles exhibit fine scale genetic autocorrelation, 
which declined with age (Berry et al. 2012). This implies both larval cohesion and extremely 
limited juvenile dispersal prior to maturity for the spangled emperor population, primarily in the 
vicinity of the Ningaloo Marine Park (Berry et al. in press). Further, hydrodynamic modelling 
showed that larvae were likely to be transported hundreds of kilometres, easily accounting 
for the observed gene flow, despite relatively restricted adult dispersal (Berry et al. 2012). 
This explains a causal mechanism for spangled emperor comprising a single genetic stock 
throughout the Bioregion and is consistent, in part, with the hypothesis of this species having a 
single genetic stock in WA. 

5.2.2	 Age and growth

5.2.2.1	 Introduction
Studies of the age and growth of spangled emperor populations have previously been undertaken 
in northwestern Australia (Moran et al. 1993), the Great Barrier Reef (Grandcourt 1999), 
Seychelles (Grandcourt 1999), the Red Sea (Salem 1999), southern Arabian Gulf (Grandcourt 
et al. 2006) and New Caledonia (Loubens 1980; Morales-Nin 1988). All of those studies used 
otolith sections to estimate fish age, which have been shown to produce accurate estimates 
for this species (Morales-Nin 1988; Grandcourt et al. 2006; Marriott et al. 2010) and reported 
spangled emperor to be a relatively long-lived, slow-growing scalefish in general. However, 
maximum estimates of age ranged from 14 (Grandcourt et al. 2006) to 27 (Loubens 1980) years 
and estimates of the von Bertalanffy growth parameter, K ranged from 0.11 years-1 (Grandcourt 
et al. 2006) to 0.22 years-1 (Loubens 1980; Morales-Nin 1988), demonstrating some variability 
in reported estimates among studies. 
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This variation in reported growth estimates prompted the investigation of age and growth 
characteristics for spangled emperor in the two regions assessed for this report: South Gascoyne 
(Zones 1 to 4 combined) and North Gascoyne (Zones 5 to 7 combined; Fig 1.1). Results on age-
growth characteristics for spangled emperor in the North Gascoyne and South Gascoyne have 
been published and are reported in Marriott et al. (2011a). Marriott et al. (2011a) found that 
spangled emperor was relatively long-lived with a maximum age of 30.75 years, that growth 
was significantly different between the study regions, with fish from the North Gascoyne 

demonstrating a higher K and lower 
	
  

∞L  than those from the South Gascoyne, and no consistent 
significant effect of sex on growth.

Length frequency distributions of spangled emperor sampled from the catches of different 
sectors and representative catch-at-age distributions are presented to demonstrate the results of 
biological sampling for assessments in Section 6.3. 

5.2.2.2	 Methods
Methods for sampling, biological processing and age estimation are reported in Section 4. 

For representative catch-at-age distributions, details of statistical methods and rationale are 
reported in Marriott et al. (2011a). Data from only the recreational sector were considered due 
to sample size limitations and questions of representativeness of data collected from the other 
sectors. Recreational samples collected during interviews for the 2007/08 Recreational Fishing 
Survey (RFS), involved statistically designed random sampling stratified by month, location 
and mode of fishing (shore versus boat; as described in Section 4). As the RFS sampling design 
was stratified on known patterns of recreational fishing effort, this analysis assumed that landed 
recreational catches were directly proportional to landed recreational catches of spangled 
emperor (Marriott et al. 2011a). 

Age samples from other sources of recreational sampling were only pooled with samples from 
the RFS if it was demonstrated that there were statistically non-trivial variation among them, 
while guarding against the prospect of Type II error (	
  α =0.25) inappropriately inflating the 
statistical power of subsequent tests (Winer et al. 1992; 1992). The number of pair-wise statistical 
comparisons (and thus recreational data groups included in the analysis) were restricted given 
considerations of experiment-wise error rates and to include only representative recreational 
datasets (Marriott et al. 2011a). Only ‘like’ groups were pooled within each region, given that 
the detection of a significant effect in one region was taken as evidence that this effect was non-
trivial (Marriott et al. 2011a).

5.2.2.3	 Results

5.2.2.3.1	 Contribution of samples from each sector
The largest number of specimens collected by sector were reported in 2007, reflecting the greater 
amount of sampling effort in that year that was concomitant with the 2007/08 Recreational 
Fishing Survey (RFS) (i.e., Year 2; Table 5.2.1). All data in Table 5.2.1 are presented by 
Calendar year for comparison, in addition to the relevant sampling “years” used in / considered 
for analyses, which are in normal font type (i.e., data for charter and recreational sectors are 
consistently analysed by “Recreational” years and commercial data analysed by “Commercial” 
years; see Section 4.4 of General Methods). 
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Table 5.2.1.	 Numbers of spangled emperor obtained from North and South Gascoyne regions. 
RFS, recreational fishing survey, * Note: 2008 data to June only.

  Year  

Region Sector Year type 1 2 3 %

North Charter Recreational 56 109 14

Zones 5-6 Calendar 33 132

Commercial Commercial 3 79 7

Calendar 82

Recreational

 RFS ramp Recreational 4 169 15

 RFS roving Recreational 34 4

 Tournament Recreational 2 31 2

    Donated/other Recreational 86 155 166 36

 RFS ramp Calendar 162 11

 RFS roving Calendar 34

 Tournament Calendar 25 8

 Donated/other Calendar 6 172 229

Research Calendar 92 151 21

Unspecified Calendar 2 0.2

Total   242 652 245 1139

South Charter Recreational 18 57 7 11

Zones 2-4 Calendar 18 55 9

Commercial Commercial 36 112 55 28

Calendar 135 13 55

Recreational

 RFS ramp Recreational 11 75 12

 RFS roving Recreational 21 56 11

 Tournament Recreational 43 53 13

    Donated/other Recreational 20 157 3 25

 RFS ramp Calendar 86

 RFS roving Calendar 77

 Tournament Calendar 43 53

    Donated/other Calendar 14 158 8

Research Calendar 3 5 1

Unspecified

Total   106 503 123 732

Grand total     348 1155 368 1871

Common
months

Year

Year type Start Date End Date 1 2 3

Calendar 1 January 31 December April - August 2006 2007 2008

Recreational 1 April 31 March April - August 2006/07 2007/08 2008/09

Commercial 1 September 31 August April - August 2005/06 2006/07 2007/08
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5.2.2.3.2	 Bias and precision
Exact agreement was achieved from independent age readings of otoliths by the primary age 
reader for 69.4% of specimens, and discrepancies between repeated counts of 1, 2, and > 2 
increments were made for 26.3%, 3.0%, and 1.3% of these specimens, respectively. The IAPE 
was comparatively low, at 2.56%, for the 25% of random sub-sampled paired readings, which 
was consistent with levels frequently tolerated by many ageing laboratories and reported in the 
literature (Campana 2001), indicating acceptable precision of the resulting age estimate data. 
Further, no significant or consistent trend in drift or bias from the exact agreement line was 
evident (Fig. 5.2.1.). 

Figure 5.2.1.	 Age bias plot for subset of repeated readings of spangled emperor done by primary 
age reader (n = 399). IAPE = 2.56%. Numbers above each point represent numbers 
of otoliths read for groupings of count 1 data.

5.2.2.3.3 	Validation
Evidence supporting the accuracy of this age estimation method for spangled emperor 
populations in WA has been previously demonstrated (Kalish et al. 2002; Marriott et al. 2010; 
Andrews et al. 2011). Biological studies done elsewhere have also demonstrated that this 
method produces accurate age estimates for spangled emperor (Morales-Nin 1988; Grandcourt 
et al. 2006). Opaque zones in otoliths that are counted for estimates of fish age (years) are 
generally formed from October to December in the Gascoyne (Marriott et al. 2010). 

5.2.2.3.4	 Length and age composition of stock
Inspection of pooled (i.e. from all collection sources) length frequency samples by sex 
demonstrated that males and females, as identified by macroscopic sex determinations, were 
observed across similar size ranges in both regions, with more small fish less than the MLL (i.e. 
to the left of the vertical dashed line) sampled from the North Gascoyne than from the South 
Gascoyne (Fig. 5.2.2.). There were conspicuously more females than males in the smallest 
length classes, and accurate microscopic sex determinations revealed that 100% of spangled 
emperor less than 200 mm FL were rudimentary or immature females, with intersexual fish 
(i.e., changing from female to male) sampled over a slightly larger, but relatively narrow, size 
range (251—274 mm FL; Marriott et al. 2010). This reflected pre-maturational protogynous sex 
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change evident in at least the resident North Gascoyne population of this species and inaccurate 
macroscopic sex determinations for some of the smaller, younger fish (Marriott et al. 2010; see 
also Section 5.2.4.).

There was also a conspicuously higher number of larger fish sampled in the South Gascoyne 
than in the North Gascoyne and more females sampled than males in the largest length classes 
(Fig. 5.2.2.). The relatively uniform sex ratio throughout the harvestable size range (to the right 
of the red vertical dashed line indicating the MLL) demonstrates that fishing is not likely to 
impact more heavily on one sex than another as a consequence of this species’ evolved sexual 
development. This was supported by the finding of no significant differences detected between 
male and female representative catch-at-length distributions for each of the study regions by 
Marriott et al. (2011a).

Figure 5.2.2.	 Length frequency distributions for female (white bars, above x-axis) and male (grey 
bars, below x-axis) for spangled emperor from the North Gascoyne and South 
Gascoyne assessment regions. Sexes determined from macroscopic inspection of 
gonads where it was not possible to obtain it from histological analysis. The red line 
represents the MLL of 410 mm TL, which equals 366.8 mm FL.
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Very few specimens less than 350 mm FL were collected from the landed catches (Fig. 5.2.3) as 
this was below the current minimum legal size limit (MLL) of 41 cm TL, (which corresponds 
to 366.8 mm FL), except for targeted collections of smaller specimens by fishery-independent 
research sampling (Research).

Figure 5.2.3.	 Length frequency distributions for spangled emperor sampled from different sources 
in 2007. Commercial data collected from 1 September 2006 to 31 August 2007, 
Recreational and Charter data collected from 1 April 2007 to 31 March 2008, 
Research data collected for 2007 calendar year. Vertical dashed lines show the FL 
equivalent (i.e. 36.68 cm FL) of the MLL (41cm TL).
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The modal FL was larger for all samples collected from the South Gascoyne than from the North 
Gascoyne except for Donated/other recreational samples and Charter samples, where the modal 
lengths were the same between regions. Research specimens collected in the North Gascoyne 
had a bimodal distribution, associated with the collection of larger individuals from targeted 
sampling of suspected spawning aggregation sites and opportunistic sampling of smaller (< 
MLL) individuals from shallower waters for investigating suspected pre-maturational sex 
change and maturity of males and females (Marriott et al. 2010; Section 5.2.4). That the modal 
FL was largest for Research specimens sampled from suspected spawning aggregation sites 
than for all other samples from the North Gascoyne likely reflects a migration of predominantly 
large adults to these sampling sites during the spawning season. 

Significant (non-trivial) variation was detected between RFS roving and Donated/other samples 
for North Gascoyne specimens but not for South Gascoyne specimens (Marriott et al. 2011a). 
Further, Marriott et al. (2011a) found that no detectable variation existed between RFS ramp 
and Donated/other samples for both North Gascoyne and South Gascoyne specimens, which 
indicated that it was valid to pool those samples at the level of Region (North Gascoyne, South 
Gascoyne) for subsequent analysis. This effectively validated the supplementation of samples 
that were considered to be representative of boat-based recreational catches for each region 
(i.e., the RFS ramp specimens; see Section 4.1.1) and these pooled data sets are referred to as 
the “representative” samples for spangled emperor catches herein. 

The North Gascoyne representative catch at age distribution had a modal age of 5 years and 
the number of fish older than 6 years was relatively low (27.5% of displayed distribution) 
considering that the maximum observed age was 25.1 years for the North Gascoyne and 30.8 
years for the Bioregion (Fig. 5.2.4.). The South Gascoyne representative catch at age distribution 
differed to the North Gascoyne distribution, demonstrating two strong modes at 4 and 6 years 
and a much higher proportion of fish sampled that were older than 6 years (56.5% of displayed 
distribution), out to a maximum age of 30.8 years (Fig. 5.2.4.). This observed difference in shape 
of age frequency distributions between regions was also statistically significant (Marriott et al. 
2011a). Importantly, a higher number of older fish (> 15 years) were sampled from the South 
Gascoyne than from the North Gascoyne, despite a considerably lower sample size obtained for 
the South Gascoyne, indicating that this observed difference in the shape of the distributions 
was not likely attributable to sample size effects.
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Figure 5.2.4.	 Representative catch at age distributions for spangled emperor landed recreational 
catches made in 2007/08 for North Gascoyne and South Gascoyne regions. Note the 
higher proportion of fish greater than 6 years of age in the South.

5.2.2.3.5 	Growth
Marriott et al. (2011a) quantified the growth trend for male and female for spangled emperor 
in each assessment zone by fitting the von Bertalanffy growth model to length at age data. 
Parameter estimates and goodness of fit statistics from this work have been reproduced in 
Table 5.2.2. Marriott et al. (2011a) found that there was a significant difference in growth 
trends between zones but not between sexes. Growth in length was rapid from 0-5 yr, then the 
growth rate decreased to reach the average asymptotic length (L∞) at approximately 8-10 yr 
in the North Gascoyne and slightly older at 10-15+ yr in the South Gascoyne (Marriott et al. 
2011a). The fitted curves also demonstrated a larger L∞ in the South Gascoyne than in the North 
Gascoyne (i.e., differed by ~7% of the South Gascoyne L∞; Marriott et al. 2011a). Estimates for 
the growth curvature parameter (k) indicated a relatively moderate growth rate (i.e., compared 
to other scalefish species) throughout life.
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Table 5.2.2. 	 von Bertalanffy growth parameters (± 95% CI) for female and male spangled 
emperor in the North, South, and for sexes combined.*  
Reproduced from Marriott et al. (2011a).

L∞ 
(mm, FL)

k
(yr – 1)

to
(yr)

Amax FLmax n r2

North
  Female

Estimate 591.5 0.254 -0.244 20.9 671 505 0.84

Upper 605.1 0.277 -0.041

Lower 578.0 0.230 -0.447

  Male

Estimate 556.3 0.318 0.064 25.1 650 507 0.68

Upper 567.0 0.354 0.417

Lower 545.6 0.281 -0.288

South
  Female

Estimate 623.7 0.177 -1.68 27.8 707 365 0.61

Upper 643.3 0.215 -0.43

Lower 604.1 0.138 -2.93

  Male

Estimate 604.8 0.182 -1.61 30.8 677 299 0.65

Upper 624.2 0.221 -0.41

Lower 585.4 0.142 -2.81

Sexes combined
  North

Estimate 573.1 0.282 -0.133 25.1 671 1012 0.79

Upper 581.5 0.300 -0.297

Lower 564.8 0.263 0.031

  South

Estimate 616.0 0.179 -1.60 30.8 707 664 0.63

Upper 629.9 0.207 -0.74

Lower 602.1 0.152 -2.46

5.2.2.3.6 	Natural mortality
The coefficient describing the instantaneous rate of natural mortality (M) was estimated for 
the for spangled emperor Gascoyne stock by Marriott et al. (2011a) using a range of different 
methods (Moran et al. 1993; Hoenig 1983; Hewitt et al. 2007). They determined a biologically 
plausible estimate for M = 0.146 year-1, which was a consistent estimate produced from: (i) 
fitting a catch curve to age structure data from a lightly exploited population and (ii) applying 
the maximum estimated age from the bioregion (30.75 yr) to the formula of Hoenig (1983) 
(Marriott et al. 2011a).

*	  L∞ hypothetical asymptotic length at infinite age, FL, fork length, k, growth coefficient, to, hypothetical age at zero length, Amax, 
maximum age, FLmax, maximum fork length, n, sample size, r2, coefficient of determination.
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5.2.2.4 	 Discussion
A relatively low frequency of spangled emperor sampled older than 6 years in the North 
Gascoyne in 2007/08 is consistent with impacts of fishing on the population age structure in that 
region. An independent comparison of the 2007/08 North Gascoyne age distribution with an age 
distribution sampled from the North West Cape (within the North Gascoyne region) in 1989-
91 provided evidence to suggest that there has been depletion of older for spangled emperor in 
the North Gascoyne population since 1989-91 (Marriott et al. 2011a). There was a statistically 
significant difference detected between these North Gascoyne age frequency distributions, due 
to a much smaller proportion of spangled emperor that were older than 6 years in 2007/08 
(27.5%) than in 1989-91 (50.3%; Marriott et al. 2011a).

Fewer older fish will remain in populations exposed to fishing mortality because older fish 
have typically been exposed to mortality for longer periods than younger fish and are therefore 
numerically less abundant in fish populations prior to fishing (Cushing 1968). Assuming that the 
presented age distributions were accurately representative of population age structure (past the 
modal age) and that there was no influence of other factors, such as highly variable recruitment, 
consistent with the assumptions of conventional catch-curve analyses (Beverton and Holt 1957; 
Ricker 1975). Catch curve analyses of these datasets were done by Marriott et al. (2011a) and 
are reported as part of the ‘weight of evidence assessments’ presented in Section 6.3.3.2. 

5.2.3 	 Recruitment
Larvae of spangled emperor were found to hatch from fertilised ova approximately 24 hours 
post-spawning (Arvedlund and Takemura 2006). Larvae remain in the water column for 
approximately 45 days until they metamorphose and settle in shallow seagrass beds as juvenile 
fish (Ebisawa 1990; Arvedlund and Takemura 2006). Arvedlund and Takemura (2006) found 
that juveniles use well-developed olfactory organs to select their first benthic habitat based on 
chemical cues emitted by these seagrass bed nursery ground habitats. Their research indicated 
that juveniles also probably select their benthic habitat (seagrass beds) at night, as do many 
other species of coral reef fishes (e.g., Kingsford 2001). 

There have been no studies into recruitment variability for this species although Moran et al. (1993) 
inferred that the multi-modal age frequency distribution for for spangled emperor sampled from 
the Abrolhos Islands, at the southern end of this species’ range in WA, could be a manifestation 
of infrequent and variable strength of larval supply to that area from spawning events further 
north. D’Adamo and Simpson (2001) suggested that the Ningaloo Reef system might act as a 
source of eggs and larvae to reefs in the Monte Bello Islands and Dampier Archipelago during 
summer, when the north-flowing Ningaloo Current facilitates larval transport. The spring/
summer spawning pattern demonstrated for Gascoyne populations by Moran et al. (1993) (and 
in Section 5.2.4 below) is consistent with this latter view for larval dispersal. Recently, Berry et 
al. (2012) postulated that both larval cohesion and extremely limited juvenile dispersal prior to 
maturity could explain an observed decreasing genetic autocorrelation with age detected at fine 
spatial scales in the Bioregion. Hydrodynamic modelling showed that larvae were likely to be 
transported hundreds of kilometres, which supported their findings (Berry et al. 2012). 
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5.2.4 	 Reproduction

5.2.4.1 	 Introduction
The reproductive development of spangled emperor has previously been investigated in Japan 
(Ebisawa 1990), the North-West Shelf and Gulf of Carpentaria in northern Australia (Young 
and Martin 1982), north Western Australia including Ningaloo Marine Park (MP) (Moran et al. 
1993), the Great Barrier Reef (Grandcourt 1999) and Egypt (Salem 1999). Results on the mode 
of sexual ontogeny have differed, with gonochorism (no sex change) inferred from analysis 
of sex-specific size frequency and limited histology (Young and Martin 1982; Salem 1999) 
to inferred pre-maturational (i.e., non-functional sensu Sadovy de Mitcheson and Liu 2008) 
protogyny (female to male sex change) from histological analysis of a broader size range of 
individuals (Ebisawa 1990; Grandcourt 1999). Moran et al. (1993) previously analysed sex-
specific size frequency in the Ningaloo MP but failed to demonstrate any evidence of sex change. 

Marriott et al. (2010) recently used accurate histological methods to describe in detail the sexual 
and reproductive development of spangled emperor in the North Gascoyne study region (Zones 
5 to 7 combined) and identified a non-functional, pre-maturational protogynous development. It 
was not possible to investigate maturation and sexual ontogeny in the South Gascoyne (Zones 
1 to 4 combined) using those methods because sampling efforts for specimens under the MLL 
(and therefore immature and sex-changing fish) in that region were unsuccessful. Marriott et al. 
(2010) demonstrated that all of the smallest and youngest fish sampled were female until they 
either changed sex to male at a mean length of 27.8 cm TL and age of 2.3 years or remained 
female and matured at a larger mean length of 39.2 cm TL and older age of 3.5 years. Importantly, 
that study demonstrated that both pre-maturational sex change and average female maturity 
occurred at sizes smaller than the current MLL. This indicates that at least half of all females 
can spawn at least once prior to growing to the MLL and that sex change (contributing to biased 
sex ratios) does not occur within the legally permissible size range for retained catches.

Spawning in spangled emperor populations has been studied in East Africa (Nzoika 1979), 
New Caledonia (Loubens 1980), Japan (Ebisawa 1990), north Western Australia (Moran et al. 
1993), Egypt (Salem 1999) and the southern Arabian Gulf (Grandcourt et al. 2010). In North-
Western Australia, Moran et al. (1993) found evidence for peak spawning from October 1989 
to February 1990 and from November 1990 to March 1991 from analysis of monthly trends 
in relative gonad weights, with spawning in the Mid-West area (Abrolhos Islands) occurring a 
month or two later than in the North-West area (North West Cape, North West Shelf). Changes 
in mean egg diameters and mean gonad index with fish length during the spawning season were 
used by Moran et al. (1993) to infer the average length at maturity of 380 mm FL for North-
Western Australian populations, which was used to revise the MLL from 28 cm to 41 cm TL 
in 1994. Fecundity estimates for spangled emperor were made by Ebisawa (1990) and Salem 
(1999), which involved counts of oocytes larger than 120 mm and 320 mm respectively, but 
since these counts included smaller (and less developed) oocyte stages than hydrated oocytes, 
they likely over-estimated batch fecundity for this species (Hunter et al. 1985).

Spangled emperor are known to form spawning aggregations throughout their circum-tropical 
distribution (Salem, 1999; Grandcourt et al. 2010). Salem (1999) described a spawning 
aggregation site for spangled emperor at Jackfish Alley, off the Sinai Peninsula in the Red Sea, 
which was commercially fished, with highest catch rates observed over a 10-12 day period 
either side of the full moon. Spawning occurred over two successive lunar cycles, with peak 
spawning activity reported on the third day following the full moon. Grandcourt et al. (2010) 
also reported peak spawning activity for spangled emperor occurring shortly after the full moon 
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in the Southern Arabian Gulf. It is possible that spangled emperor may travel large distances to 
aggregation sites and be vulnerable to fishing when in aggregations during the spawning period. 

Off Ningaloo Reef, field observations have identified high catch rates of relatively large 
spangled emperor from aggregations during October and November, although histological 
examination of sampled ovaries did not verify the females as being in the act of spawning 
(DoFWA, unpublished data). Also, some recent acoustic tracking work showed that, during the 
spawning season, one spangled emperor individual moved outside of the lagoon and proximity 
of the network of receiver stations in Mangrove Bay in October 2008 to a suspected spawning 
aggregation site, only to return back to that lagoon in mid-December that year, towards the end 
of the spawning period (R. Pillans, unpublished data). Further, some individuals were tagged at 
a suspected spawning aggregation site, left the site, and were observed to return nearby during 
the same lunar phase the following year (R. Pillans, unpublished data). These observations 
suggest that the spatial distribution of spangled emperor may alter during the spawning season 
due to the migration of adult spawners to spawning aggregation sites.

The spawning season of spangled emperor is reported here for the two study regions assessed 
for this report: South Gascoyne (Zones 1 to 4 combined) and North Gascoyne (Zones 5 to 
7 combined). In addition, given the aforementioned methodological issues with published 
estimates of batch fecundity, a preliminary estimate of batch fecundity for spangled emperor is 
presented here, as it will be used in the egg per-recruit assessment in Section 6.3.

5.2.4.2 	 Methods
Sex was determined and maturity stages were estimated from ovaries and testes using 
macroscopic and histological techniques according to methods outlined in Sections 4.1 and 4.2 
and reported in Marriott et al. (2010). Seasonal spawning patterns were assessed by analysing 
trends in the mean monthly gonado-somatic index (GSI) values, where GSIs were calculated 
as the gonad weight (GW: g) divided by the total body weight (BW: g) for each specimen. In 
instances where BW data were not available, BW was estimated from FL measurements (mm) 
according to the following formula: BW = 6.002×10-5 FL2.810 generated from fitting the power 
function to observed BW on FL data (n = 204; r2 = 0.975). Overlayed on this plot were the 
monthly proportions of ovaries sampled that were macroscopically staged as either Developed 
(Stage 4) or Spawning (Stage 5), for assessing seasonal patterns in reproduction. These stages 
were grouped together as the “Ripe” category for males and females. Batch fecundity estimates 
were made from counts of only the whole hydrated oocytes identified in samples (wedges) of 
ovarian lamellae extracted from a small number of preserved ovary specimens (n = 8) using the 
gravimetric method of Hunter et al. (1985) (see Section 4.2.2). 

5.2.4.3 	 Results
Plots of monthly GSI and proportion ripe ovaries and testes demonstrate similar patterns in the 
timing of reproduction for females and males in both Gascoyne regions, with peak reproduction 
occurring from September to November each year (Fig. 5.2.5.). There were conspicuously 
fewer data collected from the South Gascoyne, which meant that trends for that region were 
presented with less precision. A paucity of specimens shown for the South Gascoyne post-
April 2008 reflects a marked reduction in sampling in that region due to the completion of the 
Recreational Fishing Survey (RFS) in March 2008. Specimens collected post-April 2008 were 
those obtained from regular sampling in the North Gascoyne and infrequent sampling at fishing 
tournaments in the South Gascoyne for the NRM Rangelands funded project, “Implementing a 
Research Angler Program in the Gascoyne”.
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A repeated-measures ANOVA revealed no significant effect of wedge (preserved lamellae 
sample) position (Anterior, Medial, Posterior) within ovaries on the number of hydrated oocytes 
counted per gram wedge weight (F2,14 = 1.09, P = 0.36), indicating that it was valid to average 
oocyte counts across the three ovarian wedge weights for estimates of batch fecundity (BF) for 
each fish (Table 5.2.3.). There was no clear trend in BF with FL, whole weight or estimated age. 

The average BF per gram of body weight from these data was gfecX /  = 41.18 ±  16.25 s.e. eggs.  

Figure 5.2.5.	 Mean monthly gonadosomatic indices (±1 SE, solid lines, sample sizes above) and 
percentage of macroscopic stages 4 and 5 (Ripe) combined (grey bars) for females 
and males of spangled emperor from the North (above) and South (below) Gascoyne 
assessment regions.



Fisheries Research Report [Western Australia] No. 228, 2012	 55

Table 5.2.3. 	 Batch fecundity estimates for spangled emperor.

Fish Identifier Ovary weight (g) FL (mm) Age (yr) BF (eggs) CV

SE060902-18 79.88 499 8.92 243,397.63 0.032

SE060902-20 70.10 510 15.92 26,177.87 0.599

SE060902-3 137.60 557 14.92 271,267.70 0.140

SE061126-123 93.50 640 12.08 14,522.23 0.087

SE061126-133 110.07 595 9.08 94,982.47 0.071

SE070131-1 149.58 551 9.25 8,412.51 0.116

SE070131-5 86.16 600 10.25 3,111.52 0.564

SE071113-1 70.98 520 15.08 239,921.86 0.018

5.2.4.4	 Discussion
That peak spawning activity occurs outside of the peak period for recreational fishing (winter) 
suggests that spawning aggregations of spangled emperor are presently less susceptible to 
potential impacts of targeted recreational fishing than they could be. Sumner et al. (2002) 
demonstrated that recreational fishing activity diminished from October to March when 
inclement weather and sea conditions restricted boating and high temperatures in the Gascoyne 
were less appealing to visiting tourists. Departmental research is continuing on the fine-scale 
spawning parameters of spangled emperor populations, including spawning fractions over the 
lunar cycle and supplementing sample sizes for improved estimates of batch fecundity, in order 
to provide a better understanding of spawning stock dynamics for future stock assessments and 
management.

5.2.5	 Other factors influencing susceptibility to exploitation
Data from voluntary Research Angler Program (RAP) logbook users fishing in the Gascoyne 
bioregion to April 2009 showed that the majority of spangled emperor caught by these fishers 
(76%) were released (n = 263). The main reasons for releasing spangled emperor were that 
anglers either preferred to release them (53%) and because they were below the MLL (410 
mm TL; 47%). Preliminary analyses of these data indicated no obvious trend of release rates 
with increasing depth or length above MLL, although the highest number of catches were from 
relatively shallow (< 5 m) waters. 

Relatively high post-release survival rates observed from tag-recapture (Moran et al. 1993) 
and acoustic monitoring (Chateau and Wantiez 2008; R. Babcock unpublished data) studies 
demonstrate that spangled emperor have relatively low probability of post-release mortality 
when caught from shallow depths (< 10 m) and handled in a way that minimises fish stress (e.g., 
see Code of Conduct for Recreational Fishing on Department of Fisheries WA website, www.fish.

wa.gov.au). Given that a high proportion of spangled emperor caught are released, post-release 
survival is a key consideration in the future sustainable harvest of this species. Importantly, 
post-release survival of spangled emperor caught in deeper depths is unknown, but is likely to 
be markedly lower than from captures in shallower depths (e.g., Rogers et al. 1986; Wilson and 
Burns 1996; Lenanton et al. 2009b). 
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5.3	 Goldband snapper 

5.3.1	 Distribution, structure and movement
Goldband snapper are widely distributed throughout the tropical Indo-Pacific from Samoa to 
the Red Sea and from southern Japan to Australia (Allen 1985). In Western Australia, goldband 
snapper are found from Cape Pasley (east of Esperance) northwards (Newman and Dunk 2003) 
at depths of 60 – 250+ m. In the Gascoyne Coast Bioregion, goldband snapper are mostly 
caught by commercial fishing in waters of 150-250 m depth. 

The stock structure of goldband snapper has previously been investigated for Kimberley, 
Northern Territory and Indonesian populations (Lloyd et al. 1996; Newman et al. 2000; Ovenden 
et al. 2002; Ovenden et al. 2004). In Indonesia, genetic subdivision was apparent over relatively 
small spatial scales (< 500 km), suggesting that all life stages of this species may be relatively 
sedentary (Ovenden et al. 2004). In Australia, goldband snapper stocks in the Kimberley 
and Northern Territory were found to be genetically distinct while otolith chemistry analysis 
indicated that adults remained sedentary on individual reefs (Lloyd et al. 1996; Newman et al. 
2000; Ovenden et al. 2002).

5.3.2	 Age and growth

5.3.2.1	 Introduction
Age and growth of goldband snapper have been previously studied in Papua New Guinea 
(Richards 1987), the Timor Sea (Edwards 1985), Malaysia (Mohsin and Ambak 1996), and 
off the Kimberley coast of Western Australia (Newman and Dunk 2003). The results of these 
studies have varied largely due to the different methods used to determine age. Using transverse 
otolith sections and validation with edge-type analysis Newman and Dunk (2003) produced 
estimates of age up to 30 years.  Results of this study showed Kimberley fish to be long-lived 
and relatively slow growing with no significant difference in growth between the sexes.

5.3.2.2	 Methods
Goldband snapper were sampled using fishery-dependent and fishery-independent methods, 
sex was determined and ages were estimated according to methods outlined in Chapter 4.0. 
Data were analysed for the area south of Point Maude only (South Gascoyne). 

Estimates of fish age (in years) were obtained based on counts of opaque zones observed 
in transverse otolith sections as described in Section 4.0. Recently deposited material on 
the proximal otolith margin (growing surface) was categorised as either ‘wide translucent’, 
‘narrow translucent’ or ‘opaque’, consistent with the categories of Marriott et al. (2010). The 
monthly proportions of each otolith edge-type were plotted for a 13-month period of sample 
collection, from 1 November 2007 to 30 November 2008, in order to describe trends in opaque 
increment deposition in goldband snapper otoliths from the Gascoyne. The patterns in timing 
and periodicity of opaque increment deposition were used to validate the ageing methods for 
goldband snapper from the Gascoyne (see Section 5.3.2.3.3).

Age compositions of females and males were compared using histograms with the data pooled 
across all collection methods, sectors and sampling years. Growth was modelled by fitting von 
Bertalanffy growth curves to length (FL, mm) at age (t, years) data,

FL = 
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Initial fits of the model resulted in relatively large departures of 0̂t from zero due to the absence 
of fish younger than 4 years in the samples. Therefore, the von Bertalanffy growth curve was 
fitted with a biologically sensible constraint on t0, which was a fixed value of zero (Marriott et 
al. 2007). Prior to fitting the growth curves separately to data for each sex, length-at-age data 
were compared by linearly transforming these data and then testing for significant differences 
in slope and elevation using ANCOVA. Sex-specific fits of the von Bertalanffy growth model 
were then tested for significant difference to the fit to pooled data using the coincident likelihood 
ratio test of Cerrato (1990) as a check to the former analysis.

5.3.2.3	 Results

5.3.2.3.1	 Contribution of samples from each sector
Samples were obtained via fishery-dependent sampling of commercial catches taken by SBSF 
vessels and from fishery-independent research sampling (Table 5.3.1.). All data in Table 5.3.1 
are presented by Calendar year for comparison, in addition to the relevant sampling “years” 
used in / considered for analyses, which are in normal font type (see Section 4.4 for details). 

Table 5.3.1. 	 Numbers of goldband snapper obtained from the Gascoyne Coast Bioregion.

Sector   Year %

Year type 1 2 3 4 5

Commercial Commercial 124 140 242 17 401 74

Calendar 124 262 120 223 310

Research Calendar 331 42 26

Total   124 593 120 265 310 1412

Year type
Start  End  Common Year

Date Date months 1 2 3 4 5

Calendar 1 Jan 31 Dec Apr - Aug 2004 2005 2006 2007 2008

Commercial 1 Sep 31 Aug Apr - Aug 2003/04 2004/05 2005/06 2006/07 2007/08

Although good numbers were obtained from research sampling in the 2005 calendar year, research 
sampling was not considered useful for providing an accurate representation of population age 
structure past the modal age for that year. Therefore, only the 2007/08 commercial catch-at-
age data were adequate for assessing population age structure, as determined according to 
the criteria of Craine et al. (2009) (Table 5.3.2.). The 2005/06 commercial sample was just 
outside of the acceptable range of sampling precision (i.e. 0.04 – 0.08; Craine et al. 2009), 
so this dataset was also analysed to assess population age structure, although the results for 
the 2005/06 commercial sample should be treated with caution, accordingly. In this context, 
the reported precision values represent how well a sampled age frequency distribution will 
reflect the shape of the population age frequency distribution from which it was sampled, in 
the absence of sampling bias, and was derived using the Kolmogorov-Smirnov D statistic as 
explained in Craine et al. (2009).
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Table 5.3.2. 	 Calculated precision values for commercial age samples of goldband snapper by year 
of sample collection according to the method of Craine et al. (2009) (Commercial 
fishing year: 1 September to 31 August). 

Year Collection period Number Precision OK?

2003/04 April 2004 – August 2004 124 0.122 

2004/05 March 2005 – August 2005 140 0.115 

2005/06 September 2005 – April 2006 242 0.087 

2006/07 April 2007 17 0.513 

2007/08 November 2007 – August 2008 401 0.068 

5.3.2.3.2 	Bias and precision
Agreement among opaque zones counts between readers was high, with 68.1% of counts 
identical and never different by more than two zones. Differences in opaque zone counts 
between readers of 1 and 2 zones occurred for 30.7% and 1.2%, of readings, respectively. No 
significant or consistent trend in drift or bias was evident from the age bias plot (Fig. 5.3.1.). 
The IAPE value was very low at 1.45%, well within the acceptable levels recommended by 
Campana (2001) for species with intermediate (10-30 years) to long (> 30 years) life spans with 
otoliths of moderate reading complexity.

Figure 5.3.1.	 Age bias plot for repeated readings of goldband snapper done by primary age reader 
(n = 163). IAPE = 1.45%. Numbers above points are sample sizes

5.3.2.3.3 	Validation 
Edge-type analysis has previously been used to ‘validate’ fish age with goldband snapper 
populations in the Kimberley region of WA (Newman and Dunk 2003). A similar approach was 
used here and indicated an approximately annual pattern in opaque and translucent increment 
formation in goldband snapper otoliths from the Gascoyne (Fig. 5.3.2.).



Fisheries Research Report [Western Australia] No. 228, 2012	 59

Otoliths with opaque margins were sampled in high proportions in November-December 2007 
and declined in March 2008 then increased steadily to a peak of ca. 88% in August 2008 before 
starting to decline again. An observed decline in the monthly proportions of opaque increments 
coincided with an initial peak in otoliths with narrow translucent margins in March 2008, 
followed by a peak in otoliths with wide translucent margins in April 2008. Note, however, 
that the absence of otoliths collected for some months weakens conclusions from this analysis, 
although it corroborates the finding from the more comprehensive analysis of Newman and 
Dunk (2003) using specimens collected from the Kimberley, that opaque increments are 
deposited on an approximately annual basis in otoliths of goldband snapper.
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Figure 5.3.2.	 Edge-type analysis of goldband snapper otolith sections from samples collected in 
the South Gascoyne 2007-2008. Numbers represent monthly sample sizes. 

5.3.2.3.4	 Length and age composition of stock 
Length frequency distributions using data for all specimens for which length and sex information 
was available demonstrated that a higher proportion of fish in the largest length groups were 
female, with the overall sampled sex ratio slightly male-biased 1M: 0.84F (Fig. 5.3.3.).
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Figure 5.3.3. 	 Length frequency distributions for female (white bars, above x-axis) and male (grey 
bars, below x-axis) goldband snapper from the South Gascoyne.

After meeting an acceptable level of sampling precision based on sample size (Table 5.3.2) 
and assuming that samples were collected in a manner that provided an accurate representation 
of population age structure past the modal age (refer Section 4.1.1), commercial age samples 
for the 2005/06 and 2007/08 Commercial years were treated as “representative” samples for 
subsequent analyses. Inspection of the representative age distributions for the 2005/06 and 
2007/08 commercial samples demonstrated that fish were sampled from almost all age classes 
past the modal age, up to a maximum observed age class of 30 years (Fig. 5.3.4.). The modal 
age of both distributions was relatively old, at 7 years for the 2005/06 sample and was bimodal 
for the 2007/08 sample at 8 and 10 years, with no goldband snapper sampled younger than 4 
years. In the absence of any MLL for this species, this suggests that many young goldband 
snapper are not selected or available (or both) to commercial line fishing gear and operations.

Although it is possible that some of the observed variability in these catch-at-age distributions 
might have reflected recruitment variability among the sampled cohorts, there was little 
evidence to suggest this in the presented data. For instance, the second strong mode in the 
2007/08 age structure at 10 years did not reflect any obviously elevated frequency at 8 years 
in the 2005/06 age structure. Further, although a cursory examination of all commercial catch-
at-age data collected from 2003/04 to 2007/08 did reveal variable age frequency distributions 
from year to year, no consistent modal progression of recruitment pulses through successive 
annual samples was evident.  

The apparent lack of modal progression across these two distributions could reflect either an 
imprecision or biases in sampling, imprecise or inaccurate age estimations, that the samples 
could contain fish from multiple stocks, or a combination of these. As previously stated, the age 
estimation method has been demonstrated to produce both accurate and precise results in this 
instance. It is possible that sampling imprecision or bias might have resulted in some variability 
not related to true variability in the population age structure of the stock. For instance, fishery-
dependent sampling of the landed catches might have been susceptible to variation attributable 
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to size-dependent grading or other fishery- or market-based influences, on top of the variation 
attributable to the underlying fish population dynamics. As for underlying stock structure, it 
is not known whether there is a finer-scale structuring to the fished goldband snapper stock 
in the Gascoyne Bioregion, although elsewhere this species is known to demonstrate genetic 
structuring over relatively fine spatial scales (see Section 5.3.1).

Figure 5.3.4.	 Age frequency distributions of goldband snapper from the South Gascoyne in 
2005/06 and 2007/08. 

5.3.2.3.5	 Growth
The von Bertalanffy growth equations fitted to length at age data showed relatively rapid growth 
during the first 5 years of life for both sexes. Thereafter, growth slowed prior to reaching the 
asymptotic length, with little variation in the mean growth rate after approximately 10 years 
of age. The maximum estimated age was 30+ years for both sexes (Table 5.3.3). The fitted von 
Bertalanffy growth models did not, however, explain plotted length at age data well, in terms of 
r2, probably because of the absence of fish less than 5 years or age, where most of the increase 
in length at age would have occurred (Table 5.3.3.; Fig 5.3.5.).

Despite a large overlap in length at age data for most of the sampled length range, females 
appeared to be larger, on average, than males for age classes older than 20 years (Fig. 5.3.5.) 
and the fit of the growth model to data for different sexes was significantly different (log-
likelihood = 39.73, test statistic = 7.82, p < 0.05). A significantly steeper slope detected by the 
ANCOVA for female linear-transformed length at age data (F1,963 = 10.27, p = 0.001) reflected 
a departure in the average lengths sampled for older age classes, where females were observed 

to be larger, for a given age, than males. This was quantified as a larger 
	
  

∞L̂  for females than for 

males, despite a similar K̂  between sexes (Table 5.3.3.). This average difference, however, was 
relatively minor, being only 27.6 mm between the constrained model fits (15.9 mm between 
unconstrained fits), which was a small percentage of its average asymptotic length (4.4% and 
2.5%, respectively).
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Figure 5.3.5. 	 Constrained (t0=0) von Bertalanffy growth model fitted separately to length at age 

data for male and female goldband snapper. 

Table 5.3.3. 	 von Bertalanffy growth parameters (± 95% CI) for goldband snapper in the Gascoyne 
region.

L∞ 
(mm, FL)

k
(yr – 1)

to
(yr)

Amax FLmax n r2

Female

Estimate 640.4 0.283 0* 30.50 846 472 0.51

Upper 647.0 0.297 n/a

Lower 634.8 0.269 n/a

Male

Estimate 612.8 0.327 0* 30.42 676 499 0.45

Upper 618.5 0.344 n/a

Lower 607.0 0.310 n/a

Sexes combined

Estimate 626.9 0.302 0* 30.50 846 971 0.47

Upper 631.4 0.313 n/a

Lower 622.5 0.291 n/a

L∞ hypothetical asymptotic length at infinite age, FL, fork length, k, growth coefficient, to, hypothetical age at zero length (not 
estimated for this species), Amax, maximum age, FLmax, maximum fork length, n, sample size, r2, coefficient of determination. * = 
fixed at zero (not estimated from data).

5.3.2.3.6 	Natural mortality
Given that the maximum estimated age for goldband snapper of 30 yr in the Gascoyne is 
consistent with that observed in the Kimberley, the coefficient describing the instantaneous 
rate of natural mortality (M) was assumed to approximate the value previously published for 
the Kimberley as being within the range of M = 0.104-0.139 (Newman and Dunk 2003). This 
assumption is consistent with the general finding of Hoenig (1983) that longevity is inversely 
proportional to natural mortality on a log-scale (i.e., so M can be predicted from maximum age).



Fisheries Research Report [Western Australia] No. 228, 2012	 63

5.3.2.4 	 Discussion
The longevity of goldband snapper from the Gascoyne (maximum age ca. 30+ years) is similar to 
that found with goldband snapper in the Kimberley (Newman and Dunk 2003). Edge-type analysis 
of available otolith samples collected from November 2007 to November 2008 indicated an 
approximately annual pattern, supporting the accuracy of these age estimates from the Gascoyne. 

The length-at-age data that were available only represented goldband snapper growth after 4-5 
years of age for males and females as younger fish were not represented in the samples. As a 
result, a biologically sensible constraint (i.e. t0 = 0) was applied to the von Bertalanffy model 
to describe mean growth rates. Despite overlap observed in the length-at-age data collected for 
different sexes, the fitted models demonstrated significantly different growth trends between 
sexes. However, although the fit of the von Bertalanffy growth model to data for separate 
sexes demonstrated a larger average length for females than males in the oldest age classes, the 
difference in fitted maximum asymptotic fork length (

	
  
L̂∞ ) values was relatively small (<5%). 

There were other differences evident between the growth results observed here for Gascoyne 
populations and those reported by Newman and Dunk (2003) for Kimberley populations. The 

growth curvature parameter estimated in the Kimberley study ( K̂ = 0.1873; Newman and 
Dunk, 2003) was lower than that estimated in this study, although this difference might be 
explained, at least in part, due to different methods of fitting the growth model between studies. 
The relatively low number of specimens sampled younger than 5 years old and the necessary 
constraint on t0 for fitting the von Bertalanffy model to these data was likely to have influenced 
K estimates for the Gascoyne as a result of parameter correlation effects (Bernard 1981).

Interestingly, 
	
  

∞L  estimates in this study were 37.1 mm larger (60.7 mm larger for unconstrained 
fit) for females and 18.3 mm larger (35.1 mm larger for unconstrained fit) for males than reported 

for the Kimberley stock. Also, the significantly larger
	
  

∞L̂  for females than males in this study 
was not consistent with results for the Kimberley stock. It is possible that these differences 
between studies could be attributed to localised environmental and/or anthropogenic effects 
such as fishing. A larger average body size for more southern Gascoyne stocks is consistent with 
theoretical expectations of latitudinal effects on body size (Atkinson 1994). Alternatively, since 
fishing typically captures larger, faster growing fish in a population, and the Kimberley stock 
has been fished intensively for two decades longer than the Gascoyne stock, the smaller 

	
  
∞L̂  

in the Kimberley could be an apparent change in growth rate resulting from greater historical 
fishing pressure (e.g, Moulton et al 1992). Other factors potentially affecting localised growth 
could also be habitat dependent, since the stock in the Gascoyne is distributed in slightly deeper 
depths, on average, than the stock in the Kimberley.

5.3.3	 Recruitment
There have been no studies on the recruitment of this species. In Indonesia, however, genetic 
subdivision was apparent over relatively small spatial scales, suggesting that all life stages of 
this species may be relatively sedentary (Ovenden et al. 2004). From the study of stable isotope 
ratios within otoliths, Newman et al. (2000) suggested limited movement of post-settlement 
individuals between study areas within northern Australia and between northern Australia and 
Indonesia. Lloyd et al. (1996) found that goldband snapper stocks in the Kimberley and Northern 
Territory were genetically distinct, indicating that recruitment may be relatively localised, at 
least within their relatively large study areas.
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5.3.4	 Reproduction

5.3.4.1	 Introduction
The reproductive biology of goldband snapper has not been studied in the Gascoyne but was 
previously described for Kimberley fish by Newman et al. (2001). That study found that this 
species is functionally gonochoristic, determined the length and age at maturity of females 
and males, and defined their reproductive period (peak in March) and sex ratio (slightly male 
biased). A relatively late average age at maturity of 8 years for males and females indicated 
relatively slow rates of population turnover and low production potential for fishing this stock 
(Newman et al. 2001).

Reproductive biology of goldband snapper in the South China Sea was studied by Min et al. 
(1977). The study analysed relative gonad weights to find evidence of a prolonged spawning 
season and counted all developing oocytes within relatively large ovaries during the spawning 
season for preliminary estimates of fecundity. However, those counts would have been over-
estimates of batch fecundity because they found evidence of multiple modes in frequency 
distributions of oocyte diameters, as did Newman et al. (2001) for Kimberley populations, 
indicating that this species displayed asynchronous oocyte development.

5.3.4.2	 Methods
Gonadosomatic index (GSI) values were calculated for females and males using,

GSI = 100 × GW/BW

where BW = total body weight (g) and GW = gonad weight (g).

Since BW data were not available, BW was estimated from length (FL: mm) measurements 
according to the described BW: FL relationship by Newman and Dunk (2003) for the Kimberley 
stock. Mean GSIs (and their standard errors) were plotted for each month, pooled across years. 
The monthly percentage contributions of ovaries that were macroscopically staged as either 
‘developed’ (stage 4) or ‘spawning’ (stage 5) were also used to determine spawning period. 
These stages were grouped together as the ‘ripe’ category for females and males. Data were 
pooled across years in order to maximise the resolution of this analysis, given that adequate 
numbers of specimens were not collected over consecutive months for any twelve-month period.

5.3.4.3	 Results
Trends exhibited by mean monthly GSIs for both sexes were similar, indicating a peak period 
of reproduction from March to May (Fig. 5.3.6.). The monthly proportions of ‘ripe’ females 
corroborated the seasonal pattern in mean GSI for females, with high proportions observed from 
January through to June and low proportions from July to December. The correlation between 
mean monthly GSIs and percentage contributions of ‘ripe’ fish, however, was not as strong for 
males, because although high proportions were sampled in February and March, relatively low 
proportions were sampled in April and May, increasing slightly to represent approximately 
half of those specimens collected in June and July (Fig. 5.3.6.). ‘Ripe’ ovaries were recorded 
over a slightly longer, but overlapping, period (January to August, November) than ‘ripe’ testes 
(February to July).
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Figure 5.3.6. 	 Mean monthly gonadosomatic indices (±1 SE, line, sample sizes above) and monthly 
proportions of goldband snapper with ‘ripe’ gonads (stage 4 and 5 gonads, bars, 
sample sizes below) collected 2004-2008. On the x-axis, black rectangles represent 
austral summer and winter and white rectangles spring and autumn.

The body weights of females in spawning mode were investigated as a proxy for relative 
fecundity. There was a significant linear relationship between female body weight (g) with 
ovary weight (Pearsons r = 0.537, p < 0.001). 

5.3.4.4	 Discussion
The spawning period and sex ratio of goldband snapper in the Gascoyne are consistent with 
those found in the Kimberley (Newman et al. 2001). Although length and age at maturity were 
not investigated in this study, there may be differences in these characteristics between the two 
regions because significant differences in size at age were observed between areas (Section 
5.3.2). For instance, a different average length at age for goldband snapper in the Gascoyne 
predicts that even if the average length at maturity in both areas is similar, the average age at 
maturity would likely be different. Length and age at maturity needs further investigation for 
Gascoyne populations.

5.3.5	 Other factors influencing susceptibility to exploitation
There is currently no MLL in place for goldband snapper in Western Australia.  Fish of less 
than 30 cm TL are rarely observed in commercial catches that account for most of the catch 
in the Gascoyne. Barotrauma-induced discard mortality could potentially become an issue if a 
MLL was introduced or as recreational fishing activities shift towards catch and release of this 
species given that goldband are mostly taken in waters 150-250 m depth. It has previously been 
reported that this species is likely to be sensitive to post-release mortality (Newman and Dunk 
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2003) although there is no evidence for the discarding of goldband snapper by the commercial 
sector.

Aggregations of goldband snapper that occur over hard bottom areas can also be easily 
identified using GPS and colour sounder equipment (Newman et al. 2001).  The targeting of 
these aggregations can result in relatively high catch rates that can be maintained by a mobile 
fishing fleet. Such “hyperstable” (Hilborn and Walters 1992) catch rates can potentially mask 
localised depletions and are therefore an important consideration for future monitoring and 
management of the stock. 
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6.0	 Fishery characteristics and stock assessments 

6.1	 Catch and effort information for key indicator species

6.1.1	 Introduction
Seasonal fishing patterns in the Gascoyne Coast Bioregion have historically been similar 
between the sectors with peaks in commercial and recreational fishing occurring during winter 
(Sumner et al. 2002; Moran et al. 2005). Spatial patterns, however, have differed due to the 
sector-specific management controls used in different parts of the Bioregion and differences 
in the main areas of the respective fishing operations. Catch and effort (C&E) information for 
the three inshore demersal indicator species for the commercial, charter and recreational (boat-
based) sectors are presented and trends described in the following sections.

Recreational and charter data are reported for “recreational” years (1 April to 31 March) and 
commercial data reported for “commercial” years (1 September to 31 August; see Section 4.4 
for details).

6.1.2	 Methods 

6.1.2.1	 Commercial catch and effort
Commercial C&E data for the Gascoyne Coast Bioregion were obtained from the DoFWA 
Catch & Effort Statistics (CAES) for the period 1975/76 to 2007/08*. As the focus here was 
the three indicator species, the CAES data used were limited to categories of gear that target 
demersal scalefish species and included handline (HL), dropline (DL), longline (LL) and fish 
traps (FT) but not other gear types (e.g. trawl, haul nets, seine nets etc). Commercial C&E data 
were reported via compulsory monthly logbooks† that use a 60 x 60 nautical mile (nm) grid of 
reporting blocks (represent approximately 1o squares of longitude x latitude). 

Prior to 1987 all commercial fishing that targeted demersal scalefish in the Gascoyne using 
the above gear types was categorised as ‘wetline’ (see Crowe et al. 1999 for definitions). 
Commercial fishing for pink snapper in oceanic waters outside Shark Bay and northern waters 
inside Shark Bay came under management for the first time in 1987 with the creation of the 
Shark Bay Limited Entry Fishery (became the Shark Bay Snapper Managed Fishery [SBSF] in 
2001, ‘Shark Bay Snapper’) (Moran et al. 2005). Commercial trap fishing in the Pilbara (north 
of 21°56’S) came under management in 1992 (‘Pilbara Trap’) (Moran et al. 1993). In addition, 
some line fishing (HL) was also undertaken in Zones 1 & 2 by trawlers operating within the 
Shark Bay Prawn Fishery and in the inner gulfs, by Shark Bay Beach Seine and Mesh Net 
Fishery vessels (‘Shark Bay Trawl/Beach Seine’).

The accuracy of species identification for some categories within CAES has been uncertain in 
the past, in particular, spangled emperor and goldband snapper. 

Spangled emperor was initially recorded with other lethrinid species in the “North West 
Snapper” category. The proportion of species that made up this category was monitored by 
the Department for commercial trap and line fishing catches from July 1986 to June 1988 and 
for the “Ningaloo” study area landed catches of North West Snapper comprised 53% spangled 

*	  Commercial C&E data have been reported to the DoFWA since 1941. The Catch And Effort Statistics (CAES) system that was 
developed by the Australian Bureau of Statistics in 1967 remains the main reporting system for commercial fishing data in WA.

†	  Daily/trip logbooks were introduced for SBSF vessels in February 2008; ‘wetline’ vessels in the Gascoyne continued to use 
monthly returns for the periods included in this study. 
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emperor, 27% redthroat (sweetip) emperor and 20% other species (Moran et al. 1988). The 
North West Snapper category was refined in 1993 by dividing these catches into “Large” and 
“Small” North West Snapper. Catches of spangled emperor were then recorded by commercial 
fishers for entering into the database as Large North West Snapper. The “Spangled emperor” 
category for data entry was created in January 2000. However, since 1993 a small number 
of commercial operators have continued to report catches of spangled emperor within the 
“Large North West Snapper” and “North West Snapper” categories. Therefore, all reporting of 
commercial catches for spangled emperor are the combined total across the three species name 
categories. Relatively recent spatial maps of catches of the combined North West Snapper, 
Large North West Snapper and Spangled emperor categories are assumed to represent mainly 
spangled emperor. 

The potential influence of pooling species identification categories is shown in Figure 6.1.1 as 
the percentage breakdown of those categories comprising the pooled Spangled emperor group 
since the “Spangled emperor” species category was implemented. This shows that the majority 
of the commercial catch has been recorded as this species in recent years, since this species 
category has been available in the database, except for a notably lower percentage recorded 
as spangled emperor (57.5%) recorded in 2003/04. This analysis complements the previous 
analysis by Moran et al. (1988) to indicate the potential influence of variability in species 
identification on subsequent analyses of catch and catch rates in this chapter.
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Figure 6.1.1 	 Species identification categories grouped together as “Spangled emperor” as 
percentages of total annual commercial catches in the Gascoyne Coast Bioregion 
from 2000/01 to 2007/08. “Spangled emperor” species category (grey) comprises 
“spangled emperor”, 351008; and “snapper nor-west (spangled emperor)”, 351000)

Goldband snapper were initially recorded with other lutjanids in the category “Jobfish” (e.g., 
rosy jobfish, sharptooth snapper) until September 1995 when new database labels were created 
for each of these separate species. From inspection of commercial catch data from the Gascoyne 
bioregion, no further catches were recorded in the combined “Jobfish” category after 1998. 
Therefore, goldband snapper are presented here for combined catches of database categories 
“Jobfish”, “Goldband snapper”, “Rosy jobfish” (P. filamentosus) and “Sharptooth snapper” (P. 
typus). Catches of goldband snapper have been demonstrated to make up approximately 60-85% 
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of this Jobfish category by landed weight in more recent years and therefore trends represented 
for Jobfish catches are assumed to represent those for goldband catches (Fig. 6.1.2). The 
relatively small contribution of other species recorded in the pooled Goldband snapper group 
demonstrates that subsequent analyses of catches and catch rates primarily comprise those for 
the Goldband snapper species category. Accordingly, the analysis supports the assumption of a 
negligible influence of catches of Rosy snapper, Sharptooth jobfish, and other jobfish on catch 
and catch rate analyses presented for Goldband snapper in this chapter. 
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Figure 6.1.2 	 Species identification categories grouped together as “Goldband snapper” as 
percentages of total annual commercial catches in the Gascoyne Coast Bioregion 
from 1999/00 to 2007/08.

CAES C&E data were summed across months for each ‘year’ of fishing (see Section 4.4) 
and apportioned for blocks straddling zone boundaries on the basis of map area occupied 
by each of those blocks in each of the respective adjacent zones. Spatial apportionments of 
C&E therefore assumed no influence of depth or other factors (e.g. habitat) on the spatial or 
temporal distribution of catches within CAES blocks or months. This assumption was applied 
to the apportionment of C&E between all management zones except for Zones 4 and 5. The 
apportionment of commercial catches from each CAES block (60 x 60 nm) to the relatively 
narrow (3-10 nm wide) Zones 4 and 5 on the basis of map area alone would have likely 
underestimated the influences of changing depth and habitat on available scalefish biomass (in 
particular, of spangled emperor).  Therefore, the coarser spatial units of commercial C&E data 
were reported in aggregate for Zone 4 with Zone 2 and for Zone 5 with Zone 6. 

In the case of commercial catch data, once the catches for straddling blocks were spatially 
apportioned among zones, block catches for each zone were summed across fisheries, vessels, 
methods and months to derive catch estimates for each zone. In the case of commercial effort 
data, however, some further manipulation was required to account for the occasional duplication 
of effort records for any vessel fishing in a block and a month that was simultaneously operating 
under different fishery licences and/or using different gears. Therefore, once effort data for 
straddling blocks were spatially apportioned among zones (“estimated blockdays”), the 
proportion of fishing days expended by each vessel was calculated for every block fished and 
method used, within each fishery and month, i.e.
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For each vessel, fishery and month:

Unadjusted effort days for each method that were recorded for each block (“block days”) were 
then summed for groupings of vessel, fishery and month for comparison with the number of 
total days fished by each vessel in each fishery and month (“total days”), which was recorded by 
fishers as a separate entry on the logbook returns. If the summed block days exceeded the total 
days, this indicated the aforementioned duplication of effort data at the block level, and so the 
more conservative total day values were used, i.e.

Adjusted effort days (“adjusted days”) were then calculated by multiplying the proportions by 
the effort term aggregated at the level of vessel, fishery and month accordingly:

and effort days for each assessment zone and fishery were calculated as the sum of adjusted 
days for blocks situated within each assessment zone for each fishery, across all months, vessels 
and demersal scalefish fishing methods.

6.1.2.2 	 Recreational catch and effort
Catch and effort data were collected from recreational boat-based anglers fishing in the Gascoyne 
Bioregion during two 12-month creel surveys. These research surveys were conducted almost a 
decade apart, between 1 April 1998 to 31 March 1999 and 1 April 2007 to 31 March 2008. The 
analysis of these data produced estimates of the annual fishing effort and catch for ocean line 
fishing by these fishers. 

Detailed results from the original analysis of the data collected in the 1998/99 survey have been 
presented by Sumner et al. (2002). In 2009, a review of the methods used in Western Australia’s 
boat-ramp based creel surveys was undertaken (Steffe, 2009). A workshop to examine the 
results of this review was held in October 2009 to determine how its recommendations might 
best be implemented (Fletcher et al. 2012). The analysis used to produce the results presented 
in this report is based on these recommendations. 
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6.1.2.2.1 	Design
For the 1998/99 and 2007/08 surveys, 11 public boat ramps represented the key access points 
for the Gascoyne Bioregion. Boats launched from the shore and from other access points were 
not included in these results. Because of the distances between the various boat ramps, it was 
not possible for the research team to visit all boat ramps on a single survey day. Extending the 
visit over multiple days would potentially introduce double counting, as the same boat could be 
encountered at different boat ramps on different days. Accordingly, it was decided that the 11 
boat ramps should be combined into groups such that each of the boat ramps within the group 
could be visited on the same survey day, and to minimise travel time and cost. Thus, the 11 boat 
ramps in the Gascoyne Bioregion were divided into four geographic groups, where the Coral 
Bay group comprised a single boat ramp (Figure 6.1.3). The boat ramps in each group were 
arranged in the form of a “bus route”, i.e. a specified sequence of boat ramps, such that, on each 
survey day, the research team started it’s survey at a randomly-selected boat ramp within the 
route then, with a randomly-selected direction of travel, progressively visited each of the ramps 
in the sequence defined by the “bus route”.

With the above design, the recreational survey for the Gascoyne Bioregion was broken down 
into four separate surveys, i.e. one survey for each bus route. Data collected for each bus route 
were analysed separately. The primary sampling unit for each of these four independent bus route 
surveys was the bus route survey day. Catch and effort data for these primary sampling units 
were combined over different survey days within each temporal stratum (season) to produce 
seasonal estimates of catch and effort for boat-based, ocean-line fishing for recreational fishing 
boats operating from the public boat ramps within the bus route. It was only at the conclusion of 
the analyses for the individual bus routes that estimates of the total seasonal and annual catches 
and fishing effort for the Bioregion were calculated by combining the data from the individual 
bus routes. The bus routes thus act as the top-most strata in the analysis of the data, and have 
been treated as such in the methods that are described below.

It should be noted that, depending on the geographic separation of the boat ramps in the 
different bus routes and the ranges over which fishers from the different bus routes travel, 
the waters fished by fishers operating from the boat ramps of one bus route may overlap the 
waters fished by those operating from another bus route. This is taken into account through the 
methods described below. The four bus routes to which the public boat ramps of the Gascoyne 
Bioregion were assigned for the 1998/99 and 2007/08 surveys may be associated with the 
various management assessment zones in this Bioregion (Figure 1.1, Table 6.1.1). The survey’s 
sampling design, however did not allow catch and fishing effort to be estimated for the Ningaloo 
Marine Park, i.e. Management assessment zone 4 and 5. 

Table 6.1.1 	 The four bus routes used in the 1998/99 and 2007/08 recreational boat-based fishing 
surveys of the Gascoyne Bioregion, together with the number of boat ramps within 
each bus route and the assessment zones (Section 1, Figure 1.1) with which fishing 
within that route is associated.

Bus route Number of boat ramps Management assessment zones

Exmouth 3 5, 6, 7

Coral Bay 1 2, 4, 5, 6

Carnarvon 4 2

Shark Bay 3 1

In determining the appropriate start and finish time prior to the commencement of the 1998/99 
survey, discussions with regional Fisheries and Marine Officer, local community members and 
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a pilot survey assisted in deciding that few vessels were retrieved at the boat ramps before 11:00 
a.m., that most activity occurred in the later half of the day, and that most recreational boats had 
returned to the boat ramps by 6:00 p.m. The 1998/99 survey of the boat ramps was therefore 
restricted to the seven hour period from 11:00 a.m. to 6:00 p.m. The 2007/08 survey employed 
the same daily survey period to ensure direct comparability of the results obtained from the two 
surveys.

Figure 6.1.3	 Boat ramp locations for each of the four geographic bus routes 

As noted above, the bus route method required that the research team, i.e. the interviewers, 
visited all of the boat ramps within the bus route on each randomly-selected day. Whilst at 
each ramp, the count of boat trailers was recorded and interviews of recreational fishers were 
undertaken (Robson & Jones 1989, Jones et al. 1990). When interviewers were at each boat 
ramp, they attempted to interview as many recreational boat crews as possible. When several 
boats returned to the ramp at the same time, the survey interviewers randomly chose which of 
the boat crews to interview. Interviewers were trained in the use of the interview data sheets, 
which were slightly, but not substantially modified between the 1998/99 and 2007/08 surveys 
(Appendix 2, IV). In 2007/08, questions were introduced asking whether the party on board 
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each boat had engaged in fishing (yes or no) and, if so, how many of the individuals in the party 
had fished. In the same survey, the following questions were removed from the interview sheet 
as they were no longer relevant to the study: number of females on the boat, the age group of 
the interviewee, whether the interviewee was a member of an angling club, and the number of 
times that the party on board the boat had previously been interviewed. 

The combination of bus routes and seasonal divisions resulted in an experimental design with 16 
strata (4 bus routes x 4 seasons). The number of sample days, interviews and fishing interviews 
in parenthesis for each bus route was assumed to be representative of the population of fishing 
boats (Table 6.1.2). 

Table 6.1.2 	 The number of sample days, interviews and fishing interviews in parenthesis for each 
bus route.

Bus Route Survey year 1998/99 2007/08

Exmouth Sample days 71  98 

Interviews 651 (576)  1434 (1312) 

Coral Bay Sample days 61  106 

Interviews 512 (349)  827 (743) 

Carnarvon Sample days 64  77

Interviews 150 (126)  163 (131) 

Shark Bay Sample days 86 96

Interviews 481 (462)  423 (375) 

The days on which each bus route was surveyed were chosen randomly within each month, 
thereby ensuring that surveyed days were spread throughout each season. For each randomly-
selected survey day for each bus route, randomised schedules of boat ramp visits covering all 
ramps in the route were then developed. The schedules specified the order in which the boat 
ramps were to be visited and the amount of time that was to be spent at each ramp. The survey 
interviewers spent more time at busy boat ramps to maximise the amount of recreational data 
collected. Pilot surveys were undertaken to determine the amount of time to be spent at each 
boat ramp, prior to the commencement of each survey. The resulting proportion of time spent at 
each boat ramp for each of the 1998/99 and 2007/08 surveys is shown in Table 6.1.3. 
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Table 6.1.3 	 Proportion of time spent at each boat ramp per bus route in the 1998/99 and 2007/08 
surveys.

Bus Route 1 2 3 4

Exmouth
1998/99
2007/08

Exmouth Marina
20%
50%

Bundegi
40%
10%

Tantabiddi
40%
40%

Coral Bay
1998/99
2007/08

Boat Ramp
100%
100%

Carnarvon
1998/99
2007/08

Oyster Creek
10%
10%

Carnarvon Boat 
Harbour
45%
45%

Dwyer’s Point
5%
5%

Pelican Point
40%
40%

Shark Bay
1998/99
2007/08

Nanga
35%
45% (May-July)
25% (Sept)
30% (all other 
times)

Denham
40%
30% (May- July)
30% (Sept) 
35% (all other 
times) 

Monkey Mia
25%
25% (May – July)
45% (Sept)
35% (all other 
times)

For example based on the table 6.1.3, a survey interviewer’s schedule of time allocated to each 
boat ramp in the Exmouth bus route in 2007/08 could have been:

•	 Exmouth Marina - 11:00am to 2:15pm 

•	 Bundegi - 2:27pm to 3:06pm 

•	 Tantabiddi - 3:24pm to 6:00pm 

Recreational fishers at boat ramps were required to identify the 5 x 5 nautical mile blocks in 
which they had fished.

Estimates of catch and effort were produced for each bus route and also for zone 1; combined 
zones 2 and 4 and combined zones 5, 6 and 7. As one of the bus routes straddled the boundaries 
between management zones 2 and 6, when estimating the catch and effort for the management 
zones, the catch and effort recorded for each 5 x 5 nautical mile block were divided among the 
zones in proportion to the areas of those zones within the block. There are no estimates for zone 
3 as no recreational interviews were recorded for catches made in this area.

6.1.2.2.2 	Analysis
The sampling frame for each bus route was the set of all possible days on which the bus route 
could be surveyed, i.e. all possible survey days, during each temporal stratum. From this 
sampling frame, a random sample of survey days on which the bus route was to be surveyed 
was selected. All of the boat ramps in the bus route were visited during the daily survey period. 
The boat ramp to be visited at the start of the daily survey period for each sampled survey day, 
and the subsequent direction of travel around the boat ramps in the bus route, were randomly 
chosen. The primary sampling unit (PSU) was the sampling day. The survey design employed 
the different bus routes as the primary level of stratification and, by using season as a secondary 
level of stratification, provided coverage through the entire survey year.

An estimate of total fishing effort for the PSU, was derived from the data collected at each of 
the boat ramps. The daily data for the sampled PSUs within each stratum were then expanded to 
produce an estimate of the total fishing effort over all possible survey days within the stratum. 
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Subsequently, the catch rate over all possible survey days within each stratum was calculated 
and used, in combination with the estimate of fishing effort, to calculate an estimate of the total 
catch over all possible survey days within each stratum. Finally, the data for the different strata 
were combined to obtain an estimate of the total catch and total effort.

As noted earlier, the Gascoyne bioregion surveys were restricted to a specified period within 
each day, i.e. from 11:00 a.m. to 6:00 p.m. from 1 April 1998 to 31 March 1999 (Sumner et al., 
2002) and 1 April 2007 to 31 March 2008. The interviewer moved around the bus route visiting 
each boat ramp according to the predefined schedule, such that the time spent at each ramp 
was approximately proportional to the relative activity that was expected to be recorded at the 
various ramps. The schedule allowed for the travelling time between boat ramps. The time that 

the interviewer spent at each boat ramp r (	
   Rr ≤≤1 ) on sampling day d (

	
  
1≤ d ≤ Dm ) within 

stratum m (	
  1≤m ≤M ) is referred to as the wait time rdmw .

Pollock et al. (1994) advised that the interviewer needed to adhere strictly to the schedule 
of visits, i.e. the time of arrival at the boat ramp and the specified wait time at that ramp. In 
practice, a small amount of implementation error occurred in the boat ramp surveys undertaken. 
Accordingly any inconsistency between the actual scheduled times were determined from the 
start and end times at the boat ramp that were recorded by the interviewer rather than the 
scheduled times.

At the beginning and end of the visit to each boat ramp, i.e. at times rdmt  and rdmrdm wt + , 
respectively, the interviewer recorded the number of boat trailers that were parked at the boat 

ramp. The time at which each boat b was launched rbdml  or retrieved rbdmr  during the wait time 
on this sampling day was recorded. Launch and retrieval times falling outside the wait time 
were considered to be missing (unknown) values. Note that each boat trailer parked at a boat 
ramp was assumed to be associated with a boat that had been launched from that ramp. The 
boats associated with these trailers were included in the total number of boats, i.e. the boats 
considered include all boats launched or retrieved during the wait time as well as those boats 
which remained on the water throughout the entire wait time.

In addition to recording the launch and retrieval times of each boat, the interviewer attempted 
to interview a member of the party that was aboard each boat that was retrieved at the boat 
ramp. During the interviews, details of the launch time of the retrieved boat and the duration of 
fishing were ascertained and recorded by the interviewer, together with details of catches of the 
different species and, where practical, lengths of individuals of retained species.

6.1.2.2.3 	Calculation of total fishing time for the whole bus route for each 
surveyed day

In the first section of this analysis, all boats were included, whether involved in fishing or 
in non-fishing activities, and whether or not an interview was conducted. Subsequently, the 
question of whether or not the boat was fishing was addressed.

Let rbdmX  be the time that boat b (

	
  
rdmBb ≤≤1 ) is on the water (or the trailer associated with 

boat b is at the ramp) while the interviewer is at ramp r on sampling day d within stratum 

m. The value of rbdmX  was calculated as shown in Table 6.1.4. The estimate of the total boat 
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time (hours)  during the daily survey period T over all boat ramps r (	
   Rr ≤≤1 ) on day d  

(

	
  
mDd ≤≤1 ) in stratum m (

	
  
Mm ≤≤1 ) (Jones and Robson, 1991) is

Table 6.1.4. 	 Approaches used to calculate the value of rbdmX , the time that boat b (

	
  
rdmBb ≤≤1 )  

was on the water (or the trailer associated with boat b is at the ramp) while the 
interviewer was at ramp r on sampling day d within stratum m. Note that an estimate 

of the launch time rbdml̂  for a boat that was launched prior to the start of the visit to 
the boat ramp was available only if the party on board the boat was interviewed.

Retrieval

Before visit to boat ramp During wait time After visit to boat ramp

Launch
Before visit to 
boat ramp

No overlap with visit

	
  
rdmrbdmrbdm trX −= rdmrbdm wX =

During wait 
time

NA

	
  
rbdmrbdmrbdm lrX ˆ−=

	
  
rbdmrdmrdmrbdm lwtX −+=

After visit to 
boat ramp

NA NA No overlap with visit

This calculation assumed that the times at which all boats were launched or retrieved during the 
wait time were accurately recorded, that the number of trailers in the ramp at the start of the wait 

time were accurately recorded, and that the wait time was a random sample of duration rdmw  
from the time period T, which, based on the preliminary survey undertaken prior to the surveys, 
was assumed to represent a good approximation to the total time within the sampling day during 
which fishing was likely to have occurred. However, it is noted that boat ramps where the 
proportion of time spent over the sampled day was 10% or less (Table 6.1.3) may not have 
produced data that were representative of activity over the total time within the sampling day. 
No record was kept by the interviewer of the identities of boats that were launched during the 
visit to the ramp. It was thus not possible to determine whether a retrieved boat was launched 
prior to or after the start of the wait time. Accordingly, it was assumed that all boats that were 
retrieved during the visit were launched prior to the start of the wait time, and that all boats 
launched from the boat ramp during the visit were retrieved after the conclusion of the visit to 
the boat ramp. Thus, the number of boats that were present at the ramp for the entire duration of 
the visit was calculated as the difference between the number of boat trailers present at the start 
of the visit and the number of retrievals (or zero, if this difference was negative). 

To facilitate the calculation of the variance of total boat time for the stratum for those cases 
where there was a limited number of boats at a boat ramp during the bus route survey, the above 

equation for  was re-written in terms of a transformed variable, '
rbdmX . For boat (or trailer) 

b at boat ramp r on survey day d within stratum m, the boat time for each unit of survey time 
within the interviewer’s visit was calculated as

rdm

rbdm
rbdm w

X
X ='
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The average boat time for each unit of survey time for all boats at boat ramp r on survey day d 

within stratum m was then calculated as

This boat ramp-based estimate of variance is undefined if 2<rdmB . If the number of boats 
at boat ramp r on survey day d within stratum m was insufficient to allow calculation of the 
variance using the above equation, a stratum-based estimate of the variance for this ramp, day 
and stratum was obtained by calculating the variance over all boats, ramps and survey days 
within the stratum. Thus, in this case,

where md  was the number of sampled survey days within the stratum on which the bus route 

survey was undertaken, and where it was assumed that the values of '
rbdmX  are random variates 

sampled from the stratum. As previous studies of recreational boat survey data within Western 
Australia had applied a stratum-wide estimate of variance rather than a ramp-based estimate, 
the analyses undertaken in this study considered the cases where (a) the stratum-based estimates 
of variance were used only for those boat ramps and sampled survey days on which the number 
of boats was less than 2, and (b) the stratum-based estimates of variance were used for all boat 
ramps and sampled survey days.

The total boat time of the boats at ramp r on sampling day d within stratum m during the wait 

time at this site was calculated as , and the variance of this variable was estimated as 

.

The total boat time over all boat ramps in the bus route, i.e. the PSU, on day d in stratum m was

with variance

where it was assumed that the estimates of '
rdmX  for the different boat ramps were independent.
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The equations presented above describe how estimates of total boat time were calculated for the 
various strata. For fishing time, it was necessary to adjust the equations to allow for boats that 
were not occupied in fishing activity, noting that determination of whether or not a boat was 
engaged in fishing was based on the results of the interviews that were conducted.

The calculation of fishing effort used the proportion of all retrieved boats over all boat ramps 
for the sampled survey day of boats that had been involved in fishing.

The Coral Bay bus route straddles the boundaries between assessment zones 2 to 6. Therefore, 
when calculating the effort for these management zones, it was necessary to assign the effort for 
those blocks that were entirely within a given management zone directly to that zone. However, 
when the boundary of the management zone passed through the 5 x 5 nautical mile blocks into 
which effort data had been recorded, it was necessary to apportion effort to each management 
zone on the basis of the proportion of the area within the block that fell within that management 
zone. Thus, for those recreational interviews reporting that fishing had occurred within 5 x 5 
nautical mile blocks that straddled the boundary, the effort was apportioned into each of the 
respective adjacent management zones using the area of the block i.e. 40% zone 6 and 60% 
zone 2. This was facilitated by drawing a uniformly-distributed random number and comparing 
this with the value 0.4 to determine whether the data from that particular interview was to be 
assigned to zone 6 or zone 2. This assumed that all recreational interviews within the bus route 
had reported the 5 x 5 nautical mile block in which fishing had occurred. Note: only a small 
number of interviews in the earlier 1998/99 survey had missing block locations. The analysis 
was repeated for a number of trials (10,000), to produce an estimate of the uncertainty of the 
resulting catch and effort estimates. Note: the calculation could have been undertaken using the 
expected proportion of fishing in the block that lay within each zone.

For sampled survey day d within stratum m, the proportion of boats that fished (or fished for the 
targeted species and/or within a specified management zone), , was estimated as the ratio 
of the total over all boat ramps of the number of boats for which interviews reported (targeted) 
fishing for the day to the total over all boat ramps of the number of boats for which successful 
interviews were conducted.

The proportion of boats that were fishing on day d in stratum m was estimated as 

 The variance of the proportion  was calculated as

where  is the total number of interviews over all boat ramps for sampling day d within 
stratum m. If no boats were successfully interviewed on day d within stratum m, it was assumed 

that , where mp  is calculated as the proportion of boats fishing over all ramps and 

days within the stratum (see next section). In this case,  was assumed to be equal to 

.

The total fishing time (hours of boat time) within the daily time period surveyed for day d 

within stratum m over all ramps included in the bus route, , was then estimated as
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where the variance of  is calculated using the formula for the variance of a product presented 
by Goodman (1960, Eq. 5), i.e.

which has been employed in similar boat ramp studies of recreational fishing (e.g. Steffe et al. 
2008).

6.1.2.2.4 	Calculating the fishing time over all possible sampling days within each 
stratum

The methods described above produced estimates over all boat ramps in the bus route for each 
sampled survey day d within each stratum m, i.e. for each sampled PSU, of the total fishing 
time within the daily survey period. The daily samples then needed to be combined to produce 
estimates for each stratum.

The total fishing time within the daily survey period for stratum m over all possible sampled 
survey days for the bus route was calculated as

where the proportions of boats fishing were calculated over all boat ramps for the sampled 
survey day within the stratum.

The variance associated with mÊ  was estimated using

where 
 
comprises a combination of both the variability among days and the 

imprecision of each product  .The variability among days may be estimated as the 

variance of the mean of , where it was assumed that each observation  had no 

error. The additional variability of the sum, , that is associated with the error in the 

individual estimates of  was then considered to be the sum of the variances of those 

individual estimates, i.e. the sum of the values of .
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Thus, correcting for the finite population over which the mean was estimated, the first term in 
the expression below represented the variability among the daily estimates, while the second 
term represented the variability associated with the imprecision of the products.

where it was assumed that the products dmdmep  were independent.

The standard error was calculated by the usual method

)ˆ()ˆ( mm EVarESE =

6.1.2.2.5	 Calculating the average catch rate over all possible sampling days within 
each stratum

The catch rate for each stratum m was estimated as the ratio of the means for catch and effort 
(Crone & Malvestuto 1991), i.e. 
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where mn  is the number of interviewed boats in stratum m, and bmc  is the catch and bmL  is the 
length of trip, i.e. fishing effort, in hours on the water (i.e. the difference between launch and 
retrieval times), reported for interviewed boat b. Such an estimate of catch rate, calculated as 
the ratio of mean catch to mean effort, represents a measure of the weighted average of the 
catch rate for individual sampling units, where the fishing effort of each sampling unit is used 
as a weighting factor. The ratio of means is the appropriate estimator when the probability 
of interviewing a fisher is independent of fishing trip duration (e.g. when used for data from 
completed trips collected in an access-point survey such as boat-ramp based surveys) (Pollock 
et al., 1994).

The variances for mc  and mL  were calculated by the usual method for the calculation of the 
variance of a mean of values within a sample (without the finite population correction factor). 

The variance for mR̂  was then estimated using the formula described in Kendall & Stuart (1969)
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The covariance term in this equation was assumed to be zero.

6.1.2.2.6 	Total catch for the stratum within the daily period surveyed
To estimate the total catch, the estimated total fishing effort (boat-hours) must be multiplied by 

the average daily catch rate. Thus the total catch mĈ  for stratum m was calculated as 
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and, using the formula presented by Goodman (1960, eq. 5), its variance as
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6.1.2.2.7 	Combining the data over strata to produce estimates for the total fishery
The total catch for each bus route was estimated by summing the catch over all strata as follows
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The variance and standard error of C  were estimated respectively as
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where the catches within the different strata are independent. The standard error of the total 
catch was

SE C Var C( ) ( )= .

A similar approach to that used when combining the catch data for each season to produce 
an estimate of the total annual catch for each bus route, i.e. the method described above, was 
employed to combine the seasonal and annual data for the various bus routes to produce catch 
estimates for the Gascoyne Bioregion.

6.1.2.2.8 	 Extrapolation of the catch from the daily sampling period to the full day
The analysis of the data collected in each bus route survey using the methods described above 
provided estimates of the total catch and effort within the daily survey period T for the boat 
ramps covered by the bus route during the total period covered by the survey.

Extrapolation beyond the daily sampling period introduces further imprecision, however, 
and relies upon the assumptions under which the extrapolated estimates are calculated. The 
reliability and precision of the extrapolated values depend on the distribution of fishing activity 
within each day and the proportion of the total fishing activity that lies within the daily survey 
period. The extrapolation was constrained to the period for which data were collected in the 
daily survey period and thus does not necessarily provide “coverage” of the full period over 
which fishing activity occurs.

A correction factor f was calculated using the data on launch times reported by the boat parties 
that were interviewed when their boats were retrieved at the boat ramps (Malseed and Sumner, 
2001). The times at which boat b was launched and retrieved at boat ramp r on sampling day d 

in stratum m were denoted previously by rbdml  and rbdmr , respectively, and the starting time of 

the wait time at the ramp was denoted by rdmt . The factor by which the fishing effort (or catch) 
within the daily survey period was multiplied to include the additional boat time expended by 
fishers (who subsequently retrieved boats within the wait period) before the start of the daily 
survey period was estimated as
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No variance estimate was calculated for this factor, and therefore the variance of the extrapolated 
effort is likely to be slightly underestimated.

6.1.2.2.9	 Weight estimation of catches
The total lengths (cm) of fish in retained catches were not collected from all recreational 
interviews. The lengths of individuals of species with an adequate sample size of recorded fish 
lengths, however, were converted into estimates of fish weights using the following formulae:

Pink snapper (Zone 1) 
Weight (g) = 1.48 x 10 -4 (0.8460 x TL (mm) + 0.3)2.6703

Pink snapper (Zone 2 to 7): 
Weight (g) = 0.0467727 (0.8460 x TL (cm) +0.3)2.781

Spangled emperor (Zones 2 to 7): 
Weight (g) = 6.002 x 10 -5 (TL (mm) - 3.256)/1.11)2.810

Goldband snapper (All zones): 
Weight (g) = 2.483 x 10 -5 ((0.89 x TL (mm))-16.61)2.9501

The resulting estimates were then used to calculate the average weight of the retained individuals 
of each species. Average weights were calculated for each respective “stock”, as specified in 
the above equations (noting that catch and effort statistics for each of the 3 Inner Bay stocks of 
pink snapper is reported for all of those stocks combined in Zone 1). Fish lengths recorded from 
captures made in blocks that straddled these “stock” boundaries were excluded from calculations 
of average weight. Estimates of total landed catch weights for each indicator species in the 
assessment year, 2007/08, were then calculated by multiplying these average landed weights by 
the numbers of fish estimated to have been caught and landed from each “stock”. Estimates of 
average landed weights and numbers used for these calculations are given in Table 6.1.5.

Table 6.1.5. 	 Estimates of mean weight and number of fish landed by the recreational sector per 
indicator “stock” for the assessment year, 2007/08. Estimates for pink snapper for 
Zone 1 include 3 biological stocks for stock assessment: Denham Sound, Eastern 
Gulf and Freycinet, combined. *As no length data for this species were collected from 
the RFS, a corresponding estimate of catch (T) was not available.

Species Zones
Mean 

weight (g)
Standard 

error
Number of 

lengths
Number 
landed

Catch (T)

Pink snapper 1 2,454 63.8 128 3,998 9.81

2-7 2,600 46.6 423 8,212 21.35

All n/a n/a 551 12,210 31.16

Spangled emperor 1-4 1,984 158.6 60 2,716 5.39

5-7 1,968 71.8 180 12,404 24.41

All n/a n/a 240 15,120 29.80

Goldband snapper All - - 0* 1,443 -
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6.1.2.3 	 Charter catch and effort
Charter C&E data were reported (via monthly returns) by 5 x 5 nm reporting blocks. Fish lengths 
(TL, cm) were not available for all catches, which were reported in numbers of individuals 
landed. As these catch data were similar in nature to those collected from the Recreational 
Fishing Survey (i.e., numbers and lengths of fish landed), calculations to estimate landed catch 
weights were consistent with those detailed in Section 6.1.2.2. Accordingly, estimates of average 
landed weights and numbers used for these calculations are given in Table 6.1.6.

Table 6.1.6. 	 Estimates of mean weight and number of fish landed by the charter sector per 
indicator “stock” for the assessment year, 2007/08. Estimates for pink snapper for 
Zone 1 include 3 biological stocks for stock assessment: Denham Sound, Eastern 
Gulf and Freycinet, combined.

Species Zones
Mean 

weight (g)
Standard 

error
Number of 

lengths
Number 
landed

Catch (T)

Pink snapper 1 1,977 68.7 82 1,124 2.22

2-7 2,269 33.0 606 8,443 19.16

All n/a n/a 688 9,567 21.38

Spangled emperor 1-4 2,477 56.9 261 1,115.6 2.76

5-7 2,262 29.3 817 2,346.4 5.31

All n/a n/a 1078 3,462.0 8.07

Goldband snapper All 3,197 53.0 110 1,649 5.27

6.1.2.4 	 Keys for mapping catch and effort
To ensure data confidentiality, information on the maps are presented as high, medium, low and 
very low based on logarithmic scales as shown below. The different colour schemes have been 
used so that data can be presented on different scales as appropriate (i.e. 0-0.1, 0-100, 0-1,000, 
0-10,000, 0-100,000 and 0-1,000,000). 

6.1.3 	 Results and discussion

6.1.3.1 	 Fishing effort 
Commercial fishing effort in Zones 1 to 4 was dominated by ‘wetline’ prior to the introduction 
of management of the SBSF in 1987 (Figs. 6.1.4, 6.1.5, 6.1.6). A ‘spawning season closure’ was 
implemented in July 1986 and 1987 in an effort to limit the snapper catch during the peak season, 
that saw a shift in commercial trap and line fishing effort to north of the northern boundary 
of that fishery at that time (23°30’S; Moran et al. 1993). Since that time effort levels in the 
SBSF and line fishing operations more generally have been more tightly managed and remained 
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relatively stable or decreased gradually in Zones 1 and 2 (Figs. 6.1.4., 6.1.5.). However, in Zone 
3 effort levels were observed to increase from 1999/00 to 2002/03, and reflect a shift toward 
the targeting of deeper water species such as goldband snapper and ruby snapper (Fig. 6.1.6.). 
Effort has since progressively decreased following reductions in pink snapper TACC (by 40% 
in 2003/04) and concerns over the sustainability of fishing for goldband snapper (M. Moran 
pers. comm.). Importantly, the majority of effort ascribed to Zone 3 (deeper than 250 m) by 
spatial apportionment is likely to have actually been expended in the deeper, further offshore 
blocks of Zone 2, coincident with the shallower habitat occupied by the goldband and ruby 
snappers targeted.  

In Zones 5-7, commercial fishing effort was dominated by ‘wetline’, with handline and dropline 
being the predominant methods (Figs. 6.1.7, 6.1.8). Fish trapping became popular in the mid-
1980s in this area following management restrictions on trapping elsewhere within the SBSF 
(Moran et al. 1993). The overall level of fish trapping declined significantly following the 
commencement of the limited entry Pilbara Trap Fishery in May 1992 (Pilbara waters; Fig. 
6.1.7.). Prior to this, however, a gradual decline in commercial line fishing effort was also 
apparent from 1984/85 to 1991/92 in Zones 5 and 6, and from 1987/88 to 1991/92 in Zone 
7. Moran et al. (1993) reported that a change in the spatial distribution of commercial fishing 
effort in north-western Australia from 1987 to 1992, which could offer some explanation for 
this trend. They reported that in 1987 commercial line fishing was concentrated primarily in 
waters off Geraldton and trap fishing around the North West Cape (i.e., Zones 5 and 6) and 
by 1992 commercial fishing was more wide-spread across north western Australia, with high 
catches being made by the commercial trawl fishery off Point Samson (i.e., to the north-east 
of the Gascoyne). A reduction in commercial effort was observed from 22oS to 24oS (i.e., 
mainly Zones 5 and 6) to be concomitant with an increase in effort off Shark Bay (i.e., mainly 
Zone 2), with changing management rules for different commercial fisheries complicating the 
interpretation of such patterns (Moran et al. 1993). 

There is a relatively low amount of effort shown for the Pilbara Trap fishery in Figure 6.1.7 
because the majority of fishing effort for this fishery takes place to the north east of the Gascoyne 
Bioregion.

Effort data presented for Zone 7 closely reflects the trends observed for Zones 5 and 6 combined, 
and it is likely that the majority of this effort ascribed by spatial apportionment to Zone 7 was 
actually expended in Zone 6, which contained greater quantities of habitat typically occupied 
by the demersal scalefish species that were targeted.

The spatial pattern of commercial fishing effort in these fisheries has changed little from 2001/02 
to 2006/07 (Fig. 6.1.9.). Despite a substantial decrease in fishing effort (hundreds of days) in 
the block immediately north of Exmouth Gulf, and to a lesser extent, the decrease in effort for 
the block east of Bernier, Dorre and Koks Islands (and directly offshore from Carnarvon), all 
other observed changes were trivially small. The decrease in effort to the north of Exmouth 
Gulf likely reflects the Prohibition on Fishing by Line from Fishing Boats (Pilbara Waters) 
Order 2006 implemented on 15 August 2006, with exceptions given to nine vessels, but those 
were restricted to commercial line fishing during a five-month period each year. The small 
amount of fishing activity by state-licensed vessels recorded within the Commercial Fishing 
Exclusion Zone in 2001/02 represents residual commercial fishing that was in the process of 
being phased out following the Offshore Constitutional Settlement (OCS) in 1995; prohibition 
on state-licensed commercial fishing activities from the limit of state waters (3 nm from the 
coast) to the limit of Commonwealth waters (200 nm from the coast). 
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Both recreational and charter fishing effort for Zone 1 have declined from 1998/99 to 2007/08 
and from 2002/03 to 2007/08, respectively (Fig. 6.1.10.). Recreational fishing effort for all other 
zone groupings, however, was higher in 2007/08 than in 1998/99 (Fig. 6.1.11.). Charter fishing 
effort for zones 2-4 was relatively stable and fluctuating from 2002/03 to 2007/08 (Fig. 6.1.11). 
In zones 5-7, charter fishing effort was highest in 2002/03 before almost halving in 2003/04, 
then fluctuating at approximately that level through to 2007/08. In 2005/06 and 2006/07 a slight 
decline in effort for zones 2-4 was matched by a slight increase in effort for the adjacent zones 
5-7 (Fig. 6.1.11). 

There was a conspicuous contraction in the spatial distribution of charter fishing effort from 
2002/03 to 2007/08 in most areas (Fig. 6.1.13). Conversely, spatial information obtained from 
boat-based recreational fishers in 2007/08 indicated an expansion of recreational fishing effort 
out from most interview ramp locations from 1998/99 to 2007/08 (Fig. 6.1.14). Most notable 
expansions in recreational fishing activity were about the North-West Cape, out from Coral Bay 
(Point Maud) and out to the islands offshore from Carnarvon (Fig. 6.1.14). 

Figure 6.1.4.	 Commercial fishing effort (trap and line) in Zone 1. 
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Figure 6.1.5.	 Commercial fishing effort (trap and line) in Zones 2 and 4 combined. 

Figure 6.1.6.	 Commercial fishing effort (trap and line) in Zone 3.
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Figure 6.1.7.	 Commercial fishing effort (trap and line) in Zones 5 and 6 combined.

Figure 6.1.8.	 Commercial fishing effort (trap and line) in Zone 7. 
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Figure 6.1.9. 	 Commercial effort (line fishing only) in the Gascoyne Coast Bioregion for 2001/02 
(bottom) and 2006/07 (top). 
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Figure 6.1.10.	 Recreational and charter fishing effort in Zone 1.

Figure 6.1.11.	 Recreational and charter fishing effort in Zones 2 to 4 combined. 
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Figure 6.1.12.	 Recreational and charter fishing effort in Zones 5 to 7 combined. 
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Figure 6.1.13.	 Charter fishing effort in the Gascoyne Coast Bioregion for 2002/03 (bottom) and 
2007/08 (top).
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Figure 6.1.14.	 Relative frequency of fishing locations in recorded from interviews with recreational 
boat-based fishers in the Gascoyne Coast Bioregion during 1998/99 (bottom) and 
2007/08 surveys (top).
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6.1.3.2	 Pink snapper catch
Commercial vessels caught large quantities of pink snapper in the Gascoyne off Shark Bay 
prior to 1975 (see Bowen 1961); the commercial catch increased from 216 t in 1952 to 741 t 
in 1959 before declining sharply to less than 100 t by 1970. Catches increased again through 
the late 1970s and mid-1980s, rising sharply from 423 t in 1976 to an all-time peak of 1287 t 
in 1985 (Figure 6.1.15). The creation of the SBSF saw pink snapper catches decline to 646 t in 
1987, and then remain relatively stable at ca. 450-550 t from the late 1980s through to the early 
2000s. Between 1987 and 2001, the SBSF was managed using individual transferable quotas 
that only applied during the peak season (May-August) and a nominal TACC of 550 t. Since 
2001, the SBSF has been managed by quota all-year-around, with an explicit TACC set initially 
at 564 t. Catches declined between 2003/04 and 2007/08 following reductions in the TACC in 
2004 (by 40% to 338 t) and in 2007 (to 297 t in April, and, to 277 t in September).

Most of the commercial pink snapper catch 1975-2008 came from waters within Zone 2 (Figure 
6.1.15). The SBSF has operated in proscribed waters (between 26 deg 30 min S to 23 deg 34 min 
S) since 1987. Historically, most of the catch (70-80%) has been taken during winter months 
from inshore reefs off Dorre, Bernier and Dirk Hartog Islands (Figure 6.1.16). Less commercial 
snapper fishing has occurred in Zone 1 although a small number of SBSF vessels were allowed 
to fish in Denham Sound up to 1996. There was little change in the spatial distribution of 
commercial catches of pink snapper between 2001/02 and 2006/07 (Figure 6.1.16).

The numbers of pink snapper caught and kept by recreational fishers fishing from charter 
vessels increased from 2002/03 to 2003/04 and then declined to return to the pre-2004 level 
in 2006/07, before increasing slightly in 2007/08 (Figure 6.1.17). As with commercial fishing, 
nearly all the charter catch was taken from Zones 2, 3 and 4 (Figure 6.1.17) with effort focussed 
on similar grounds to commercial operations. Some catches also came from waters north of 
Caper Farquhar, off Point Maud, that were not accessible to commercial vessels (Figure 6.1.18).

The estimated number of pink snapper caught by recreational fishers from private boats for 
the entire Gascoyne Coast Bioregion in 2007/08 was less than half the number estimated in 
1998/99 (Figure 6.1.15). There was a spatial shift (between zones) in catches between the 
surveys, in response to management changes introduced during the period 1996-2003. In 
1998/99, approximately half the recreational pink snapper catch came from oceanic waters 
(Zone 2) and half from inner gulf waters (Zone 1). Regulations to protect inner gulf stocks 
that were implemented from 1996/97 onwards, in particular the introduction of TAC-based 
management in 2003* were reflected in a decline in the overall recreational pink snapper catch 
in the inner gulfs (Zone 1). A similar number of pink snapper were caught from waters outside 
of Shark Bay in 1998/99 and 2007/08 (Fig. 6.1.15). 

Although a similar number of pink snapper were reported, there was some evidence of a shift 
in capture locations outside of Shark Bay, from 1998/99 to 2007/08, with more catches reported 
from blocks further offshore from Carnarvon, and from areas north of Shark Bay, in 2007/08 
than in 1998/99 (Fig. 6.1.20). This spatial shift in catch locations for pink snapper corresponds 
to the general expansion of fishing effort between surveys shown in Figure 6.1.14.

*	  Recreational boats were encouraged to fish for pink snapper in oceanic waters, to relieve pressure on the Denham Sound stock, through 
introduction of exemption based system administered through Denham Fisheries Office, that allowed vessels to land more fish at Denham 
than were permitted under inner gulfs regulations (this exemption scheme was discontinued in 2009). 
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Figure 6.1.15.	 Commercial catch of pink snapper (all gears) in Gascoyne Coast Bioregion 1975/76-
2007/08 by zone. Note: apportionments of catch to zones is approximate and based 
on area for boundary blocks.
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Figure 6.1.16.	 Commercial catch of pink snapper (all gears) in the Gascoyne Coast Bioregion for 
2001/02 (bottom) and 2006/07 (top).
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Figure 6.1.17. 	 Charter catch of pink snapper in the Gascoyne Coast Bioregion.
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Figure 6.1.18.	 Charter pink snapper catch in the Gascoyne Coast Bioregion for 2002/03 and 
2007/08.
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Figure 6.1.19. 	 Estimated recreational catch of pink snapper in the Gascoyne Coast Bioregion. 
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Figure 6.1.20.	 Capture locations of pink snapper recorded from interviews with recreational boat-
based fishers in the Gascoyne Coast Bioregion during 1998/99 (bottom) and 2007/08 
surveys (top).
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6.1.3.3 	 Spangled emperor catch
The historical commercial catch of spangled emperor (North West Snapper) in the Gascoyne 
was relatively stable from 1975/76 to 1983/84 before increasing substantially from the mid 
1980s to the early 1990s (Fig. 6.1.21.). This period of elevated catches, primarily from Zone 
6, coincided with an increase in trap and line fishing west of 114ºE and north of the SBSF 
(Moran et al. 1993). Elevated catches in Zone 2 are also conspicuous for that period, which 
coincided with a huge increase in effort in the SBSF, resulting in increased levels of bycatch 
of lethrinid species (including spangled emperor) during that period (Fig. 6.1.21.; Moran et 
al. 1993). Thereafter the levels of catch declined following increased levels of regulation on 
commercial fishing mainly associated with the commencement of the Pilbara Trap fishery in 
1992, the phasing out of commercial fishing in the Commercial Exclusion Zone from 1995, and 
subsequent limitations on fishing effort for bycatch and byproduct species in that fishery. The 
commercial catch of spangled emperor has also likely declined as a result of a shift in targeting 
practices by commercial operators to more valuable deeper-water species such as goldband 
snapper since the early 2000s.

The spatial distribution of commercial catches of spangled emperor appears to have changed 
little from 2001/02 to 2006/07, with the cessation of catches previously observed from the 
Commercial Exclusion Zone out from Ningaloo in 2006/07, compared to low catches in 
2001/02, and slightly lower levels of catch observed in a number of other blocks (Fig. 6.1.22.). 
Historically, though, the relatively high levels of catch observed from the mid 1980s to early 
1990s were primarily occurring in the Pilbara waters (north of North West Cape and Exmouth 
Gulf) and in the Commercial Exclusion Zone (outside of the Ningaloo Marine Park). For 
instance, in 1987/88 and 1988/89 the highest catches of spangled emperor were made from the 
coastal CAES block in the Exclusion Zone and in 1988/89 over 50 tonnes was caught from that 
block, mostly by fish trapping. 

The number of spangled emperor caught and retained by charter fishers was highest in2002/03 
and then declined to become relatively stable and fluctuating from 2003/04 to 2007/08 (Fig. 
6.1.23). The majority were caught from zones 5-7, followed by catches made in zones 2-4, 
with a negligible number caught from zone 1. Most of the charter catches of spangled emperor 
were made west and northeast (Muiron Islands) of the North West Cape, west and southwest of 
Point Maud, to the north of Koks and Dirk Hartog Islands, and about Steep Point (Fig. 6.1.24.). 
There is a clear contraction in the spatial distribution of catches made in 2007/08 compared 
to 2002/03 (concomitant with the contraction in fishing effort noted in Section 6.1.3.1 above), 
with conspicuously fewer catches coming from the areas south of Point Cloates and west of 
North West Cape in 2007/08 than in 2002/03 (Fig. 6.1.24.).

The total estimated number of spangled emperor caught and retained by recreational fishers 
from the Gascoyne was slightly lower in 2007/08 than it was in 1998/99 (Fig. 6.1.25.). Most of 
this decline, however, was observed for zones 2 and 4, with the 2007/08 catch from those zones 
being only 66.1% of the 1998/99 catch, in numbers of fish. The estimated number of spangled 
emperor caught and kept by recreational fishers from zones 5-7 was very similar among surveys, 
with the number in 1998/99 being 99.86% of the number estimated for 2007/08. The estimated 
catch from zone 1 was negligible (Fig. 6.1.25). 

Maps of block locations for captures of spangled emperor reported by recreational fishers 
indicate an expansion of the areas from which spangled emperor were caught from 1998/99 to 
2007/08 (Fig. 6.1.26). Most of the new capture block locations for spangled emperor in 2007/08 
were in areas further offshore from: North West Cape, Coral Bay (Point Maud), and Carnarvon 
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(i.e., around Bernier, Dorre and Koks Island), than reported in 1998/99. This spatial shift in 
catch locations for spangled emperor corresponds to the general expansion of recreational 
fishing effort between surveys shown in Figure 6.1.14.

Figure 6.1.21.	 Commercial catch of spangled emperor (all gears) in each zone. Note: 
apportionments of catch to zones is approximate and based on area for boundary 
blocks.
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Figure 6.1.22. 	 Commercial catch of spangled emperor (all gears) in the Gascoyne Coast Bioregion 
for 2001/02 (bottom) and 2006/07 (top).
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Figure 6.1.23.	 Charter catch of spangled emperor the Gascoyne Coast Bioregion.
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Figure 6.1.24.	 Charter catch of spangled emperor in the Gascoyne Coast Bioregion for 2002/03 
(bottom) and 2007/08 (top).
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Figure 6.1.25. 	 Estimated recreational catch of spangled emperor in the Gascoyne Coast Bioregion. 
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Figure 6.1.26. 	 Capture locations of spangled emporer recorded from interviews with recreational 
boat-based fishers in the Gascoyne Coast Bioregion during 1998/99 (bottom) and 
2007/08 surveys (top).
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6.1.3.4 	 Goldband snapper catch
The historical commercial catch of goldband snapper in the Gascoyne was relatively low (< 50 
t) prior to the 2000/01 season, then increased rapidly to relatively high levels from 2002/03 to 
2004/05 before dropping to relatively stable levels from 2005/06 to 2007/08, with most of this 
catch occurring from Zone 2 (Fig. 6.1.27.).  This trend reflects the development of a market for 
this species and concomitant increase in the targeted fishing of this stock from 1998 to 2003. 
Catches prior to 1998 were largely incidental as fishers fished in deeper depths (150-250 m) 
whilst targeting pink snapper. From 1998 to 2003 an increase in demand for catches of this 
species from the Gascoyne saw an increase in beach price for goldband snapper from $4.50 to $6 
per kg by one wholesaler and an increase in the number of vessels recording catches of goldband 
snapper from 18 to 31. In addition, an exemption for an exploratory commercial fish trawling 
licence was granted for a single vessel to operate within the 100m to 200m depth contours 
from south of Point Cloates to Cape Farquhar from 1993/94 to 1996/97, which contributed to 
observed catches for Zones 2 and 6 over that period (Fig. 6.1.27.). However, most of the catches 
of goldband snapper made since 2000/01 have been made by handline and dropline methods.

The annual catch of goldband snapper dropped in 2004 following the prohibition of “wetlining” 
within the SBSF management zone in that year, which limited fishing effort to only those vessels 
that held sufficient quantities of SBSF catch quota for pink snapper (Fig. 6.1.27.). It is suspected, 
however, that subsequent reductions in the pink snapper TACC in 2003/04, 2006/7 and 2007/08 
resulted in greater effort for goldband snapper and other species in the SBSF (Zones 2 and 3). 
The number of vessels targeting goldband snapper has gradually reduced since peak catches in 
2003, however, as a result of the decreasing size of the SBSF fleet due primarily to increasing 
fuel prices, reduced profits for vessels with limited pink snapper quota, and apparent optimised 
economical viability for fewer vessels remaining in the fleet with higher amalgamated units of 
pink snapper quota per vessel.

Initially the highest annual catches of goldband snapper prior to 2002 were made in the coastal 
CAES block that includes Point Maud, and catches are still high from this area, although have 
decreased from 2001/02 to 2006/07 (Fig. 6.1.28.). Since 2002 the goldband snapper catch from 
that block has also decreased proportionally within the bioregion as the proportion of goldband 
snapper catch from CAES blocks 24120 and 25120, west and northwest of Shark Bay, has 
increased. This trend is also evident in comparing spatial distributions of catch between 2001/02 
and 2006/07, in addition to a markedly lower catch from the block north of Exmouth Gulf and 
increasing catches west and south of Steep Point in 2006/07 (Fig. 6.1.28.). Although there is 
no clear, consistent seasonal pattern in the catches of goldband snapper, there are generally low 
monthly catches in May and June of each year, reflecting a shift in targeted fishing effort to 
pink snapper during the peak spawning season. There was also no obvious relationship between 
goldband snapper catches and the timing of peak spawning for this species.

Catches of goldband snapper by charter fishers are relatively low in comparison, but have 
increased substantially from 2002/03 to 2007/08, with no catch reported for zone 1 (Fig. 
6.1.29.). The majority of these catches are made from fishing grounds to the west of Point 
Maud, although low levels of catch have also been made to the north of North West Cape (Fig. 
6.1.30.). Catches of goldband snapper offshore from Point Maud are conspicuously higher in 
2007/08 than in 2002/03 (Fig. 6.1.30.).

The total estimated recreational catch of goldband snapper from the Gascoyne in 2007/08 was 
mainly from zones 5-7, with a comparatively small amount caught from zones 2-4, and none 
reported from zone 1. The spatial map of capture block locations show that the small number of 



108	 Fisheries Research Report [Western Australia] No. 228, 2012

goldband snapper caught from zones 2-4 were close to Coral Bay (Point Maud), with catches 
from zones 5-7 reported offshore from Coral Bay, on the western side of North West Cape (i.e., 
offshore from Tantabiddi ramp), and near the Muiron Islands (Fig 6.1.32). No recreational catch 
of goldband snapper was reported in the 1998/99 survey for comparison. 

Figure 6.1.27. 	 Commercial catch of goldband snapper (all gears) in each zone. 
Note: apportionments of catch to zones is approximate and based on area for 
boundary blocks.
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Figure 6.1.28. 	 Commercial catch of goldband (all gears) in the Gascoyne Coast Bioregion for 
2001/02 (bottom) and 2006/07 (top).
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Figure 6.1.29.	 Charter catch of goldband snapper in the Gascoyne Coast Bioregion.
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Figure 6.1.30.	 Charter catch of goldband snapper in the Gascoyne Coast Bioregion for 2002/03 
(bottom) and 2007/08 (top).
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Figure 6.1.31. 	 Estimated recreational catch of goldband snapper in the Gascoyne Coast Bioregion. 
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Figure 6.1.32. 	 Capture locations of goldband snapper recorded from interviews with recreational 
boat-based fishers in the Gascoyne Coast Bioregion during 2007/08 surveys. No 
recreational catches of goldband snapper were reported in the 1998/99 survey.
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6.2	 Commercial catch rate information for key indicator species 

6.2.1 	 Introduction
Catch rates, or catch per unit effort (CPUE) data, can provide useful information on stock 
abundance providing that certain assumptions are met. Nominal or un-standardised catch 
rates cannot be used as indices of relative abundance if they are not proportional to stock size. 
Wherever possible, the actual or ‘effective’ effort should be calculated, taking into account 
factors such as ‘technology-creep’ as fishers adopt new technologies or strategies, fishing 
environmental effects on catchability and observation and process error (Wise et al. 2007; 
Marriott et al. 2011b). Additionally, given a catch rate dataset of sufficient size, there are a 
number of well established statistical approaches that can be applied to produce a time series of 
standardised catch rates (Kimura 1988; Millischer et al. 1999; Marchal et al. 2006).

The objective of this section is to present and evaluate CPUE data for the three Gascoyne 
demersal indicator species in order to investigate long-term trends in relative stock abundance. 
Catch and effort data from the recreational and charter sectors were only available for two 
discrete years (1998/99, 2007/08) and for a continuous six-year period (2002/03 – 2007/08), 
respectively and so were not sufficient to derive CPUE data for that purpose. A much longer 
time series of commercial catch and effort data were available (i.e. decades) and therefore 
provided greater scope for developing indices of relative abundance based on CPUE. Because 
commercial line-fishing in the Gascoyne catches a range of species, a key factor influencing 
the usefulness of CPUE for this purpose is whether it is possible to accurately calculate the 
effort targeted towards a species of particular interest. The inadvertent inclusion of effort used 
in fishing for a non-target species can result in inflated and/or less precise effort terms in the 
calculation of CPUE and potential indices of abundance.

6.2.2	 Methods

6.2.2.1	 Pink snapper
Although various gears have been used over the recorded history of the SBSF, handline has 
been the predominant method (Moran et al. 2005). Nominal catch rates are highest during 
winter months, peaking in June-July, when pink snapper aggregate to spawn. Based on these 
two characteristics of the commercial fishery and in recognition of the need to identify targeted 
fishing effort, DoFWA has, since the 1990s, estimated a pink snapper CPUE (kg snapper/boat 
day) for SBSF-licensed vessels based on pink snapper catch (kg snapper) taken by handline 
during months of June-July only (boat days) (Moran et al. 2005). This approach was further 
refined, to take into account issues arising from the fact that the northern and southern boundaries 
of the SBSF dissect CAES reporting blocks, differences in skipper experience, with CPUE 
calculated based on the following criteria (referred to as the ‘Moran method’, Moran et al. 
2005):

•	 SBSF vessels fishing by handline that caught >4 t total (‘high-catch vessels’) of pink snapper 
during months June and July only;

•	 Catches from whole CAES blocks only within proscribed waters of SBSF (dissected blocks 
at northern and southern margins excluded).
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In 2006, as part of an external review of most recent oceanic pink snapper stock assessment 
at the time, Gilbert* (Department of Fisheries, unpublished data) used a generalised linear 
modelling (GLM) approach to obtain a standardised CPUE series by fitting a linear model to the 
logarithm of monthly catch (C kg, line fishing only) with year, vessel, month (M), days fished 
(D) and number of crew (G) as covariates as follows: 

	
  
Ci =α Ii • βMi •Di

δ •Gi
ϕ

The resultant trend in CPUE using the ‘Gilbert GLM’ was not significantly different to that 
obtained using the ‘Moran method’ (Fig. 6.2.1). Around same time, Thompson (Department of 
Fisheries, unpublished data) also used a GLM-based approach incorporating the same covariates 
as Gilbert but also included catches of species (bycatch) other than pink snapper and compared 
trends in CPUE under six different model scenarios as follows:

•	 Model 1 - All data 

•	 Model 2 - All data with non significant covariates removed 

•	 Model 3 – Only vessels that fished for >30 days during period April-August each year

•	 Model 4 - Only vessels that fished for >60 days during period April-August each year

•	 Model 5 - Only vessels that fished caught >10 t snapper during April-August each year

•	 Model 3 - Only vessels that fished caught >20 t snapper during April-August each year

Figure 6.2.1. 	 Comparison of the three different measures of pink snapper CPUE 1988/89 to 
2005/06. 

*	  Dr D.Gilbert (NIWA, Wellington, NZ) was contracted to undertake an independent review of the 2006 oceanic pink snapper stock 
assessment in June 2006. As part of this work, he used GLM to calculate standardised pink snapper catch rates.
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Based on ANOVA (type 3 sum of squares), the ‘best’ CPUE was obtained using catch rates 
for SBSF vessels that caught >10 t of snapper during period April-August (‘DoFWA GLM’, 
Fig. 6.2.1). Following discussions between the Department and SBSF industry leaders in late 
2006, at which the merits of the various methods of estimating CPUE based on monthly C&E 
data were discussed at length, it was agreed that the ‘Moran method’ would be retained as the 
standard method of estimating pink snapper catch rate until such time that higher resolution 
C&E data became available (i.e. daily/trip logbook data). Thus, since 2006, pink snapper catch 
rates have been calculated using effort measured as ‘standard boat days’, i.e. days fished by 
vessels that caught more than 4 t each of pink snapper by handline during June–July each year. 
CPUE data were incorporated in the age-based integrated model used to assess the oceanic 
stock of pink snapper (see 6.3.2.1 for details). In addition, CPUE has also been used as an 
indicator for the SBSF following EPBC Act assessment (in 2003) with the minimum trigger 
level set at 500 kg snapper/standard boat day.

6.2.2.2 	 Spangled emperor
Spangled emperor has not been a consistent target species of the Gascoyne commercial fishery 
(and has not been targeted in recent years), so its CPUE is not likely useful as an index of 
abundance for this species. A nominal CPUE (total catch divided by the total effort when 
catches of spangled emperor were made) was therefore presented for each assessment zone 
(North Gascoyne: Zones 1 to 4 combined, South Gascoyne: Zones 5 to 7 combined) to show 
the general trend in historical catch rates for the commercial fleet for the most frequently used 
method of line fishing (handline and dropline). To assist with the interpretation of trends in 
nominal CPUE, corresponding annual catches are also displayed in these figures. 

Historically, the variation in spangled emperor CPUE among vessels is likely to have been 
significant, since it is known that the level of targeted fishing of spangled emperor among 
vessels has varied, such as with the relatively recent advent of the targeting of other deeper-water 
species such as goldband snapper by some vessels (Sections 6.1.3.4, 6.2.3.3). Additionally, the 
significance of vessel-specific variation on fleet-wide CPUE, attributable to effects such as 
skipper skill (Hilborn 1985; Squires and Kirkley 1999), vessel horsepower (Jones and Luscombe 
1993), product storage technology and capacity (Robins and Sachse 1994), crew size, and 
other technologies or gears adopted and/or installed on different vessels (Marriott et al. 2011b) 
is well-documented for many other demersal scalefish fisheries. It is therefore possible that 
changes in the composition of the commercial fleet at different times may have influenced the 
presented trends in nominal CPUE for spangled emperor. A supplementary analysis of CPUE 
to account for the influence of vessel using generalised linear models was therefore done and is 
reported in Appendix 5. 

6.2.2.3 	 Goldband snapper
Goldband snapper is currently a targeted species by commercial demersal scalefish operators, 
and so was considered a candidate stock for evaluating its CPUE as an index of relative 
abundance. However, this species has only recently been targeted, so an exploration of factors 
influencing the effective fishing effort and thus nominal catch rates of goldband snapper over 
this relatively recent history of exploitation was done.

Six of the top ten skippers who reported annual catches of goldband snapper most frequently 
ranking in the top ten (kg) for the years 1988 to 2007 were contacted for a phone interview on 
their historical fishing of goldband snapper in the Bioregion. Specific questions that were asked 
included:
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i.	 What year did they start commercial line fishing for demersal scalefish?

ii.	What year did they start targeting goldband snapper?

iii.	What are the five most important factors they think were likely to have influenced their catch 
rates of goldband snapper over time?

iv.	For those factors identified in (iii), can they provide an estimate of the improvement (%) in 
catch (for same fishing effort) or proportional reduction in fishing effort (%) for the same 
catch of goldband snapper as a result of each factor?

Estimates of improvements in fishing efficiency provided in response to (iv) were calculated 
as in Wise et al. (2007) and Marriott et al. (2011b) for demersal scalefish stocks in the West 
Coast Bioregion, for the purpose of gauging the approximate magnitude of factors affecting 
catch rate. This was done to obtain an improved understanding of suspected market influences 
or technological developments within the fishery on the historic catch rate trend for this species. 
Informal discussions with fishers and explorations of spatial and/or temporal patterns in catch, 
CPUE, and number of vessels catching goldband snapper were also undertaken to describe the 
historical exploitation of that species by the fleet operating in Zone 2 (see also Section 6.1).

Available nominal commercial CPUE data are presented to show annual trends for the South 
Gascoyne region only. This was done because these data were considered to be representative 
of the relatively recent history of commercial fishing by fishers in the SBSF targeting goldband 
snapper and wetliners north of the SBSF management zone but south of the Commercial Exclusion 
Zone. Nominal CPUE data for goldband snapper in Zones 5 to 7 for this relatively recent 
harvest period represent commercial fishing in Pilbara waters (a separately managed fishery) 
and thus represents only part of that separately managed Pilbara stock, which is monitored and 
managed under separate processes. Therefore, goldband snapper data collected from the North 
Gascoyne (Zones 5 to 7 combined) were not considered relevant in the context of this section 
(and of the stock assessments: see Section 6.3) and so were not presented. To account for the 
influence of method on CPUE, only data for line fishing methods (handline and dropline) were 
plotted. To assist with the interpretation of trends in nominal CPUE, corresponding annual 
catches were also displayed in figures. Accordingly, divergent trends in CPUE and catches over 
time indicated that changes in effort or other factors not directly influencing the catches were 
affecting the nominal CPUE.

6.2.3 	 Results

6.2.3.1 	 Pink snapper
Although CAES data for the SBSF were available from 1975 onwards, due to some uncertainties 
in the licensing information and effort data (E. Lai, pers. comm.), it was only possible to calculate 
CPUE for pink snapper with confidence from 1989 onwards. Catch rates calculated using the 
‘Moran method’, while showing significant inter-annual variation, declined through the 1990s 
and early 2000s reaching a low of 450 kg/standard boat day in 2003/04. Since that time, the 
standardised ‘Moran method’ catch rates have increased (Figure 6.2.3). The assessment model 
indicated a steady increase in catch rates after 2003 that was consistent with the increase in 
spawning biomass following the significant reduction in TACC in 2004 (see 6.3.3.1).
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Figure 6.2.3. 	 Standardised commercial catch rate for pink snapper 1988/89 to 2006/07 calculated 
using the ‘Moran method’. 

6.2.3.2 	 Spangled emperor
The general trend of nominal CPUE in the North Gascoyne was of an overall decline from 
1975/76 to 2007/08, punctuated at approximately regular intervals (i.e., every 6-9 years) by 3-4 
pulses of elevated CPUE: 1981/82-1983/84, 1988/89-1992/93, 1998/99-2000/01 and, possibly, 
2005/06-2007/08 (Fig. 6.2.4). Nominal CPUE generally tracked trends in annual catches except 
from 1975/76 to 1979/80 when CPUE was decreasing with increasing catches, from 1988/89 to 
1991/92, when catches were decreasing and CPUE increased and fluctuated, and from 2003/04 
to 2006/07, when CPUE was gradually increasing but catches remained relatively stable before 
dropping in 2006/07 (Fig. 6.2.4). 

The commercial nominal CPUE for spangled emperor in the South Gascoyne declined rapidly 
from a very high level in 1975/76 to a relatively low level in 1981/82 (Fig. 6.2.4). Whether this 
early rapid decline in CPUE is due simply to a rapid increase in the number of fishers targeting 
and catching spangled emperor at that time, a rapid fish-down of a previously unexploited 
stock, or for some other reason is unknown. Thereafter the trend in spangled emperor CPUE 
gradually increases to 1991/92 then gradually declined until 2006/07 (Fig. 6.2.4). Nominal 
CPUE generally tracked the trends in annual catches from 1975/76 to 2007/08 (Fig. 6.2.4). 
As these are trends in nominal CPUE, they may not necessarily reflect trends in the relative 
abundance of spangled emperor in either region, because they could also reflect the combined 
influences of the other aforementioned factors on catch rates (Wise et al. 2007; Marriott et al. 
2011b), including structural adjustments with the fishery (see Section 6.1).

A supplementary analysis of spangled emperor CPUE demonstrated that vessel-specific 
CPUE was significant (Appendix 5). Also, the fleet composition had changed frequently over 
time. Accordingly, it is probable that a change in fleet composition could have at least partly 
explained some of the observed historical changes in nominal CPUE. That there was a large 
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reduction in effort in the North Gascoyne from 1991/92 onwards, which was concomitant with 
the commencement of the Pilbara Trap fishery, suggests that the rapid decline in nominal CPUE 
from 1991/92 to 1996/97 was likely attributed, at least in part, to a change in fleet composition 
and reduction in fishing activity during that period, although it was not possible to test this 
given the relative paucity and coarseness of available data (see Appendix 5). It is likely that 
regulations introduced in the North Gascoyne resulting in restricted commercial fishing in 
waters inhabited by spangled emperor, including the establishment of the Ningaloo Marine 
Park in 1989, the implementation of sanctuary zones within it in 1991, and the establishment 
of the OCS in 1995 (i.e., to enforce prohibition of state-licensed commercial fishing within 
the Commercial Fishing Exclusion Zone; Fig. 1.1) contributed towards observed declines in 
catches and CPUE during that period. 

However it is also possible that a declining CPUE could reflect a declining abundance of 
spangled emperor following higher historic levels of commercial exploitation in the vicinity of 
North West Cape and Ningaloo, or other factors not explored. Moran et al. (1993) interpreted 
a declining commercial trap fishing CPUE of large emperors (including spangled emperor) 
from those areas since 1989/90 as reflecting serious depletions from intensive commercial trap 
fishing from the mid to late 1980s. Although there is much uncertainty in the interpretation of 
CPUE trends due to the many factors unquantified and unaccounted for in such analysis (see 
Appendix 5), this possibility of high historical depletions of spangled emperor in the North 
Gascoyne should be considered in context of assessment results presented in Section 6.3.
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North Gascoyne
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South Gascoyne

75/76 80/81 85/86 90/91 95/96 00/01 05/06

Figure 6.2.4. 	 Nominal commercial catch rate for spangled emperor, with annual commercial 
catches included for comparison. South Gascoyne = Zones 1 to 4 combined; 
North Gascoyne = Zones 5 to 7 combined. Data presented for line fishing methods 
(handline and dropline) only.

6.2.3.3 	 Goldband snapper
The historical trend in nominal CPUE of goldband snapper for the South Gascoyne (Fig. 6.2.5) 
follows the trend of historical catches from that region, except for the relatively rapid increase 
in nominal CPUE from 2005/06 to 2007/08, compared to a more gradual increase in catch. The 
increase in nominal CPUE and catches from 1998/99 to 2003/04 likely reflects the development 
of the market for goldband snapper captured from the Gascoyne Coast Bioregion as described 
in Section 6.1.3.4 and improvements in targeted fishing for this species, and not an increase 
in relative stock abundance over this period. Several skippers who currently target goldband 
snapper explained the relatively rapid increase in nominal CPUE from 2005/06 to 2007/08 
arising from the recent reduction in the number of vessels in the SBSF that target this species 
(as explained in Section 6.1) and that those who remained in the fishery were highly efficient at 
catching them. Thus this recent increase in CPUE reflects a shift in fleet composition to those 
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few operators who were highly efficient at targeting and catching this species, rather than an 
increase in relative stock abundance.

Improved depth sounders, weather and the use of tuna circle hooks were equally the most 
frequently identified factors for influencing historical catch rates of goldband snapper reported 
by the interviewed fishers. Responses of the interviewed skippers were consistent with the 
aforementioned inferences relating historical fleet-wide trends in catches and CPUE to a 
shifted targeting of fishing effort towards this species. The interviewed skippers stated that 
they started targeted fishing for goldband snapper in the Gascoyne from 1994 to 2001 (i.e., 
where this year did not coincide with the year that respondents had stated that they had started 
fishing for demersal scalefish). This period bracketed the inferred year that a fleet-wide shift to 
targeted fishing of goldband snapper commenced (i.e., 1998/99), based on the historical trends 
of catches and CPUE. Half of the interviewed skippers had adopted better depth sounders since 
they had started targeted fishing for goldband snapper to result in an estimated 20% median 
improvement in the fishing efficiency for goldband snapper catches. These fishers had adopted 
the improved depth sounders from 2003 to 2007. 

Therefore, historical catch rate data from the SBSF were found to be uninformative for use 
as an index of relative abundance of goldband snapper and it was not possible to robustly 
estimate relative stock biomass for this species from these historical data. There is promise for 
developing a reliable index of abundance for this stock from CPUE data in future, however, 
since the market for goldband snapper from the Gascoyne Bioregion is now fully established 
and higher-resolution commercial daily/trip logbook data collection is now in progress (since 
early 2008).

75/76 80/81 85/86 90/91 95/96 00/01 05/06

Figure 6.2.5. 	 Nominal commercial catch rate for goldband snapper from the South Gascoyne 
(Zones 1 to 4 combined), with annual commercial catches included for comparison. 
Data presented for line fishing methods (handline and dropline) only.

6.2.4 	 Discussion
Evaluation of commercial CPUE data and historical fishing practices showed that a useful index 
of relative abundance can be derived for pink snapper (oceanic stock) but not for goldband 
snapper or spangled emperor at this stage. The trend in historical CPUE for goldband snapper 
was driven by an increased level of targeting and improved efficiency for catching this species 
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and the available time series of CPUE since this species was fully targeted is limited. For 
spangled emperor, it was not possible to disentangle the likely effect of observed changes 
in fleet composition in the North Gascoyne from underlying patterns in relative biomass on 
a declining CPUE. In the South Gascoyne, it is possible that a declining CPUE may have 
reflected a declining relative biomass of spangled emperor from at least 1991/92 to 2000/01, 
because a supplementary analysis corroborated the observed trend in nominal CPUE when the 
effect of vessel was accounted for. It is possible, however that other unexplored effects might 
have influenced this CPUE trend, such as the shift in targeting to more highly valued deeper-
water species such as goldband and ruby snapper from 1994 to 2001. This might have resulted 
in reduced targeted fishing for spangled emperor (when not targeting pink snapper) within each 
60 x 60 nm block for each month and therefore a reduced vessel-adjusted or nominal CPUE 
over time. This has significant implications for stock assessments of goldband snapper and 
spangled emperor, because without a long-term time series of relative biomass, there is greater 
uncertainty in estimates of stock status and reduced scope for the application of integrated age-
structured stock assessment models (Doubleday 1976; Deriso et al. 1985; Megrey 1989).

New logbooks with higher spatial (10 x 10 nm reporting blocks) and temporal (hours) resolution, 
were recently implemented in the SBSF (and in the Gascoyne Demersal Scalefish Fishery, which 
commenced on 1 November 2010), and are likely to provide scope for generating improved 
standardised indices of relative abundance for pink snapper and goldband snapper in the future.

There is also scope for new data on recreational catches and effort and data from charter fishing 
logbooks to generate standardised indices of abundance for spangled emperor in the Gascoyne, 
and in particular in the north Gascoyne (Zones 5 to 7 combined), where adequate data from 
a commercial sector is lacking. Hourston and Johnson (2009) demonstrated the potential 
usefulness of trends in charter fishing catches, effort and CPUE for monitoring spangled 
emperor, goldband snapper and pink snapper in the Commonwealth waters of the Ningaloo 
Marine Park. For instance, they found that, with a declining number of vessels, effort, catch 
and overall change in catch composition, a reduction in CPUE for spangled emperor from 2002 
to 2008 (Hourston and Johnson 2009). However, they could not determine whether this was 
due to changing fish biomass or fishing behaviour. The Department has since (from January 
2011) commenced a new recreational fishing survey, which is planned to be run every two 
years to collect catch and effort data at a state-wide and Bioregional level. With regular data on 
recreational and charter catch and effort collected for spangled emperor and goldband snapper 
from the Gascoyne it may be possible to move to higher-level stock assessments for these 
stocks in future.

6.3 	 Assessments 

6.3.1 	 Introduction
The scope and quality of fishery and biological data available for the stock assessments varied 
considerably among the three Gascoyne demersal indicator species. As a consequence, different 
assessment approaches were used for the respective stocks. The historical data that were available 
for pink snapper allowed the application of integrated age structured models for both the oceanic 
and inner gulfs stocks (Stephenson and Jackson 2005; Moran et al. 2005); assessments were 
not undertaken as part of the Gascoyne IFM per se but had been undertaken recently (in 2009 
and 2008, respectively) to meet pre-existing fishery management commitments. In contrast, 
historical data for spangled emperor and goldband snapper were considered poor for indicating 
trends in relative abundance (Section 6.2) and thus assessments for these stocks necessitated a 
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lower level approach that made use of the ‘weight-of-evidence’ framework developed by Wise 
et al. (2007).

6.3.2 	 Methods

6.3.2.1 	 Integrated age-structured assessments: Pink snapper

6.3.2.1.1 	Background
There are fundamental differences between the fisheries that target the oceanic pink snapper 
stock (mostly commercial) and inner gulf pink snapper stocks (mostly recreational). As a 
consequence, the sources of data available for the respective assessments differed as follows: 

Oceanic stock

The oceanic stock is nowadays principally fished by commercial vessels operating within 
the Shark Bay Snapper Managed Fishery (SBSF, see 6.1). An extensive time series of CAES 
catch (1952-present) and effort data (1989-present) plus a considerable amount of biological 
information were available (Moran et al. 2005; Wakefield 2006). Since 2004, the Department 
of Fisheries have been sampling SBSF catches on a monthly-basis to provide catch-at-age data 
to monitor recovery of the stock following major quota cuts in 2004 and 2007 (Jackson et al. 
2010a). Prior to 2002/03, the only quantitative assessment for the fishery was an MSY-type 
assessment that was undertaken in 1986 (Moran et al. 2005). In 2002/03, an integrated age-
based stock assessment model was developed to assess the status of the oceanic stock (Moran et 
al. 2005). The model was independently reviewed in 2006 (by Dr D Gilbert, NIWA, Wellington, 
New Zealand). The model was subsequently modified (in 2007) to take into account some of 
the reviewers comments; the model is now updated every 3-years to provide research advice on 
stock status The most recent assessment, the details of which are reported here, was undertaken 
in 2009 and included data up to and including the 2007/08 commercial quota season. 

Inner gulf stocks

The inner gulf stocks have almost been entirely fished by recreational vessels since ca. 1995/96. 
Prior to a comprehensive research program that commenced in 1997, limited information on 
the level of recreational catches or the biology of inner gulf stocks was available (Stephenson 
and Jackson 2005; Jackson 2007). Significant commercial fishing is known to have taken place 
in the inner gulfs from around the 1950s (Bowen 1961), however, due to the size/design of the 
CAES reporting blocks, it is not possible to distinguish between catches for the separate stocks 
with confidence prior to 1992.

Since 1998, surveys to estimate spawning biomass using the daily egg production method 
(DEPM, Jackson and Cheng 2001; Jackson et al. in press) and recreational fishing surveys to 
estimate catch and fishing effort using the bus-route method (Sumner et al. 2002), have provided 
the basis for the assessment of the status of inner gulf snapper stocks. In 2002, integrated age-
structured models were developed to assess the status of each of the three inner gulf snapper 
stocks (Stephenson and Jackson 2005). These models are updated every 3-years; the most 
recent assessments that are reported here were undertaken in 2008 and included data up to and 
including 2007.
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6.3.2.1.2 	Description of models
A separate age-structured model was developed for each stock based on the substantial body 
of stock structure evidence (Jackson 2007) that indicates that each pink snapper stock is 
reproductively isolated and self-recruiting with no significant mixing after recruitment. 

The virgin recruitment was estimated and the virgin biomass calculated with the numbers at age 
reduced by natural mortality. The initial biomass (at the beginning of the respective time series 
of catch data, i.e. 1952 for oceanic stock and 1983 for the inner gulf stocks) were calculated 

assuming a constant harvest rate, H , set at 0.05, prior to 1952 (oceanic stock) and 1983 (inner 
gulf stocks), respectively (Table 6.3.1). Subsequently, numbers in each age class and each year 
were reduced by natural mortality and fishing mortality.  Annual recruitment each year (i.e. 
number of 0+ fish for inner gulf stocks, number of 1+ fish for oceanic stock) was calculated 
using a Beverton and Holt stock-recruitment relationship (SRR) with recruitment variability 

accounted for using recruitment deviation parameter, 

	
  
εy . The first year of recruitment 

deviations was determined by the time series of age-composition data available, i.e. 1997-2007 
for the inner gulf stocks, 1991/92-2007/08 for the oceanic stock (Table 6.3.1). 

The female spawning biomass of the oceanic stock, both at the virgin (unexploited) level and at 
the beginning of the time series of catch data (1952) were estimated using the age composition, 
sexual maturity of females at age, and weight at age (assumed constant over time) (Tables 
6.3.3, 6.3.4, 6.3.5). For the three inner gulf stocks, the total spawning biomass (weight of males 
and females combined) was estimated at the virgin level and at the beginning of time series 
of catch data (1983). Independent estimates of total spawning biomass based on the DEPM 
were available for the three inner gulf stocks for the period 1997-2007 (Jackson and Cheng 
2001; Jackson 2007) (Table 6.3.6). The method estimates spawning biomass from the ratio of 
daily egg production, over the spawning area, and the weight-specific daily fecundity (Lasker 
1985). For the oceanic stock, in the absence of independent estimates of stock biomass, catch 
rates, estimated using the ‘Moran method’ (see 6.2 for details) were used as an index of relative 
abundance. 

Annual catches taken by commercial (since 1952) and charter vessels (since 2001 only) 
were obtained from statutory monthly returns reported via CAES (Table 6.3.2). Estimates of 
recreational catches were obtained from data collected during recreational fishing surveys in 
1998/99 and 2007/08 for the oceanic stock and each year 1998/99 -2007/08 for the inner gulf 
stocks (Table 6.3.2). 

Age composition data were obtained from sectioned otoliths sampled from commercial 
catches (oceanic stock) and fishery-independent surveys (inner gulf stocks) (Table 6.3.3). The 

selectivity at age, av , was taken as the proportion of fish in each age class that are legal size and 
was assumed to be equivalent for females and males (Table 6.3.7). The different legal lengths 
that apply in oceanic waters and inner gulfs were accounted for in the respective models.  For 
oceanic pink snapper, this was the proportion at age greater than 41 cm (TL). In the inner gulfs, 
prior to 2001, this was the proportion at age greater than 45 cm (TL) and from 2001 onwards, 
the proportion between 50 and 70 cm. It was assumed that all fish above the minimum legal 
length in each case were fully selected.

The number of pink snapper in the fishery at the start of year y is determined by;
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The number of pink snapper (millions), at unfished equilibrium, the initial state, is

		

The number of k-year-old recruits in each year is 

				  

		

The stock-recruitment parameters 	
  α  and 

	
  
β  were calculated from the proportion of initR  that 

recruits when yS  is 20% of the virgin level (Hilborn and Walters 1992).

where 	

 and  

The number of pink snapper (millions), at the start of year I, the initial year of the dataset is 

	

The number of recruits at the beginning of subsequent years is given by, 
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where K represents the first year of recruitment deviations.

The exploitation rate was estimated by,
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and the estimated catch rate in each year yÛ  is given by 

yBq

where q is the catchability

The logarithm of the likelihood function associated with catch rates (oceanic stock only) 

is		

The model estimated proportion at age is	
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The logarithm of the likelihood function associated with age samples is		
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The logarithm of the likelihood function associated with the independent DEPM estimates of 

spawning biomass observations (inner gulf stocks only) is given by

The annual recruitment deviations in each area were assumed to have a log-normal distribution 

with . The contribution to the logarithm of the likelihood function is 

The natural mortality, M, was assumed to have a log-normal prior with cv = 0.2 and mean 

12.0
~ =M . The contribution to the logarithm of the likelihood function is 

 			   	 where 	 		

The total log-likelihood,  was minimised using AD model builder to 

estimate the parameters yR , aV , and .
Where, 

initR 	 = estimated number of 0+ at unexploited equilibrium

s
initaN , 	 = number of fish of sex, s, and age, a, in the initial year

s
yaN 1, + 	 = number of fish of sex, s, age, a, in year, y

M	 = annual rate of natural mortality

yF 	 = exploitation rate in year y

aV 	 = proportion of vulnerable snapper of age a

yC 	 = weight of annual catch

yaC , 	 = catch in numbers
W	 = weight
A 	 = maximum age

,  		 = parameters of the stock recruitment relationship

 h 		  = steepness of the stock recruitment relationship

aP 		  = proportion of snapper mature at age a

5.0a , 95.0a 	 = ages when 50% and 95% of fish are mature
	 = proportion of females in the population

yR 	 = recruitment in the fishery from the stock recruitment relationship
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	 = annual recruitment deviation for year y

yap ,ˆ 	 = model estimated proportion of fish at age a, in year y

yK 	 = number of fish in the age composition sample

yD 	 = empirical estimate of biomass of sexually mature fish (males and females)

yD̂ 	 = model estimated biomass of sexually mature fish (males and females)

yS 	 = spawning biomass, females only 

Table 6.3.1. 	 Summary of information used in integrated assessments of oceanic and inner gulf 
pink snapper stocks in Gascoyne Coast Bioregion. 

Stock Data Year/s Source / Section

Oceanic vB growth Wakefield (2006), 5.2

Maturity Wakefield (2006), 5.2

Length:weight 
relationship

Wakefield (2006), 5.2

Age structure of catch 1992,1996,1999,2001, 
each year 2003-2008

Fishery-dependent sampling, otolith 
interpretation

Commercial catches 1952-2008 Statutory monthly returns (CAES)

Recreational catches 1998/99, 2007/08 Gascoyne Recreational Fishing 
surveys 

Charter catches each year, 2001-present Statutory monthly returns 

Discard rates 2003-2009 At sea monitoring

Inner Gulfs vB growth Jackson et al. (2010b), 5.2

Maturity Jackson et al. (2010b), 5.2

Length:weight 
relationship

Jackson (2007), 5.2

Age structure 1997-2007 Fishery-independent sampling

Commercial catches 1992-2007 Statutory monthly returns (CAES)

Recreational catches 1983, 1996, 1998/99 – 
2007/08

Recreational fishing surveys (boat 
ramps) 

Charter catches    each year, 2001-present Statutory monthly returns 

Estimates of spawning 
biomass

1997-2007 DEPM surveys (Jackson et al. 2012)
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Table 6.3.2. 	 Recreational and commercial catches (tonnes) of pink snapper for the inner gulf 
stocks (Denham Sound, Freycinet Estuary, Eastern Gulf) and total catch (commercial, 
recreational and charter combined) for the oceanic stock. Recreational catches in 
inner gulfs 1983-2003 are unknown and have been ‘assumed’ at three levels (i.e. 
high, medium and low) based on anecdotal information from fishers. 

Oceanic Denham Sound Freycinet Estuary Eastern Gulf

Year Catch Catch rate Com Rec Com Rec Com Rec

Low Med High Low Med High Low Med High

1952 216
1953 314
1954 353
1955 491
1956 465
1957 282
1958 304
1959 741
1960 611
1961 642
1962 507
1963 561
1964 359
1965 194
1966 154
1967 131
1968 96.9
1969 98.3
1970 109
1971 66.7
1972 122
1973 301
1974 182
1975 340
1976 423
1977 409
1978 319
1979 406
1980 601
1981 564
1982 522
1983 592 12 12 12 12 4 17 17 17 3.0 4.7 7.0 9.3
1984 727 12 8.7 13 17.3 4 12.0 18 24.0 3.0 6.7 10.0 13.3
1985 1297 12 9.3 14 18.7 4 12.7 19 25.3 3.0 8.0 12.0 16.0
1986 598 12 10.0 15 20.0 4 13.3 20 26.7 3.0 9.3 14.0 18.6
1987 598 12 10.7 16 21.3 4 14.0 21 28.0 3.0 10.7 16.0 21.3
1988 470 12 11.3 17 22.7 4 14.7 22 29.3 3.0 12.0 18.0 23.9
1989 572 1 12 12.0 18 24.0 4 15.3 23 30.7 3.3 13.3 20.0 26.6
1990 541 1.03 12 12.0 18 24.0 4 16.0 24 32.0 3.3 15.3 23.0 30.6
1991 526 0.95 12 12.7 19 25.3 4 16.7 25 33.3 3.3 16.7 25.0 33.3
1992 464 1.09 12 12.7 19 25.3 4 17.3 26 34.7 3.3 20.0 30.0 39.9
1993 588 1.22 9.0 13.3 20 26.7 4 18.0 27 36.0 3.3 26.7 40.0 53.2
1994 530 0.94 5.1 13.3 20 26.7 4 18.7 28 37.3 2.3 33.4 50.0 66.5
1995 519 1.12 12.8 13.3 20 26.7 4 19.3 29 38.7 8.5 42.0 63.0 83.8
1996 528 0.91 15.6 12.0 18 24.0 4 20.0 30 40.0 4.5 36.7 55.0 73.2
1997 585 0.88 12.4 10.0 15 20.0 4 20.0 30 40.0 3.2 20.0 30.0 39.9
1998 642 1.01 4.8 12 12 12 0.5 30 30 30 0.4 3.0 3.0 3.0
1999 565 0.87 0.7 11 11 11 0.3 25 25 25 0 0 0 0
2000 574 0.93 1.7 10 10 10 0.3 20 20 20 0 0 0 0
2001 569 0.90 2.5 8 8 8 0.3 23 23 23 0 0 0 0
2002 601 0.79 1.8 15 15 15 0.3 19 19 19 0 0 0 0
2003 524 0.64 1.6 6.2 6.2 6.2 0 1.5 1.5 1.5 0.3 3.2 3.2 3.2
2004 385 0.64 2 8.2 8.2 8.2 0.1 0.9 0.9 0.9 0.1 2.8 2.8 2.8
2005 365 0.69 0.8 4.8 4.8 4.8 0 2.3 2.3 2.3 0.1 1.8 1.8 1.8
2006 392 0.83 1.7 5.4 5.4 5.4 0 2 2 2 0.2 3.5 3.5 3.5
2007 369 0.75 1 3.8 3.8 3.8 0 1.6 1.6 1.6 0.1 4.0 4.0 4.0
2008 303 0.86 0 15 15 15 0 5 5 5 0 15 15 15
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Table 6.3.3. 	 Age-composition data for Denham Sound (A), Freycinet Estuary (B), Eastern Gulf (C) 
and oceanic (D) pink snapper stocks. n = total number of samples aged in each year. 

Age (years)

y n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26+

A

1997 69 0 0 1 18 19 10 8 10 3 0 0 0 0 0 0 0 0 0 0 0 0

1998 147 0 0 0 2 20 35 23 19 30 13 3 0 0 2 0 0 0 0 0 0 0

1999 86 0 0 4 6 10 7 6 10 9 15 6 2 3 1 2 4 0 0 0 1 0

2000 252 0 0 11 19 36 64 31 33 17 17 13 4 5 1 0 1 0 0 0 0 0

2001 67 0 0 8 16 8 16 5 4 1 3 3 2 0 1 0 0 0 0 0 0 0

2003 107 0 0 0 0 11 23 32 14 11 2 2 1 1 3 2 0 1 1 2 1 0

B

1997 86 0 0 10 0 0 1 6 19 11 1 2 4 0 4 2 2 4 0 5 1 1 2 1 0 2 2 6

1998 64 0 0 4 0 0 0 1 6 17 15 5 0 2 2 2 2 1 0 1 0 0 2 0 1 1 0 2

1999 127 0 0 2 9 6 6 8 4 7 41 13 4 2 2 1 5 1 0 0 2 3 1 4 0 2 0 4

2000 181 0 0 5 13 27 18 6 20 5 9 23 22 9 0 5 4 2 1 0 0 1 1 2 0 0 4 4

2001 66 0 0 0 3 7 21 7 0 3 1 3 12 4 1 0 1 1 0 0 0 1 0 0 0 0 0 0

2002 81 0 0 0 0 0 4 11 13 2 5 2 2 19 7 1 0 2 2 1 2 2 0 1 2 1 0 2

2004 119 0 0 4 0 6 8 7 39 34 13 1 2 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0

2006 106 0 0 0 0 1 1 13 13 8 26 22 3 1 1 2 1 5 3 0 1 1 1 1 1 0 1 0

2007 110 0 0 0 0 0 0 1 18 8 12 25 20 9 4 1 0 4 3 0 0 1 1 1 0 0 0 2

C

1998 113 0 0 2 12 6 7 27 32 12 7 6 1 1 0 0 0 0 0 0 0 0

1999 81 0 0 0 3 10 9 12 14 16 8 5 2 1 1 0 0 0 0 0 0 0

2000 265 0 0 29 47 46 29 16 25 37 23 7 2 4 0 0 0 0 0 0 0 0

2001 104 0 0 4 16 14 12 7 7 8 16 6 6 3 2 0 1 1 1 0 0 0

2002 103 0 0 0 3 10 18 21 30 9 3 3 3 1 0 0 0 1 0 1 0 0

2003 186 0 0 10 26 41 22 15 23 25 8 4 6 4 0 2 0 0 0 0 0 0

2004 250 0 0 4 6 20 26 33 24 50 35 15 8 11 7 7 2 2 0 0 0 0

D

1992 200 0 0 4 27 66 35 25 22 10 5 2 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0

1996 557 0 0 0 15 43 150 157 108 38 12 6 11 4 4 1 4 1 1 0 1 0 1 0 0 0 0 0

1999 88 0 0 0 0 5 8 15 13 11 11 5 3 1 4 5 2 1 1 0 3 0 0 0 0 0 0 0

2001 242 0 0 5 10 16 18 28 17 22 27 29 20 10 10 7 7 3 3 2 3 2 3 0 0 0 0 0

2003 201 0 0 4 26 38 26 18 13 7 5 16 10 12 4 3 3 2 4 2 4 2 0 2 0 0 0 0

2004 609 0 0 2 88 128 127 86 45 33 14 16 14 24 11 4 1 5 1 2 3 2 1 1 0 1 0 0

2005 497 0 0 12 53 116 155 77 40 20 5 5 4 2 0 2 0 2 1 0 1 0 1 0 0 0 0 0

2006 688 0 0 15 30 59 155 176 126 69 24 10 6 3 3 2 4 2 0 0 1 0 1 0 1 0 0 1

2007 336 0 0 1 17 73 58 63 40 34 22 8 4 5 1 4 2 2 0 0 0 1 1 0 0 0 0 0

2008 685 0 0 5 59 152 117 102 82 53 37 25 19 11 5 0 0 5 1 0 2 2 1 0 1 1 0 5

Table 6.3.4. 	 Ogive of sexual maturity for pink snapper, asP , , for sex, s and age, a , for inner gulf 
stocks, Denham Sound (A), Freycinet Estuary (B), and Eastern Gulf (C) derived from 
the values of L50 and L95 for males and females shown (fork length, mm). For the 
oceanic stock (D), the spawning biomass of females only was determined.

L50 L95 a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

A
400 600 afp , 0.000 0.013 0.044 0.123 0.269 0.460 0.638 0.768 0.851 0.902 0.933 0.952 0.970 0.980 1 1 1

600 400 amp , 0.004 0.039 0.227 0.623 0.881 0.965 0.988 0.996 0.998 0.999 1 1 1 1 1 1 1

B
420 420

afp , 0.000 0.006 0.036 0.150 0.399 0.671 0.841 0.922 0.959 0.977 0.985 0.990 0.970 0.980 1 1 1

570 570 amp , 0.000 0.006 0.036 0.150 0.399 0.671 0.841 0.922 0.959 0.977 0.985 0.990 0.970 0.980 1 1 1

C
350 240 afp , 0.000 0.021 0.152 0.515 0.824 0.942 0.979 0.991 0.996 0.998 0.999 0.999 0.970 0.980 1 1 1

480 400 amp , 0.041 0.251 0.652 0.888 0.964 0.986 0.994 0.997 0.998 0.999 1 1 1 1 1 1 1

D 320 430 afp , 0.063 0.283 0.628 0.849 0.939 0.972 0.986 0.992 0.995 0.996 0.997 0.998 0.998 1.000 1 1 1
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Table 6.3.5. 	 von Bertalanffy growth parameters (L∞, k , to ) and parameters of the length-weight 
relationship used to determine weight-at-age for Denham Sound (A), Freycinet 
Estuary (B), and Eastern Gulf (C) and oceanic stock (D). Lengths are fork length 
(mm). F = females, M = males

L∞ k to
Weight 

coefficient
Weight power

A
F 762 0.142 -0.032 1.480E-04 2.67
M 660 0.18 -0.055 1.480E-04 2.67

B
F 773 0.166 0.125 1.480E-04 2.67
M 766 0.173 0.075 1.480E-04 2.67

C
F 755 0.178 0.035 1.480E-04 2.67
M 751 0.172 -0.071 1.480E-04 2.67

D
F 598 0.214 -0.144 7.410E-08 2.79
M 561 0.244 -0.079 7.410E-08 2.79

Table 6.3.6. 	 DEPM-based estimates of spawning biomass (weight [tonnes] of sexually mature 
males and females, ( yD ) and the standard deviation ( Dy ), for the three inner gulf 
stocks from DEPM surveys conducted 1997-2007. 

Denham Sound Freycinet Estuary Eastern Gulf

yD Dy yD Dy yD Dy

1997 - - - - 12 4
1998 176 106 195 123 25 8
1999 10 2 32 7 59 14
2000 184 73 87 20 232 54
2001 70 29 14 5 96 33
2002 125 34 27 9 62 25
2003 92 19 - - 181 79
2004 - - 9 2 59 14
2005 - - - - - -
2006 - - 52 12 - -
2007 - - 30 10 - -

Table 6.3.7. 	 The selectivity of pink snapper to fishing 

	
  
νa , at age, a , for Denham Sound 

(A), Freycinet Estuary (B), and Eastern Gulf (C) and the oceanic stock (D). The 
vulnerability changed in 2001 in Area A, B, and C due to the introduction of a new 
minimum and maximum legal lengths. Minimum legal length for oceanic stock was 
taken as constant at 41 cm since 1952. 

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

A

	
  
νa

<2001 0 0 0 0.065 0.385 0.763 0.827 0.987 0.944 1 1 1 1 1 1 1 0

≥2001 0 0 0 0 0.108 0.356 0.693 0.827 0.889 0.853 0.929 0.75 0.5 0.12 0 0 0

B

	
  
νa

<2001 0 0 0 0.065 0.385 0.75 0.86 0.987 0.98 1 1 1 1 1 1 1 0

≥2001 0 0 0 0 0.108 0.356 0.693 0.88 0.97 0.99 0.94 0.75 0.5 0.12 0 0 0

C

	
  
νa

<2001 0 0 0 0.065 0.385 0.763 0.89 0.97 0.98 1 1 1 1 1 1 1 0

≥2001 0 0 0 0 0.108 0.356 0.693 0.898 0.96 1 0.929 0.75 0.5 0.12 0 0 0

D

	
  
νa ≥1952 0 0.007 0.041 0.215 0.635 0.917 0.986 0.998 1 1 1 1 1 1 1 1 1
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Table 6.3.8. 	 Parameter estimates with standard deviations. Recruitment, yR
 (sd = ); log normal 

recruitment, (sd = ); natural mortality, M  (sd = ); natural log catchability, q  
(sd = ); parameters of selectivity ogive, 50V and 95V (sd = 50V

s , 95V
s ); and steepness, 

h. The values without standard deviations are fixed values in the model. 

Oceanic Denham Sound Freycinet Estuary Eastern Gulf

Low Medium High Low Medium High Low Medium High

yR yR yR yR yR yR yR yR yR yR

6.53 0.05 19.34 0.56 23.34 0.69 27.29 0.83 13.37 0.30 16.58 0.36 19.73 0.42 13.79 0.45 19.34 0.65 24.8 0.84

ys ys

1983 -0.38 0.37 -0.31 0.38 -0.26 0.38 0.55 0.17 0.66 0.17 0.75 0.18 -0.38 0.31 -0.35 0.31 -0.34 0.31

1984 -0.08 0.34 0.00 0.34 0.06 0.34 0.35 0.17 0.44 0.17 0.51 0.17 -0.51 0.31 -0.48 0.31 -0.47 0.31

1985 -0.87 0.38 -0.81 0.38 -0.75 0.38 0.44 0.16 0.52 0.16 0.58 0.16 -0.25 0.3 -0.23 0.3 -0.21 0.3

1986 -0.61 0.33 -0.55 0.33 -0.50 0.33 -0.04 0.17 0.03 0.17 0.08 0.17 -0.5 0.3 -0.47 0.3 -0.46 0.3

1987 -0.27 0.27 -0.22 0.27 -0.18 0.27 0.24 0.15 0.29 0.15 0.34 0.15 0.43 0.24 0.46 0.24 0.48 0.24

1988 0.26 0.19 0.28 0.19 0.30 0.19 1.00 0.11 1.02 0.11 1.05 0.11 0.34 0.21 0.37 0.21 0.38 0.21

1989 0.83 0.13 0.82 0.13 0.81 0.13 1.38 0.09 1.37 0.09 1.37 0.09 0.45 0.16 0.46 0.16 0.46 0.16

1990 0.14 0.14 0.08 0.14 0.04 0.14 0.11 0.12 0.10 0.12 0.10 0.12 0.41 0.11 0.39 0.11 0.37 0.11

1991 -0.13 0.13 -0.22 0.13 -0.29 0.13 -0.45 0.14 -0.47 0.13 -0.49 0.13 -0.27 0.1 -0.31 0.1 -0.34 0.1

1992 0.36 0.11 -0.07 0.11 -0.19 0.11 -0.28 0.11 -0.21 0.12 -0.28 0.12 -0.34 0.11 -1.46 0.12 -1.52 0.13 -1.56 0.13

1993 0.03 0.12 -0.25 0.12 -0.38 0.12 -0.48 0.12 -0.59 0.13 -0.68 0.13 -0.76 0.12 -1.73 0.13 -1.78 0.13 -1.81 0.13

1994 -0.03 0.12 -0.10 0.12 -0.20 0.12 -0.29 0.13 0.02 0.10 -0.11 0.09 -0.21 0.09 -1.02 0.12 -1.06 0.12 -1.08 0.12

1995 -0.23 0.14 0.12 0.14 0.05 0.14 -0.02 0.14 0.48 0.08 0.35 0.08 0.25 0.08 -0.52 0.12 -0.55 0.12 -0.56 0.12

1996 -0.23 0.14 0.85 0.17 0.82 0.17 0.79 0.17 0.29 0.09 0.21 0.09 0.14 0.09 -0.05 0.12 -0.06 0.12 -0.07 0.12

1997 -0.31 0.13 1.51 0.23 1.55 0.23 1.59 0.23 -0.63 0.12 -0.66 0.12 -0.67 0.12 0.77 0.12 0.8 0.12 0.83 0.12

1998 -0.24 0.12 1.29 0.28 1.34 0.28 1.38 0.28 -0.70 0.12 -0.70 0.12 -0.69 0.12 1.09 0.14 1.1 0.14 1.1 0.14

1999 -0.03 0.11 -0.74 0.48 -0.68 0.48 -0.64 0.48 -0.49 0.12 -0.48 0.12 -0.47 0.12 1.57 0.17 1.58 0.17 1.59 0.17

2000 0.12 0.09 -0.74 0.48 -0.68 0.48 -0.64 0.48 -0.84 0.15 -0.81 0.15 -0.78 0.15 1.56 0.34 1.57 0.34 1.57 0.34

2001 0.26 0.09 -0.74 0.48 -0.68 0.48 -0.64 0.48 -0.59 0.15 -0.55 0.15 -0.52 0.15 0.08 0.34 0.09 0.34 0.1 0.34

2002 0.21 0.09 -0.32 0.17 -0.27 0.17 -0.23 0.17

2003 -0.11 0.10

2004 0.00 0.11

2005 0.16 0.12

2006 0.09 0.14

2007 -0.01 0.16

2008 -0.03 0.18

M

0.138 0.003 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 -

50V

3.701 0.142 - - - - - - - - - - - - - - - - - -

95V

5.290 0.305 - - - - - - - - - - - - - - - - - -

q

-7.98 0.16 - - - - - - - - - - - - - - - - - -

h 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 - 0.75 -

6.3.2.2 	 Fishing mortality assessments: Spangled emperor, Goldband 
snapper

Data on the retained catch-at-lengths of each stock were presented for each sector for comparative 
purposes, in order to visually assess potential differences in fishing mortality on population size 
structure among the different sectors. Logistic selectivity models were fitted to age frequency 
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data up to and including the modal age to quantify fishing mortality effects due to gear selectivity. 
Catch curve analyses were done to estimate the level of total mortality (Z) (and by subtracting 
estimated natural mortality coefficient (M), the fishing mortality (F)) on fish population age 
structures. Estimates of F were then related to M and reference levels for management (Wise et 
al. 2007). Yield per recruit and egg per recruit analyses were done to demonstrate the potential 
for growth and recruitment overfishing, respectively, given the biological parameters presented 
in Sections 5.2 and 5.3, and under a range of potential values of F. 

6.3.2.2.1 	Catch size structure and selectivity analyses
Although biological catch samples of spangled emperor were available from the charter 
sector in 2006-2008 (Table 5.2.1), these were collected opportunistically for the purpose of 
supplementing monthly biological samples rather than for the explicit purpose of obtaining 
representative biological samples of the landed catches for that sector. So, for the purpose 
of the sector-specific comparisons of landed fish length distributions, catch-at-length data for 
spangled emperor and goldband snapper were obtained from length measurements recorded 
by charter fishers on statutory daily/trip logbook returns (see Section 4.3), as these data were 
considered to provide a better representation of the catch-at-length distribution for the sector. 

The gear selectivity (or availability, if fish are not on the fished grounds) of younger age classes 
to capture by line fishing by sector was also described from an analysis of catch-at-length 
data of fish caught, including fish caught and released. Recreational catch at length data for 
spangled emperor from RAP logbook data and commercial catch at length for goldband snapper 
from biological sampling of landed catches were used for gear selectivity modelling because 
there was no exclusion of fish below the minimum legal size limits (MLL) for either of those 
data sets. For the purpose of calculating selectivity coefficients, catch at length data (l) were 

converted into catch at age data ( t̂ ) using the inverse of the von Bertalanffy growth function:

where 
	
  
∞L , K and 0t were fitted parameters of the von Bertalanffy growth model. The von 

Bertalanffy growth parameters used for goldband snapper are in Table 6.3.10. The von Bertalanffy 
growth parameters used for spangled emperor were obtained by re-fitting the von Bertalanffy 
model to total length (TL: mm) at age data for the entire Bioregion pooled across sexes, to be 

consistent with l data available from the RAP logbooks (i.e., TL, no sex information:
	
  
∞L = 664.6 

mm TL; K = 0.241 yr-1; t0= -0.375 yr; n = 1,751; r2 = 0.80). Selectivity coefficients were only 
calculated for fish younger than the age of full recruitment to the fishery (Ricker 1969) (tr). 

The tr was determined as the modal age of the calculated t̂  distribution. All fish older than or 
the same age as tr were assumed to be fully recruited and thus assigned selectivity coefficient 
values (st) of 1. Therefore, predictions of age from l data for the purpose of calculating st were 
only done for fish younger than tr, which was considered valid because tr was well below the age 
range of observed asymptotic growth for both species.  

The st values for age classes younger than tr were calculated as the ratio of observed catch 

frequency divided by the frequency expected to have encountered fishing gear (
	
  
ζ ). Expected 

frequencies of 
	
  
ζ were approximated by back-calculating from tr the number of fish expected 
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to be caught in the sample given the estimated natural mortality (M) and the observed catch 
frequency at age tr:

for t̂  = tr-1:		

for all t̂  < tr-1:		

where; 

	 = the observed catch frequency of age tr fish, which was used to scale expected 

frequencies of fish younger than tr, given the assumed natural mortality function, 

to those that would correspond to a representative sample from the population; 

	
  η t	 = the frequency in the catch of age t̂ .

A logistic model was then fitted to the st data:

for all 

	
  
t ≤ tr :		  ( ) selectbtselectat e

s __1
1

ˆ +×+
=

where;	
a_select 	 = model parameter;

b_select 	 = model parameter.

6.3.2.2.2 	Catch curve analyses
Prior to catch curve analyses, age frequency data were assessed for acceptable precision by 

calculating precision index values according to the following formula: Precision = D / n . For 
the 95% confidence level D was equal to 1.358 and the target range of precision was between 
0.04 and 0.08 (Craine et al. 2009). This value represents how well a sampled age frequency 
distribution will reflect the shape of the population age frequency distribution from which it was 
sampled, in the absence of sampling bias (Craine et al. 2009).

The 2007/08 representative catch-at-age distributions of spangled emperor caught by the 
recreational sector from the North Gascoyne and South Gascoyne regions (Fig. 5.2.4) and the 
2005/06 and 2007/08 representative catch-at-age distributions of goldband snapper caught 
by the commercial sector from the South Gascoyne (Fig. 5.3.4) were used to estimate the 
instantaneous total mortality rate, Z, by fitting three different catch-curve models to these data 
(Table 6.3.9). These three catch curve models were developed for and used in previous stock 
assessments of similar long-lived temperate demersal scalefish species (Wise et al. 2007). 
Model I was a linear regression fitted to each loge transformed age frequency distribution, from 
the age class following the modal age to the oldest age class prior to a sample frequency of zero. 
Model II was also a linear model fitted to loge transformed age frequency distributions, however 
the fitting was done using a robust piecewise log-linear regression of relative age frequency 
(plus a small constant, 1/n), from the median age to t* (the oldest t to which the model was 
fitted). The slope parameter was estimated by minimising the absolute deviation of the negative 
log-likelihood of the Laplacian error terms while iteratively searching for optimisation of the 
piecewise regression at t* (Wise et al., 2007). Model III estimated the numbers-at-age caught 
from the starting number at age 0 (N0), sampling selectivity shape parameters (A50, A95) and 
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an input for the instantaneous rate of natural mortality, M (see below), by fitting the model to 
the non-zero untransformed sampled age frequencies (Wise et al., 2007). 

Table 6.3.9.	 Models for estimating instantaneous rates of total mortality (Z). Nt and Pt is the 
number and percentage of spangled emperor sampled at age (t) years, respectively. 
tmedian, t* and tmax is the median, maximum fitted, and maximum observed t, 
respectively. Models from Wise et al. (2007).

Method Model

I ln(Nt) = ln(N0) + Z1t

II
ln(Pt) = 

( )






≥

<<−+

∑
∑

*).........()........./1(log

*)...(/1log 20

ttN

ttttZNP

te
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te
FsM

Fs
NN +−

+ −





+

= (
1 1

; Z3 = F + M

where: 

st = 1/(1+eln(19)(A50-t)(A95-A50))

Sampled catch at age data were randomly re-sampled with replacement (i.e. bootstrapped) 
10,000 times prior to refitting each of the three models to generate bootstrapped estimates of 
Z for each study region (North Gascoyne, South Gascoyne), year and species (Efron 1982). 
Bias-adjusted 95% confidence intervals about deterministic estimates of Z (i.e., M + fishing 
mortality, F) were calculated from the bootstrapped estimates using the bias adjustment formulas 
of Haddon (2001). To explore the potential influence of decisions made to group age data 
by specific year type (i.e., recreational, commercial, calendar; see Fig. 4.1), catch curve and 
bootstrapping analyses were repeated for different year type groupings (i.e., spangled emperor: 
calendar, commercial years; goldband snapper: calendar, recreational years, where sufficient 
data were available) and results compared.

An estimate of M and bias-adjusted 95% confidence bounds about this estimate for spangled 
emperor in the North and South Gascoyne were obtained from Marriott et al. (2011a). An 
estimate of M was obtained for goldband snapper using the published findings of Newman and 
Dunk (2003), who reported a range of M estimates for the Kimberley stock. Since no reliable 
estimate of M was available for the exploited Gascoyne stock, it is assumed that this range of 
estimates reported by Newman and Dunk (2003) is also suitable to use for the Gascoyne stock. 

Ratios of F: M were then calculated as a performance indicator for the stocks. These ratios were 
related to pre-determined reference levels developed by the DoFWA for demersal scalefish 
species with intermediate and long life spans (longevity exceeding 10 yr) as an objective 
criterion for informing fisheries management decisions: FTarget = 2/3 M; FThreshold = M; FLimit = 
1.5 M (Wise et al. 2007), with the management objective to keep the F to less than the FThreshold.

The fit of catch curve models to catch-at-age data for spangled emperor sampled from the North 
Gascoyne and South Gascoyne regions, an evaluation of those model fits, and estimation of M 
for those stocks is published in Marriott et al. (2011a). Reproduction of estimates of Z, F and 
M for these spangled emperor stocks is therefore limited here to the presentation of parameter 
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estimates and 95% confidence limits about those estimates as they pertain to this Level 3 weight 
of evidence assessment. 

6.3.2.2.3 	Per-recruit analyses
Yield per recruit (YPR) was calculated as:

	
  

,)1( .,
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and egg per recruit (EPR) was calculated as:

	
  

EPR = N female,t
t=0

∞

∑ Pmatt fect

where: 

Nt is the population size at age t calculated from

	
  

FSM
ttsextsex

tePsexchangeNN −−
+ −= )1(,1, , and

F is fishing mortality

sex is either female or male

wsex,t is the average weight at age t

Pmatt is the proportion of females mature at age t (from Marriott et al. (2010))

fect is the batch fecundity at age t

Psexchanget is the proportion changing sex at age t 

Nsex,0 is initial proportion of females at age 0 years 	

Ssex,t is fishing selectivity at age t for each sex and calculated by either:

(i) (spangled emperor: MLL) assuming knife-edged selectivity at the age t corresponding to 

MLL:

	 Ssex,t = 1 for t > tMLL

	 Ssex,t = 0 for t 	
  ≤  tMLL
where tMLS is the average age t at MLL, rounded down to the nearest whole integer, or;

(ii) (goldband snapper: No MLL) Fitting a logistic model to empirical selectivity (or availability, 
if younger fish are not on the fished grounds) coefficients for age classes up to (but excluding) 
the modal age (inferred tr), as described above. In addition, the YPR and EPR for goldband 
snapper was calculated for Ftarget, Fthreshold and Flimit for a range of different values of age at 
selectivity, using (for simplicity) a knife-edged selectivity function. This was done to explore 
the potential influence of a change in selectivity pattern from the current one described for 
goldband snapper because very few young goldband snapper are caught and there is no MLL 
for this species. 

Parameter inputs for the YPR and EPR analyses are listed in Table 6.3.10. Importantly, the per-
recruit analyses represent very simplistic predictions of how spangled emperor and goldband 
snapper populations might respond to fishing mortality, and ignore the potential influence 
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of many other important aspects of population dynamics, such as the relationship between 
spawning stock size and subsequent recruitment, annual recruitment variability, environmental 
changes and other external influences. Both the per-recruitment and catch curve analyses do not 
assess data sampled from the stock over time, and so cannot model or test for such processes 
to account for their influence(s) on estimates of stock status and inferred inherent vulnerability. 

Table 6.3.10. 	 Parameter inputs for per-recruit analyses. t = age (years); FL = length to caudal fork 
(mm); gfecX / = mean batch fecundity (eggs) per gram of body weight. Selectivity / 
availability function used for goldband snapper in place of tr because no MLL in place 
for that species.

Species Input Equation / estimate Source / Section

Goldband 
snapper

M 0.121 Newman and Dunk (2003) 

tr 8 yr 5.3.2.3.4

MLL, tMLS n/a -

Ssex,t (i). 

( ) select_btselect_ae1

1
+×+

Current pattern: This section.

(ii) Knife-edged (0,1) for a range of 
different ages (1 – tmax) at selectivity.

fect wfemale,t -

Pmatt
)473(0442.01

1
−−+ tFLe

Newman et al. (2001)

wsex,t 2.825*10-5FLt
2.928 Newman and Dunk (2003) 

FLt: females

	
  
∞L =640.4; K=0.283; t0=0 5.3.2.3

FLt: males

	
  
∞L =612.8; K=0.327; t0=0

5.3.2.3

Nsex,0 0.5 5.3.4. 

Psexchanget 0 5.3.4.

tmax 31.33 yr 5.3.2

Spangled 
emperor

M 0.146 Marriott et al. (2011a)

tr n/a: tMLLused. -

MLL, tMLL 41 cm TL, 3 yr This section.

Ssex,t

	
  

1....t > tMLL
0....t ≤ tMLL

"
#
$

-

fect

gfecX / *wfemale,t

-

gfecX /

41.2 eggs per gram 5.2.4.3

Pmatt

	
  
816.4t375.1e1

1
+−+

Marriott et al. (2010)

wsex,t 6.002*10-5FLt
2.810 Marriott et al. (2010)

FLt: females North: 

	
  
∞L =591.5; K=0.254; t0=-0.244 Marriott et al. (2011a)
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Species Input Equation / estimate Source / Section

South: 

	
  
∞L =623.7; K=0.177; t0=-1.679 Marriott et al. (2011a)

FLt: males North: 

	
  
∞L =556.3; K=0.318; t0=0.064 Marriott et al. (2011a)

South: 

	
  
∞L =604.8; K=0.182; t0=-1.612 Marriott et al. (2011a)

Nsex,0 1 Marriott et al. (2010)

Psexchanget

	
  
888.8t786.3e1

5436.0
+−+

Marriott et al. (2010)

tmax 30.75 yr Marriott et al. (2010)

6.3.3 	 Results

6.3.3.1 	 Pink snapper 

6.3.3.1.1 	Oceanic stock
The assessment model indicated that female spawning biomass has been rebuilding since 2004 
when the TACC was reduced by 40%. The model estimated that the rebuilding will continue and 
that the female spawning biomass will reach the management Target (40% of the 1952 level) by 
around 2014, if catches are maintained at or below the level in 2007/08 (i.e. ca 300 tonnes) (Fig. 
6.3.1). The model estimated that the female spawning biomass was above the management 
Threshold (30% of the 1952 level) in 2008 with a probability of 0.95. The model indicated that 
fishing mortality has fallen sharply since 2002/03; the median value (approximates the harvest 
rate) fell below the assumed level of natural mortality (i.e. M = 0.13) in 2008 (Fig. 6.3.1). 

The most appropriate method of determining catch rates for the oceanic stock based on 
commercial (monthly) catch and effort data was fully discussed as part of the 2006 independent 
review (see 6.2). Catch rates estimated by the model generally fitted the observed catch rates 
estimated using the ‘Moran method’ (see 6.2 for more details). Observed catch rates showed 
an overall decline between 1992 and 2002 after which they levelled off before increasing from 
2004 onwards (Fig. 6.3.2). The model, which takes into account the observed catch rates as well 
as the age-composition data, indicated a steady increase in catch rates after 2003 that was taken 
as an indication of increasing biomass. 

The age composition predicted by the model generally fitted the observed data in all years (Fig. 
6.3.3). The model indicated significant recruitment variation (as measured by numbers of 1+, 
i.e. fish in their second year of life) since the early 1990s; constant recruitment indicated by the 
model prior to 1992 is due to no information prior to the first year of catch-at-age data. Model 
estimates suggest that the oceanic stock has only had one very strong recruitment year since the 
early 1990s (in 1992) with some lower level recruitment in 2002 and 2006 (Fig. 6.3.4).
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Figure 6.3.1. 	 Female spawning biomass of the oceanic pink snapper stock as a percentage of the 
1952 level (with 95% confidence intervals) and fishing mortality (F) when the total 
catch after 2008 is 303 tonnes. The biological reference levels of 30% and 40% of 
the 1952 female spawning biomass are shown. Fishing years have been abbreviated 
such that ‘1951’ refers to 1951/52, ‘1954’ to 1954/55 and so on. 

Figure 6.3.2. 	 Catch rates for commercial catches taken by SBSF vessels 1989-2008 as 
determined by the ‘Moran method’ (see 6.2 for details). Fishing years have been 
abbreviated (see comment for Fig. 6.3.1). 
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Figure 6.3.3. 	 Age composition data for oceanic pink snapper stock 19991/92-2007/08 showing 
the observed age composition (blue dots) compared with the model estimated age-
composition (orange lines). Sample sizes in each year as shown (no samples aged 
in 1992/93-1994/95, 1996/97-1997/98 and 1999/00).
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Figure 6.3.4. 	 Recruitment variation (numbers of 1+, with 95% confidence intervals) in the oceanic 
pink snapper stock as estimated by the model. Note: that the model estimated a 
constant level of recruitment in period 1982-1990 is due to lack of age composition 
data for that period. Fishing years have been abbreviated (see comment for Fig. 6.3.1). 

6.3.3.1.2 	Inner gulf stocks 

Eastern Gulf

The assessment model indicated that the mature biomass (males and females combined) fell 
below the management Target (40% of the unexploited level) around 1995 and to below the 
management Limit (20% of the unexploited level) around 1996 (Fig 6.3.5). Following the fishery 
closure (June 1998 to March 2003), the model indicated that the biomass started to rebuild from 
1998-1999 onwards. The modelled age composition fitted the observed age composition data 
reasonably well (Fig. 6.3.6). The spawning biomass was estimated at approximately 45% of the 
unexploited level in 2008.

Denham Sound

The assessment model indicated that mature biomass fell below the management Target (40% of the 
unexploited level) in the early 1990s and to below the management Limit (20% of the unexploited 
level) around 1996-1998 (Fig 6.3.5). Since 1999 the mature biomass has been rebuilding. The 
modelled age composition fitted the observed age composition data reasonably well (Fig. 6.3.6). 
The mature biomass was estimated at approximately 42% of the unexploited level in 2008

Freycinet Estuary

The assessment model indicated that mature biomass declined to below the management 
Target (40% of the unexploited level) around 1997 and continued to decline to just below the 
management limit (20% of the unexploited level) around 2003, when a very conservative TAC 
(5 tonnes) and management quota-tags (see 3.2) were introduced (Fig 6.3.5). The modelled age 
composition fitted the observed age composition data reasonably well (Fig. 6.3.6). The model 
estimated age-composition indicated strong recruitment of 0-year-old snapper in 1990, 1993, 
1996/97 and 2000 but no significant recruitment since 2000. The median mature biomass was 
at approximately 25% of the unexploited level in 2008. The mature biomass is rebuilding in 
response to the low catches since 2003. The model indicates that with a future catch of 5 tonnes 
per year, the median mature biomass is expected to be above the Target level by 2012 with a 
probability of 0.8.
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Figure 6.3.5. 	 Model-based estimates of mature biomass of inner gulf snapper stocks (blue line) 
with 90% confidence intervals (blue shaded) relative to 40% of the unexploited 
level (hatched blue line). Fishery-independent estimates of stock size are from daily 
egg production method surveys (brown dots, error bars are ±1 SD). Survey-based 
estimates of recreational catch (orange bars) are distinguished from other years 
where catch levels were assumed (green bars). 
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Figure 6.3.6. 	 Age composition data for three inner gulf pink snapper stocks showing the 	
observed age composition (blue dots) compared with model-predicted age-
composition (orange lines). Samples sizes (number of fish aged in each year) are 
shown with the sample year. 
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Table 6.3.11. 	 Summary of status of pink snapper stocks in 2008.

Stock Spawning Biomass1 Reference level

Oceanic stock Upper 34.7

Estimate 28.3 BThreshold>B>BLimit

Lower 22.6

Eastern Gulf Upper 53.2

Estimate 48.5 B> Btarget

Lower 44.1

Denham Sound Upper 69.4

Estimate 45.2 B> Btarget

Lower 27.6

Freycinet Estuary Upper 33.2

Estimate 28.4 BThreshold>B>BLimit

Lower 24.1

1 Values presented as percentages of the estimated virgin (unfished) biomass of mature females for oceanic stock and biomass of all 
mature fish for inner gulf stocks.

6.3.3.2 	 Spangled emperor

6.3.3.2.1 	Catch size structure and selectivity
Catch at length distributions for spangled emperor demonstrated some similarities and 
differences between length distributions of spangled emperor retained by recreational and 
charter sectors within study regions (Fig. 6.3.7, 6.3.8). The modal length of spangled emperor 
landed by charter fishers was the same, and overall shape of the catch-at-length distribution 
similar as that landed by recreational fishers in the North Gascoyne (Zones 5-7; Fig. 6.3.7). 
These length distributions were not significantly different at the 5% significance level although 
there was nontrivial variation detected between them (25% significance level; Kolmogorov-
Smirnov test: n1=817, n2=324, dmax=0.088, D=0.067, 0.05<P<0.25). 
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          Spangled emperor Zones 5-7, Charter (07/08)

         Spangled emperor Zones 5-7, Recreational (07/08)
 Spangled emperor Zones 5-6, R ecreat ional (07/08) 

 

Fig 6.3.7. 	 Length distributions of the retained catch of spangled emperor, North Gascoyne 
(Zones 5-7). Vertical line = MLL (410 mm TL).

The modal length of spangled emperor landed by charter fishers was smaller than that landed 
by recreational fishers in the South Gascoyne (Zones 2-4) and these length distributions 
were significantly different from one another (Kolmogorov-Smirnov test: n1=248, n2=232, 
dmax=0.138, D=0.124, P<0.05). A greater proportion of spangled emperor that were both smaller 
and larger than the size range of 500-600 mm TL were landed by recreational fishers than by 
charter fishers in zones 2-4 in 2007/08, reflecting a flatter (more platykurtic) recreational length 
distribution (Fig. 6.3.8). This suggests that charter fishers generally catch and retain a much 
narrower size range of spangled emperor than recreational fishers in the South Gascoyne. A 
representative catch at length distribution of spangled emperor from the commercial sector was 
not available for 2006/07 for comparison. These results show that the fishing mortality from 
recreational and charter fishers occurred across a similar size distribution of spangled emperor 
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in each of the study regions, except for a narrower, and slightly smaller size range of spangled 
emperor caught by charter fishers in the South Gascoyne.

      Spangled emperor Zones 2-4, Charter (07/08)

     Spangled emperor Zones 2-4, Recreational (07/08) Spangled emperor Zones 2-4, Recreational (07/08) 

Fig 6.3.8. 	 Length distributions of the retained catch of spangled emperor, South Gascoyne 
(Zones 2-4). Vertical line = MLL (410 mm TL). Data for zone 1 (i.e., Charter lengths, 
n=13) excluded.

The fit of the selectivity curve to selectivity coefficients calculated for age classes up to and 
including the modal age demonstrates that the age at full recruitment to the recreational fishery 
is relatively young, at 2 years old (290 mm TL) (Fig. 6.3.9). This likely reflects that recreational 
fishers often catch spangled emperor in areas where juveniles reside, and that fishing gear used 
by recreational fishers can catch juveniles. 
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Figure 6.3.9. 	 Selectivity curve for spangled emperor caught by recreational fishers. Open circles 
represent calculated selectivity coefficients, St and fitted curve demonstrates line 
fishing selectivity for this species. Numbers represent the number of fish per derived 
catch at age data group ( t̂ : yr) from RAP logbooks. A50, A 95 = age(yr) at 50% and 
95% full selectivity, respectively.

6.3.3.2.2 	Catch curve analysis
Estimates of Z from the fit of the different catch curve models were similar when fitted to each 
data group (i.e., representative catch-at-age distributions for boat-based recreational fishing 
shown in Fig. 5.2.4: North Gascoyne, South Gascoyne), but varied among models fitted to 
different data groups (Fig. 6.3.10, Table 6.3.12). 

Wise et al. (2007) and Marriott et al. (2011a) showed that the use of alternative catch curve 
models was useful for demonstrating the effect of model selection uncertainty on results 
and tradeoffs of the alternative catch curve models used. Model I seemed to produce higher 
estimates of Z than the other methods because it was not fitted to data sampled for age classes 
older than a sample frequency of zero. Model II seemed to produce the best model fits in 
general, in terms of the evenness of residual distributions and the relatively wide ranges of age 
data that were fitted, although a bootstrapping analysis by Marriott et al. (2011a) demonstrated 
a propensity for the likelihood function to converge on relatively narrow ranges of multiple 
optima for Z. They explained this likely reflected the strong influence of changing values 
for the median and maximum ages fitted on the likelihood as a consequence of the step-wise 
model fitting algorithm (i.e., “stickiness”; Marriott et al. 2011a). Although Model III was fitted 
to a wider range of sampled age data, uneven distributions of residuals and heteroscedastic 
variation in the form of larger residuals near the modal age was likely to have exerted a high 
leverage on fits because it was fitted to the untransformed catch at age frequencies (Marriott et 
al. 2011a). In general, though, it was found that the different models produced similar results 
with respect to the pre-determined target levels for management; thus improving the confidence 
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of results and robustness of subsequent advice to management. The observed differences in Z 
estimates produced by the different models generally reflected variability among the datasets 
and differences in model structure and model fitting algorithms among the methods.

The South Gascoyne 2007/08 dataset produced consistently lower estimates of Z compared to the 
North Gascoyne 2007/08 dataset. According to the values of F calculated from the catch curve 
estimates for Z and independent estimates of M, ratios of F: M for the South Gascoyne dataset 
were all below the Threshold level (i.e. F<M) (Fig. 6.3.10, Table 6.3.12). Ninety-five percent 
confidence intervals about the catch curve estimates (Z) demonstrated the range of uncertainty 
attributed to the fit of the catch curve models to observations. Importantly, the confidence 
intervals demonstrate uncertainty in the performance indicator with respect to reference levels 
for management, assuming M is known without error. This uncertainty ranged from between 
the Limit and Threshold levels to below the Target level for Method I, and consistently below 
the Target level for Methods II and III. This indicates a low probability of overfishing, given 
the data and assumptions of the analysis, at the 2007/08 levels of fishing for spangled emperor 
in the South Gascoyne.

In contrast, estimates of F for the North Gascoyne 2007/08 dataset were above the Limit 
reference level, except for the estimate from fitting of the Model III catch curve, which Marriott 
et al. (2011a) had shown produced a poor fit to older catch-at-age frequencies for this data 
set. This result indicated that the estimated F was high enough to be considered a risk to the 
sustainability of the North Gascoyne stock at the 2007/08 level of fishing effort and is evidence 
indicating localised overfishing. Note, however, that the F estimates only marginally exceeded 
the Limit level of 1.5M, at values of 1.56M and 1.70M (Table 6.3.12).

The 95% confidence intervals about the catch curve estimates (Z) demonstrate uncertainty in 
the performance indicator with respect to reference levels for management, assuming M is 
known without error. This uncertainty ranged from above the Limit level to between the Limit 
and Threshold levels for Methods I and II, and from above the Limit level to between the 
Threshold and Target levels for Method III. This indicates a medium to high probability of 
localised overfishing, given the data and assumptions of this analysis, at the 2007/08 level of 
fishing in the North Gascoyne.

Additionally, bias-adjusted 95% confidence intervals about the point estimates of Z and M 
showed: (i) in isolation, the quantified uncertainty about each estimate; and (ii) in combination, 
the quantified uncertainty in F, which was calculated by subtracting M from Z (Table 6.3.12). 
Estimates of bias-adjusted 95% confidence intervals around M from the bootstrapping method 
are wide and include biologically implausible values (Marriott et al. 2011a). Therefore, 
there is currently no plausible basis for estimating the 95% confidence intervals about F for 
these spangled emperor stocks. Work is currently underway to revise methods for obtaining 
uncertainty bounds around M and F.
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Figure 6.3.10. 	 Fit of catch curves to Ln-transformed catch-at-age data for spangled emperor for 
each study region and method (Reproduced from Marriott et al. 2011a).
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Table 6.3.12. 	 Estimates of Z, M, and the deterministic ratios of F (= Z – M) to M as a performance 
indicator for the spangled emperor stocks. ‘Upper’ and ‘Lower’ refer to upper and 
lower bounds of bias-adjusted 95% confidence intervals. Reference levels: FTarget = 
2/3 M; FThreshold = M; FLimit = 1.5 M (Wise et al., 2007), where management objective 
is to keep F to less than the FThreshold. Reproduced from Marriott et al. (2011a). 
Refer to Appendix 3 for results for different data groupings (commercial, calendar 
years). Cells are coloured to indicate uncertainty for the catch curve estimates (i.e., 
Z only, ignoring uncertainty in M), in relation to corresponding reference levels for 
management, i.e.: (i) Exceeds Limit level; (ii) Between Limit & Threshold level;  
(iii) Between Threshold & Target level; (iv) Lower than Target level.

Z M F F: M Reference level

North Gascoyne; n = 324 

 Method I

    Upper 0.497 0.351

    Estimate 0.373 0.146 0.227 1.555 FLimit < F

    Lower 0.294 0.023

 Method II

    Upper 0.500 0.351

    Estimate 0.394 0.146 0.248 1.697 FLimit < F

    Lower 0.352 0.023

 Method III

    Upper 0.427 0.351

    Estimate 0.285 0.146 0.139 0.951 FTarget < F < FThreshold

    Lower 0.232 0.023

South Gascoyne; n = 232

 Method I

    Upper 0.370 0.351

    Estimate 0.261 0.146 0.115 0.790 FTarget < F < FThreshold

    Lower 0.210 0.023

 Method II

    Upper 0.164 0.351

    Estimate 0.149 0.146 0.003 0.021 F < FTarget

    Lower 0.106 0.023

 Method III

    Upper 0.209 0.351

    Estimate 0.152 0.146 0.006 0.039 F < FTarget

    Lower 0.149 0.023

Repetition of this analysis for datasets grouped by different types of year (i.e., calendar, 
commercial year groupings; Fig. 4.1) revealed that these results were relatively robust to 
decisions made concerning monthly samples to include or exclude based on year type (see 
Appendix 3). Estimates of Z were not significantly different between analyses for different year 
groupings, as determined from the overlap of bias-adjusted 95% confidence intervals, except 
for the fit of Method III catch curve to South Gascoyne data. In this instance, very narrow 
95% confidence intervals (and lack of overlap between analyses) reflected that the Model III 
catch curve fitted relatively close estimates of Z despite introduced stochasticity that mimicked 
variability inherent in the observed data sets. However, although there was no overlap between 
Z estimates produced from the fit of Model III to recreational (Table 6.3.12) versus commercial 
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year (Table A2) groupings of South Gascoyne data, the Reference level result was consistent 
between analyses. 

Table 6.3.13. 	 Comparisons of Reference levels derived from point estimates of Z from catch curves 
fitted to data grouped by different year types. “Same” = same reference level as 
calculated for Recreational year (= Assessment year; Table 6.3.12); ** = Significant 
difference between Z estimates as indicated by lack of overlap between 95% 
confidence intervals. All other results are not significantly different. See Appendix 3 for 
further details.

Recreational year Calendar year Commercial year

North Gascoyne 1 Apr 07 – 31 Mar 08 1 Jan – 31 Dec 07 1 Sep 06 - 31 Aug 07

 Method I FLimit < F Same Same

 Method II FLimit < F FThreshold < F < FLimit FThreshold < F < FLimit

 Method III FTarget < F < FThreshold Same Same

South Gascoyne

 Method I FTarget < F < FThreshold F < FTarget Same

 Method II F < FTarget Same Same

 Method III F < FTarget** Same Same**

Point estimates of Z (and F) from the fit of each catch curve to the different data groupings did 
result in some important further insights into quantified levels of uncertainty, however. That the 
Method II estimates from analyses of both Calendar and Commercial year groupings indicated 
F was between the Threshold and Limit levels for North Gascoyne data was further evidence 
of uncertainty in the result that F exceeded the Limit level in the former analysis. The upper 
bounds of 95% confidence intervals of catch curve estimates in that second analysis consistently 
exceeded the Limit reference level and the lower bounds ranged from below the Target level to 
between the Limit and Threshold levels (Appendix 3: Tables A2, A3). 

A previous study that was conducted by the DoFWA in the late 1980s and early 1990s estimated 
that the level of fishing mortality in the fished spangled emperor population off the North West 
Cape (within the North Gascoyne) was 1.1M (Moran et al. 1993). Using a revised estimate of 
M and the range of catch curve models presented in this report, the estimated fishing mortality 
from catch curve analyses for that early period (1989-91) ranged from 1.1M to 1.3M, which 
was less than the FLimit level but higher than the FThreshold level (Marriott et al. 2011a). That an 
apparent effect of overfishing was also detected on the North Gascoyne age structure in 1989-
91 suggests that fishing mortality on spangled emperor in that area was relatively high in the 
past (see also trends in historical levels of spangled emperor commercial catch (Section 6.1) 
and catch rates (Section 6.2) for Zones 5, 6 and 7). These inferences, however, are based on the 
key assumption that differences in observed age structures between North and South Gascoyne 
reflect differences in the level of fishing mortality between these regions (Marriott et al. 2011a). 

6.3.3.2.3 	Per-recruit analysis
Trends for yield per recruit (YPR) and egg per recruit (EPR) were very similar for spangled 
emperor sampled from the North Gascoyne and South Gascoyne study regions, demonstrating 
the negligible influence of different growth estimates on model outputs for the different study 
regions (Fig. 6.3.11). F at the maximum YPR was 0.46 (770 g recruit-1) for North Gascoyne and 
0.51 (665 g recruit-1) for South Gascoyne, and the yield per recruit for the FLimit level of 1.5M 
was 93.7% and 93.4% of the F at maximum YPR for North Gascoyne and South Gascoyne, 
respectively. Therefore, for spangled emperor growth over-fishing is not predicted at the FLimit 
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level, given the assumptions of the YPR model. At the FLimit level, EPR was predicted to reduce 
to 85.7% and 87.1% of the virgin EPR for North Gascoyne and South Gascoyne, respectively. 

Figure 6.3.11. 	 Yield per recruit (YPR in g/recruit) and eggs per recruit (EPR in eggs/recruit) with 
fishing mortality (F year-1) for spangled emperor in the North Gascoyne (Zones 5-7) 
and South Gascoyne (Zones 1-4) regions. 

The per-recruit analyses suggest that although the estimated F is above the FLimit level of 1.5M 
this would not have a significant impact on yield- or egg production-per recruit in the North 
Gascoyne study region. 

6.3.3.3 	 Goldband snapper

6.3.3.3.1 	Catch size structure and selectivity
Catch at length distributions for goldband snapper demonstrate that commercial fishers caught 
and retained a greater proportion of larger goldband than charter fishers (Fig. 6.3.12). It is 
possible that this might reflect differences in gear selectivity (e.g. hook sizes) and/or spatial 
distribution of effort between these sectors, if fish of different sizes occurred in different fishing 
grounds of the different sectors. It is also evident that the size ranges of goldband snapper 
landed by both sectors (mostly) exclude the catches of small (< 450 mm TL) fish. 
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Goldband snapper Zones 2-4, Charter (07/08)

Goldband snapper Zones 2-4, Commercial (07/08)

Fig 6.3.12. 	 Length distributions of the retained catch of goldband snapper, Zones 2-4. 

These results demonstrate that fishing by commercial fishers captured larger goldband snapper 
than fishing by charter fishers in the South Gascoyne for this assessment year. A representative 
recreational catch at length distribution of goldband snapper was not available for comparison 
for this assessment year.

The fit of the selectivity curve to selectivity coefficients calculated for age classes up to and 
including the modal age demonstrates that the age at full recruitment to the commercial fishery 
for goldband snapper is relatively old, at approximately 8 years (Fig 6.3.13). In the absence of a 
MLL for this species, this shows that the younger fish are either not selected by the commercial 
line fishing gear, or they are not available to capture in the grounds that are fished. 
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Fig 6.3.13. 	 Selectivity/availability curve for goldband snapper caught by commercial fishers. 
Open circles represent calculated selectivity coefficients, St and fitted curve the line 
fishing selectivity for this species. Numbers represent the number of fish per catch 
at age data group (yr) from biological samples collected from the landed catches of 
commercial fishers, pooled across years (2004-2008). A50, A95 = age (yr) at 50% and 
95% full selectivity, respectively.

6.3.3.3.2	 Catch curve analysis
The three different catch curve models demonstrated similar fits to the descending slopes of 
natural logarithm of (Ln)-transformed age-frequency data, past the observed modal age (Fig 
6.3.14). Wise et al. (2007) and Marriott et al. (2011a) showed that the use of alternative 
catch curve models was useful for demonstrating the effect of model selection uncertainty on 
results and tradeoffs of the alternative catch curve models used. The observed differences in Z 
estimates produced by the different models generally reflected variability among the datasets 
and differences in model structure and model fitting algorithms among the methods, as explained 
for catch curve analyses of spangled emperor stocks in Section 6.3.3.2.2.

The fit of catch curve models to 2007/08 data, however, were steeper than to 2005/06 data (Fig 
6.3.14). A high proportion of positive residuals was observed for the fit of the models to age 
classes 8 – 13 years of the 2005/06 data, which indicated that the catch curve models did not fit 
well to catch-at-age data for these age classes, but did fit well to age classes older than 13 years 
in commercial samples for that year (Fig 6.3.14). Conversely, an even dispersion of residuals, 
and lower residual variation, was observed for the fit of catch curve models to 2007/08 data, 
possibly reflecting the higher number of specimens analysed and therefore better sampling 
precision achieved for that commercial sampling year (Fig 6.3.14). 
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Figure 6.3.14. 	 Fit of catch curves to Ln-transformed catch-at-age data for goldband snapper for 
each assessment year and catch curve model.

Estimates of Z (total mortality) from these different models were similar when fitted to each 
data group for each commercial sampling year, but varied between years, with consistently 
higher estimates for 2007/08 than for 2005/06 (Table 6.3.14). Estimates of Z were also less 
precise for 2005/06 data, as indicated by the larger bias-adjusted 95% confidence intervals 
about the point estimates of Z, than the 2007/08 estimates (Table 6.3.14). Point estimates of F: 
M were all below the Target level of F = M except for the fit of Model II to 2005/06 data because 
a biologically realistic value of F could not be calculated (i.e., Z < M) (Table 6.3.14). That the 
F values were consistently below the FTarget level for all methods and years indicates that there 
were no detectable effects of fishing on the population age structure of goldband snapper in the 
South Gascoyne for those assessment years.

Ninety-five percent confidence intervals about the catch curve estimates (Z) demonstrated the 
range of uncertainty attributed to the fit of the catch curve models to observations. Importantly, 
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the confidence intervals demonstrate uncertainty in the performance indicator with respect to 
reference levels for management, assuming M is known without error. This uncertainty ranged 
from between the Threshold and Target levels to below the Target level for Method I and III 
estimates for 2005/06 data and for the Method III estimate for 2007/08 data, consistently below 
the Target level for Method II estimates, and from between the Limit and Threshold levels to 
below the Target level for the Method I estimate of 2007/08 data. This indicates a generally low 
probability of overfishing, given the data and assumptions of the analysis, at the 2005/06 and 
2007/08 levels of fishing for goldband snapper in the South Gascoyne.

Additionally, bias-adjusted 95% confidence intervals about the point estimates of Z and M 
showed: (i) in isolation, the quantified uncertainty about each estimate; and (ii) in combination, 
the quantified uncertainty in F, which was calculated by subtracting M from Z. For goldband 
snapper, there is currently no estimate for the 95% confidence bounds around M so 95% 
confidence intervals for F could not be calculated. Work is currently underway to revise methods 
for obtaining uncertainty bounds around M and F.

Repetition of this analysis for datasets grouped by different types of year (i.e., calendar, 
recreational year groupings; Fig. 4.1) revealed that these results were robust to decisions made 
concerning which monthly samples to include or exclude based on year type (see Appendix 4). 
Estimates of Z were not significantly different between analyses for different year groupings, as 
determined from the overlap of bias-adjusted 95% confidence intervals. Comparisons of point 
estimates of Z (and F) from the fit of each catch curve to different data groupings is summarised 
in Table 6.3.15.
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Table 6.3.14. 	 Estimates of Z, M, and the deterministic ratios of F (= Z – M) to M as a performance 
indicator for the goldband snapper stock for each commercial fishing year analysed. 
2006/07 data excluded due to low sample size. ‘Upper’, ‘Lower’ and ‘Estimate’ and 
refer to: (i) the upper and lower bounds of bias-adjusted 95% confidence intervals, 
and the deterministic estimate, for Z; and (ii) the upper end, lower end and median of 
the range estimated by Newman and Dunk (2003) for M. Reference levels: FTarget = 
2/3 M; FThreshold = M; FLimit = 1.5 M (Wise et al., 2007), where management objective 
is to keep F to less than the FThreshold. Cells are coloured to indicate uncertainty 
for the catch curve estimates (i.e., Z only, ignoring uncertainty in M), in relation to 
corresponding reference levels for management, i.e.: (i) Exceeds Limit level;  
(ii) Between Limit & Threshold level; (iii) Between Threshold & Target level;  
(iv) Lower than Target level. Refer to Appendix 4 for results for different data 
groupings (recreational, calendar years).

Z M F F: M Reference level

2005/06; n = 242

 Method I

    Upper 0.211 0.139

    Estimate 0.140 0.121 0.019 0.156 F < FTarget

    Lower 0.057 0.104

 Method II

    Upper 0.133 0.139

    Estimate 0.118 0.121 -0.004 n/a F < FTarget

    Lower 0.095 0.104

 Method III

    Upper 0.212 0.139

    Estimate 0.147 0.121 0.026 0.212 F < FTarget

    Lower 0.126 0.104

2007/08; n = 401

 Method I

    Upper 0.247 0.139

    Estimate 0.167 0.121 0.045 0.373 F < FTarget

    Lower 0.137 0.104

 Method II

    Upper 0.160 0.139

    Estimate 0.155 0.121 0.033 0.274 F < FTarget

    Lower 0.143 0.104

 Method III

    Upper 0.202 0.139

    Estimate 0.162 0.121 0.041 0.337 F < FTarget

    Lower 0.140 0.104
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Table 6.3.15. 	 Comparisons of Reference levels derived from point estimates of Z from catch curves 
fitted to data grouped by different year types. Data for 2006, 2007 calendar years and 
for 2006/07 recreational years not included due to small sample sizes attained for 
those data groupings. “Same” = same reference level as calculated for Commercial 
year (= Assessment year; Table 6.3.14); 95% Confidence intervals overlapped for all 
results compared indicating that year type grouping had no significant influence. See 
Appendix 4 for further details.

Commercial year Calendar year Recreational year

2005/06 1 Sep 05 – 31 Aug 06 1 Jan – 31 Dec 05 1 Apr 05 – 31 Mar 06

Method I F < FTarget Same Same

Method II F < FTarget Same Same

Method III F < FTarget Same Same

2007/08 1 Sep 07 – 31 Aug 08 1 Jan – 31 Dec 08 1 Apr 08 – 31 Mar 09

Method I F < FTarget Same Same

Method II F < FTarget Same Same

Method III F < FTarget Same Same

The upper bounds of 95% confidence intervals of catch curve estimates in this second analysis 
ranged from above the Limit reference level to below the Target level. Lower bounds were 
consistently below the Target reference level (Appendix 4: Tables A4, A5). This further indicates 
that, although some catch curve estimates were relatively imprecise, in general there is a low 
probability of localised overfishing of goldband snapper in the South Gascoyne given the data 
and assumptions of the analysis, at 2005/06 and 2007/08 levels of fishing for this species.

6.3.3.3.3	 Per-recruit analyses
The yield per recruit (YPR) and egg per recruit (EPR) trends for goldband snapper were quite 
different than those described for spangled emperor for the current pattern of commercial fishing 
selectivity (i.e. representing the majority of catches in the GCB; Section 6.1) (Fig. 6.3.15). For 
the current pattern of selectivity, F at the maximum YPR was 0.67 (1,122 g recruit-1) and the 
yield per recruit for the FLimit level of 1.5M was 83.8% of the F at maximum YPR. Therefore, 
under the current pattern of fishing selectivity, growth over-fishing is not predicted at the FLimit 
level. If the selectivity pattern changes to catching older fish, however, growth overfishing at 
the FLimit level is expected, and if the selectivity pattern changes to catching younger fish, at the 
FLimit level, the YPR would also decrease from the maximum YPR (Figure 6.3.15).
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Current selectivity / availability pattern
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Figure 6.3.15. 	 Yield per recruit (YPR in g recruit-1) and eggs per recruit (EPR in g recruit-1) with 
fishing mortality (F year-1) for goldband snapper in the Gascoyne Coast Bioregion. 
Results shown for: under current selectivity described for the commercial sector (see 
Figure 6.3.13) (top); under hypothetical knife-edged selectivity for YPR (middle); and 
EPR (bottom), to show potential effects of a change in selectivity pattern. Vertical 
dashed red line shows the average age that goldband snapper are currently selected 
by the commercial sector (A50=5.6 yr from Fig. 6.3.13)

Under the current pattern of selectivity, the EPR was predicted to be reduced to 62.4%, 52.3% 
and 42.1% of the virgin EPR at the FTarget, FThreshold and FLimit levels, respectively, indicating 
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a relatively high intrinsic vulnerability for recruitment overfishing of goldband snapper stocks 
(Table 6.3.16). Further, a drop in the average age from which goldband snapper are selected 
(i.e., caught by fishing) resulted in declines in the expected EPR, with greater declines under 
higher levels of F (Figure 6.3.15; Table 6.3.16). This indicates a high sensitivity of the Gascoyne 
goldband snapper stock to recruitment overfishing should the current pattern of selectivity 
change to catching smaller, younger fish.

Table 6.3.16. 	 Egg per recruit (EPR) as a percentage of the virgin EPR with changing catch 
selectivity for goldband snapper. * = Calculated using the current observed selectivity 
pattern for the commercial sector (Figure 6.3.12). Otherwise, “age at selectivity” is 
a knife-edged function, occurring at the presented age for each row (see Methods, 
Section 6.3.2.2.1). 

Age at selectivity (yr) Ftarget Fthreshold Flimit

1 42% 29% 18%

2 45% 33% 21%

3 49% 37% 25%

4 53% 42% 30%

5 58% 47% 36%

Current (A50 = 5.6)* 62% 52% 42%

6 62% 52% 42%

7 66% 57% 48%

8 70% 62% 54%

9 74% 67% 59%

10 77% 71% 64%

6.3.4 	 Summary of key findings
The different assessment approaches used for the three indicator species reflect varying levels 
of data availability that in turn reflect the different historic levels of investment in monitoring 
and assessment. The assessments for spangled emperor and goldband snapper, that were only 
possible due to recent research using the indicator species approach, have supplemented those 
for pink snapper stocks in the Bioregion, for which the Department had well-established 
research and monitoring programs at the time of this assessment.  

Due to the limited data available, it was only possible to undertake simpler forms of assessment 
(i.e. fishing mortality) for spangled emperor and goldband stocks. These approaches produced 
results for these species that should be interpreted as having higher levels of unquantified 
uncertainty than those for pink snapper. Conclusions from these assessments are summarised 
for each stock as follows.

6.3.4.1 	 Pink snapper 

Oceanic stock

•	 Integrated age-structured assessments indicate that oceanic stock is recovering  following a 
series of reductions in TACC since 2004. 

•	 Moderate level of uncertainty remains around the assessments although data availability is 
reasonable, at least for commercial catches (represent ~80-90% of total catch overall).
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Inner gulf stocks

•	 Integrated age-structure assessments indicate that Eastern Gulf and Denham Sound stocks 
are above management Target (40% of the unexploited level) while Freycinet Estuary stock 
is still rebuilding (projected to reach Target 40% level by 2012).

•	 Some level of uncertainty remains around the assessments due to inadequate information on 
historical catches (period 1960s-early 1990s).

6.3.4.2 	 Spangled emperor

North Gascoyne

•	 Most of the commercial catch, during the peak period of commercial catches (late 1980s to 
mid-1990s), and most of the recreational (1998/99, 2007/08) and charter (2002/03-2007/08) 
catch of spangled emperor, was taken from the North Gascoyne. Landed catches from 
recreational and charter fishers in 2007 occurred across similar size distributions of spangled 
emperor. Data from voluntary angler logbooks showed that some recreational fishers caught 
and released a high proportion of juveniles below the MLL. 

•	 A declining commercial catch rate, standardised for vessel and season, was observed from 
late 1980s to mid 1990s, which could reflect declining localised abundances of spangled 
emperor, known changes in commercial fishing, or other factors influencing CPUE. 

•	 Catch-curve assessments indicate that localised overfishing was occurring in 2007/08, with 
estimates only marginally exceeding the Limit reference level. Several sources of quantified 
uncertainty suggested that the probability of localised overfishing occurring in 2007/08 was 
medium to high. Alternative methods indicated that F was below the Limit level but above 
the Threshold level.

•	 The per-recruit analyses suggested that although the estimated F is above the FLimit level of 
1.5M this would not have a significant impact on yield- or egg production-per recruit.

•	 This assessment should be taken in context of the presented levels of uncertainty in Z and 
M, that only fish sampled from catches made outside of sanctuary zones were analysed, 
analysis assumptions, trends in catches, effort, and the inherent biological vulnerability of 
this species (see Section 7). 

South Gascoyne

•	 Catch-curve assessments indicate no evidence of overfishing and that the stock is currently 
fished at sustainable levels of catch in the South Gascoyne. Several sources of quantified 
uncertainty suggested that the probability of localised overfishing occurring in 2007/08 was 
low. 

•	 The per-recruit analyses suggested that if F increased to above the FLimit level this would not 
have a significant impact on yield- or egg production-per recruit.

•	 This assessment should be taken in context of the presented levels of uncertainty in Z and 
M, analysis assumptions, trends in catches, effort, and the inherent biological vulnerability 
of this species (see Section 7). 
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6.3.4.3 	 Goldband snapper 

South Gascoyne

•	 The age at full recruitment to the commercial fishery is relatively old, at approximately 
8 years of age, indicating that many younger fish are not currently susceptible to fishing 
mortality by the commercial sector. 

•	 Fishing mortality by commercial fishers occurred for larger goldband snapper than fishing 
mortality by charter fishers in the South Gascoyne in 2007. 

•	 Catch-curve assessments indicate no evidence of overfishing and that the stock is fished within 
the target range of catch in 2007/08. Several sources of quantified uncertainty suggested that 
the probability of localised overfishing occurring in 2005/06 and 2007/08 was low. 

•	 The per-recruit analyses indicated a relatively high intrinsic vulnerability for goldband 
snapper stocks. Any increases in F or a decrease in age at selectivity were estimated to have 
a relatively large impact on egg per recruit for the stock.

•	 This assessment should be taken in context of the presented levels of uncertainty in Z and 
M, analysis assumptions, trends in catches, effort, and the inherent biological vulnerability 
of this species (see Section 7). 
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7.0 	 General discussion and implications 

7.1 	 Introduction
The DoFWA currently employ 5 alternative levels of stock assessment methods (DoF 2011).  
The choice of assessment method depended on the amount and suitability of available data.  The 
different levels of assessments completed for each of the indicator stocks produced different 
types and complexity of estimates for current stock status.  Assessments of pink snapper stocks 
using integrated models (i.e., Level 5 assessment; DoF 2011) produced estimates of spawning 
stock biomass, fishing mortality, and forecasted trajectories of spawning stock biomass.  
Accordingly, model outputs were used to estimate sustainable catch levels for each stock, as 
determined with respect to standard reference levels (BTarget, BThreshold, BLimit, FTarget, FThreshold, 
FLimit) and in context of each fishery’s respective harvest strategy or management review cycle.  

In the case of Level 3 assessments (based on catch curve analysis, e.g. Wise et al. (2007) 
for spangled emperor and goldband snapper stocks, no specific estimates of sustainable catch 
levels are produced. Instead, the catch curve analyses are used to estimate the current level of 
fishing mortality on the age structures of the stocks (F), which is related to reference levels  
(FTarget, FThreshold, FLimit) and corresponding decision rules, as specified in Table 7.1 and Table 
7.2. The decision rules outline a range of catch reductions that should be undertaken where 
unsustainable levels of fishing are identified. This is consistent with the ‘weight-of-evidence’ 
approach to assessments developed by the DoFWA (Wise et al. 2007). In cases where a reduction 
in catch and/or effort is required according to these decision rules, the level of reduction can 
be refined according to other attributes that affect sustainability risk (Wise et al. (2007), which 
has been recently demonstrated as a robust approach for data-limited multi-species demersal 
scalefish fisheries in Western Australia (Hall and Wise 2011).

Table 7.1. 	 The suggested management actions resulting from an initial assessment of indicator 
levels of biomass and fishing pressure (from Wise et al. 2007). Note: if current 
monitoring and management is already in place to address previously identified 
sustainability risk(s), it may not be necessary to impose further “restrictions” on fishing 
on the basis of the level of biomass or fishing mortality estimated for any one year. For 
instance, the detection of trends in or the trajectories of performance indicators may 
be more relevant to achieving sustainability objectives for a fishery that is in a stock 
rebuilding phase.

Fishing Mortality (F)1

F<Ftarget Ftarget<F<Fthreshold Fthreshold<F<Flimit F>Flimit

Biomass
(B)2

B>Btarget Sustainable Monitor closely Restrict fishing Very 
restricted 
fishing

Btarget>B>Bthreshold Monitor 
closely

Monitor closely Restrict fishing Very 
restricted 
fishing

Bthreshold>B>Blimit Restrict 
fishing

Restrict fishing Restrict fishing Very 
restricted 
fishing

B<Blimit Close Close Close Close
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Table 7.2. 	 Workable decision rules based on a Target, Threshold, and Limit reference points for 
Level 3 assessments based on fishing mortality, F (from Wise et al. 2007). Applies to 
assessments of spangled emperor, goldband snapper in this report.

Fishing mortality (F) estimates are 
available but no biomass estimates

Provides for a decision rule of fishing pressure

F<Ftarget Fishing effort (and/or catches) may increase

Ftarget<F<Fthreshold Fishing effort (and/or catches) to remain constant

Fthreshold<F<Flimit *Fishing effort (and/or catches) reduced eg 0%-50% 

F>Flimit *Fishing effort (and/or catches) reduced eg 50%-100%

* Refinement of decision rules for Fthreshold<F<Flimit and F>Flimit are presented below

7.1.1	 Level 3 ‘weight-of-evidence’ assessments.
A stock assessment provides the risk to the resource against Target, Threshold and Limit 
reference points (e.g., Wise et al. 2007; Smith et al. 2008). For fish resources where adequate 
information exists to enable a high level (e.g., Level 5: integrated model) assessment, the level 
of management response to ensure ongoing sustainability of the resource, based on current 
risk and projected future harvest scenarios, can be relatively specific. However in data limited 
situations there is typically greater uncertainty in assessment results and so coarser levels of 
management response are more appropriate (e.g., Wise et al. 2007; Table 7.2).  

To address this issue for data-limited fisheries, the Department has adopted a ‘weight-of-evidence’ 
approach (Wise et al. 2007). This approach involves combining information on vulnerability 
status with historical data on levels of catch, effort, and quantified stock status, such as from catch 
curve analysis (and quantified uncertainty about those estimates), to provide advice on the overall 
risk to sustainability for the fishery resource and an appropriate level of management response. 

Based on a review of approaches adopted by other agencies (Hobday et al. 2010; Patrick et al. 
2010) and internal workshops, the criteria used to determine vulnerability status have been revised 
(Appendix 6). Emphasis was placed on not “over-weighting” related vulnerability attributes for 
determining vulnerability status (Morison, 2012). This was done by evenly weighting vulnerability 
attributes classified as either “productivity” or “susceptibility” attributes. Productivity attributes are 
those that influence the intrinsic nature of the resource, and are typically related to the life history 
parameters. Susceptibility attributes are those that are reflected in the removal portion of a resource, 
and contribute to its overall catchability. Additionally, following Patrick et al. (2010), uncertainty 
in categorising vulnerability attributes was made explicit. Unlike the other studies upon which 
these methods were derived (e.g., Stobutzki et al. 2001; Patrick et al. 2010; Hobday et al. 2011), 
the outcome of scoring each attribute in terms of its relative vulnerability (i.e., “Low”, “Medium”, 
“High”) was not used independently as a measure of risk to stock status, but instead was incorporated 
as a  component of the ‘weight-of-evidence’ stock assessment framework to provide a more complete 
assessment of risk consistent with international standards (Wise et al. 2007). 

The different types of vulnerability attributes convey different aspects of research advice 
to management concerning sustainability risk. Overall vulnerability is a combination of 
productivity and susceptibility scores, and so is useful for providing an overall score. A key 
distinction is that since susceptibility attributes are related to catchability and this catchability 
can be managed, susceptibility scores could be particularly useful for determining, specifically, 
how overall vulnerability may be reduced. This may be done to address an overall sustainability 
risk identified by a ‘weight-of-evidence’ assessment because a reduction in susceptibility would 



Fisheries Research Report [Western Australia] No. 228, 2012	 165

also result in a lowering of overall vulnerability and risk profile. Productivity attributes, on the 
other hand, are those inherent aspects of population biology that cannot be readily managed, 
and therefore more appropriately represent the level of intrinsic resilience to effects of fishing 
that cause a significant increase in risk profile. Therefore, the revision of vulnerability attributes 
(Appendix 6) has resulted in the overall productivity score now representing that component 
of vulnerability used for refining the decision rules in Table 7.2, in line with the Department’s 
existing weight of evidence framework (Wise et al. 2007).

7.2 	 Summary of current stock status and implications for 
management

The information presented here provides the basis for fisheries managers to determine (with 
reference to above decision rules; Tables 7.1, 7.2) if, and to what extent, management of 
catch and/or effort might be required for each of the indicator stocks, and, accordingly, for the 
corresponding suite(s) of inshore (20-250m) demersal scalefish that they represent.

7.2.1 	 Pink snapper
Oceanic and inner gulf pink snapper stocks already have appropriate monitoring and 
management strategies in place. For a more detailed summary of current stock status, refer to 
Sections 6.3.3.1, 6.3.4.1.

The spawning biomass of the oceanic pink snapper stock was estimated (based on the 2009 
assessment) to be above the Threshold level. Under current levels of catch, the spawning biomass 
is projected to reach the Target level by 2014 (i.e. spawning biomass at 40% of unexploited 
level, Jackson et al. 2010a). Catches taken by the commercial GDSF (previously SBSF) will 
continue to be monitored, and the stock assessment updated every 3-5 years, until the spawning 
stock has recovered to the Target level.

Inside Shark Bay, the spawning biomasses of the Eastern Gulf and Denham Sound pink 
snapper stocks were estimated (based on the 2008 assessment) to be above the Target level 
(i.e. spawning biomass at 40% of unexploited level). In contrast, the spawning biomass of the 
Freycinet Estuary stock was estimated (based on the 2008 assessment) at around the Threshold 
level (i.e. spawning biomass at 30% of unexploited level) but was recovering and was projected 
to reach Target level (i.e. spawning biomass at 40% of unexploited level) by 2012. All three 
inner gulf stocks will continue to be monitored, and the respective stock assessments updated 
every 3-5 years until the Freycinet Estuary stock has recovered to the Target level.

7.2.2 	 Spangled emperor

7.2.2.1 	 Relative vulnerability status
In accordance with the ‘weight-of-evidence’ approach (see 7.1.1) for Level 3 or lower assessments, 
the inherent vulnerability of stocks and trends in catches and effort (Section 6.1) can be used 
by managers to fine-tune potential reductions in catch and effort as indicated from assessments 
of fishing mortality (see Section 6.3.2). The following tables summarise vulnerability attributes 
for spangled emperor in the North Gascoyne (Table 7.3) and South Gascoyne (Table 7.4) to 
determine vulnerability status. Data are summarised largely from material presented in Section 
5.2 and Section 6 of this report. Overall vulnerability status is determined to be Medium for 
spangled emperor stocks in the Gascoyne Coast Bioregion.
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7.2.2.2 	 Summary of quantitative assessments
Estimates of fishing mortality for spangled emperor north of Point Maud (North Gascoyne) 
in 2007/08 ranged from 0.9M to 1.7M, which all exceeded the Threshold reference level (i.e., 
F >> M). Some of these estimates marginally exceeded the Limit reference level (F > 1.5M), 
which was above the international benchmark in terms of risk to sustainability for species with 
intermediate and long life spans (i.e., longevity: > 10 yr; Tables 7.3, 7.4). The yield- and egg 
production-per recruit was determined to be minimally impacted at this level of F. However, 
the per-recruit analyses did not account for unknown temporal dynamics of the fish population 
so results should be treated only as preliminary estimates until sufficient data is available for a 
more comprehensive analysis. 

The level of fishing mortality for spangled emperor south of Point Maud (South Gascoyne), 
including waters offshore from Shark Bay, ranged from ~0 to 0.8M, which included estimates 
that were either below the Target reference level (F < 2/3M) or between the Target and Threshold 
reference levels (2/3M < F < M). Based on the behavioural attributes and catch history of this 
species suggests that the part of the spangled emperor stock in the South Gascoyne is currently 
(as at 2007/08) being fished at a sustainable rate. 

That the level of fishing mortality was higher in the North than in the South Gascoyne reflected 
the higher levels of historical commercial catches (i.e., from late 1980s to mid-1990s) and 
higher levels of current recreational and charter catches, from the northern part of the Bioregion 
for this species (Section 6.1; Table 7.5). Historically, the levels of spangled emperor catch in 
the South Gascoyne were higher across all sectors; most conspicuously for the commercial 
sector, which has now shifted its fishing effort to targeting deeper-water species (e.g., goldband 
snapper) when not targeting pink snapper. 

At the Bioregion level, however, there exists one single genetic stock of spangled emperor. 
If we assume similar abundances of spangled emperor in the North and South Gascoyne, the 
Bioregion level of F should be approximately mid-way between presented estimates of F for 
the North and South Gascoyne. In that case, the median of those presented estimates of F, which  
lies between the Target and Threshold reference levels (2/3M < F < M), would be an appropriate 
representation for spangled emperor at the Bioregion level.  

Steady declines in the commercial catch rates were observed for spangled emperor in both the 
North and South Gascoyne, however there was not enough evidence to confirm whether these 
declines were a result of declines in the relative abundance of spangled emperor populations, 
shifts in fishing practices, or other factors influencing catch rates.
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Table 7.5. 	 Summary of quantitative assessments for spangled emperor stocks in the Gascoyne 
Coast Bioregion*.

North Gascoyne Low Medium High

Age/Length distributions (Fishing mortality estimates where 
F>Fthreshold and F>Flimit)

P*

Effort/Catch P

South Gascoyne Low Medium High

Age/Length distributions (Fishing mortality estimates where 
F>Fthreshold and F>Flimit)

P

Effort/Catch P

* 	Note: Estimates of F only marginally exceeded the FLimit level of 1.5M and although age distributions were not significantly 
different from the main analysis presented in Section 6.3.2, F estimates ranged between FThreshold and FLimit when data were 
organised by different year groupings (Appendix 3).

7.2.2.3 	 Implications for management
Integrating these results with the biological attributes, limited data on catch history and referring 
to decision rules in Table 7.2 suggests that there was localised over-fishing of spangled emperor 
in the North Gascoyne in 2007/08 and that the overall level of fishing effort or catch (i.e., 
recreational and charter) needs to be reduced by 0% to 100%. The reason for the wide range 
of reduction is that the F estimate marginally exceeded the Limit level (corresponding to a 
50%-100% reduction), although uncertainty levels included estimates that were between the 
Threshold and Limit levels, which corresponded to a 0-50% reduction (see Table 7.2). For 
perspective, estimates of F for pink snapper ranged from 2.3M to 7.3M and estimates for dhufish 
ranged from 1.0M to 2.1M for recent assessments of demersal scalefish stocks in the West Coast 
Bioregion, where a 50-100% reduction was advised (Wise et al. 2007). In comparison, 2007/08 
estimates of F for spangled emperor in the North Gascoyne ranged from 0.9M to 1.7M. 

Given the lack of increase in North Gascoyne catch levels over the 10 year period since sanctuary 
zones were first established but an increase in F over this time suggests that in addition to 
there being no evidence of spillover benefits to the stock outside of sanctuary zones in the 
Ningaloo Marine Park, it is possible that the concentration of fishing effort into a smaller area 
may have exacerbated localised depletions.  This inference is consistent with the findings of an 
independent simulation study (Little et al. 2011).

That the level of fishing mortality for spangled emperor south of Point Maud (South Gascoyne) 
was below the Threshold level (F<M) indicates that the spangled emperor catch should not 
increase above the 2007 level in the South Gascoyne and that ongoing monitoring is required 
(Wise et al. 2007).

At the Bioregion level, if we assume similar abundances of spangled emperor in the North 
and South Gascoyne, the spangled emperor breeding stock in 2007/08 was estimated to be at 
an acceptable level, noting significant reductions in the relative numbers of older (breeding 
age) spangled emperor in the North Gascoyne, outside of sanctuary zones, due to localised 
depletions. It is noteworthy that the component of the breeding stock in the North Gascoyne 
residing within sanctuary zones of the Ningaloo Marine Park (and not assessed) may contribute 
towards buffering against potential recruitment overfishing. Although differences in growth were 

*	 Note: stock assessments reported here were undertaken for north and south Gascoyne separately, based on data availability: currently 
there is no evidence to suggest that these represent separate stocks, rather, spangled emperor in the Gascoyne constitute a single genetic 
stock. 
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observed between the North and South Gascoyne, the overall inherent biological productivity 
for spangled emperor in the Bioregion was Medium. This suggests that, if an appropriate range 
of catch reduction is selected (see above) the level of reduction should be refined towards the 
middle of that range. 

7.2.3 	 Goldband snapper

7.2.3.1	 Relative vulnerability status
In accordance with the ‘weight-of-evidence’ approach (Wise et al. 2007) for lower-level 
assessments (i.e., lower than a Level 5 assessment, as done for pink snapper stocks), the 
inherent vulnerability of stocks and trends in catches and effort (Section 6.1) can be used by 
managers to fine-tune potential reductions in catch and effort as indicated from assessments 
of fishing mortality (see Section 6.3.3). The following table summarises productivity and 
susceptibility attributes for goldband snapper in the Gascoyne Coast Bioregion to indicate 
inherent vulnerability status (Table 7.6). Data are summarised largely from material presented 
in Section 5.3 and Section 6 of this report. Overall vulnerability status is determined to be 
Medium for goldband snapper population(s) in the Gascoyne Coast Bioregion.
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7.2.3.2	 Summary of quantitative assessments
The level of fishing mortality for goldband snapper was below the Target reference level (F < 
2/3M) for 2005 to 2007 levels of catch (Table 7.7). Since it was not possible to obtain a reliable 
time series of an index of abundance for this species, and given that the catch curve analyses 
were run for only 2 years of relatively recently-collected data, uncertainties in the catch curve 
analyses need to be considered. For instance, given that the targeting of goldband snapper, 
primarily by the commercial sector, has only occurred in recent years, the flow through of 
these catches to the age structure may not yet be complete. Further, the egg-per-recruit analysis 
demonstrated that any increases in F or a decrease in age at selectivity would have a relatively 
large impact on egg-per-recruit for the stock. 

Table 7.7.	 Summary of quantitative assessments for goldband snapper in the Gascoyne

Gascoyne Low Medium High

Age/Length distributions (Fishing mortality estimates where 
F>Fthreshold and F>Flimit)

P

Effort/Catch P

7.2.3.3	 Implications for management.
According to the decision rules (Table 7.2), results from the catch curve analysis indicate that 
catches of goldband snapper may increase without exceeding the Target level of F based on 
data collected to 2007/08. However, vulnerability of the species (Table 7.6) and the recent trend 
in increasing catches (from ~121 tonnes in 2007/08 to ~144 tonnes in 2008/09, Jackson et al. 
2010a), increases the risks to sustainability. The uncertainties in the assessment and indicated 
sensitivity for egg production to be impacted from increasing levels of fishing mortality and 
potential decreasing size selectivity suggests that catches of goldband snapper should not 
increase beyond the 2007 level and that ongoing monitoring is required.

7.2.4	 General comments
There were different historical approaches to monitoring and management of each of the 
indicator stocks (see Sections 4.5, 6.3). Therefore, different types (‘Levels’; DoF 2011) of 
assessment ensued. Different issues have arisen for each of these indicator stocks from these 
assessments (Table 7.8). 

It is appropriate to stress at this stage that the diversity of management considerations for each 
indicator species should be considered in context of managing the entire suite of demersal 
scalefish stocks in the Gascoyne Coast Bioregion, as is consistent with the IFM approach. 
Therefore, that the F exceeded the Threshold level for spangled emperor in the North Gascoyne 
in 2007/08 suggests that the total level of catch of demersal scalefish across all sectors from the 
North Gascoyne (mostly recreational) be reduced according to the above listed decision rules. 
The F values for goldband snapper and spangled emperor stocks in the South Gascoyne were 
within acceptable ranges as at 2007.  For pink snapper, management measures to assist the 
recovery of the oceanic spawning stock (since 2004) and the three separate inner gulf spawning 
stocks (since 1998) have seen the spawning biomass of all four stocks reach levels either around 
or above the Threshold level. Thus there is no need for additional management of demersal 
scalefish catches over and above existing regulations on pink snapper catches in that region; 
however further monitoring of spangled emperor and goldband snapper stocks is advised. 
Additionally, it is likely that further increases in the efficiency of fishing (as demonstrated by 
commercial catches and catch rates for goldband snapper, Sections 6.1, 6.2) may occur. The 
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uncertainties in the assessment and indicated sensitivity for egg production to be impacted 
from increasing levels of fishing mortality and potential decreasing size selectivity suggests 
that catches of goldband snapper should not increase beyond the 2007 level and that ongoing 
monitoring is required.

Table 7.8.	 Summary of species-specific estimates of F and, where available, spawning stock 
biomass, commensurate decision rules (Refer to Tables 7.2, 7.3) and, where 
appropriate, levels of reduction of effort and/or catch for those stocks. “Level of 
reduction within range” corresponds to the productivity score (i.e., “Low”, “Medium” or 
“High”). Modified from Wise et al. (2007).

Pink snapper

Location Estimate of 
Spawning Biomass

Estimate of F Decision rule 

Oceanic BThreshold>B>BLimit FThreshold<F<FLimit Target catch and/or 
effort level adjusted 
to the estimated 
sustainable catch 
level, in relation 
to current and 
forecasted stock 
status1. 

Eastern Gulf B>BTarget FThreshold<F<FLimit

Denham Sound B>BTarget FThreshold<F<FLimit

Freycinet BThreshold>B>BLimit FTarget<F<FThreshold

Spangled emperor

Location Estimate of F Decision rule Level of reduction 
within range

North Gascoyne F>> FThreshold
2 Catch/effort reduced by 0%-100%2 Medium 2

South Gascoyne F<FThreshold Catch/effort to remain constant n/a

Goldband snapper

Location Estimate of F Decision rule Level of reduction 
within range

South Gascoyne F<FTarget Catch/effort to remain constant 3 n/a

1 Sustainable catch level estimates correspond to current stock status, as determined with respect 
to BTarget, BThreshold, BLimit, FTarget, FThreshold, FLimit reference points and, where applicable, to the 
forecasted recovery trend, as determined in context of its respective harvest strategy. Estimates 
are updated upon subsequent review of stock status when the assessment models are refitted to 
more recently collected data (catch, effort, catch-at-age, relative biomass).

2 Localised overfishing was detected for spangled emperor outside of sanctuary zones of the 
Ningaloo Marine Park and so a localised reduction in catch/effort levels is advised. There 
remains, however, some uncertainty with relating the F estimates to being either above or below 
the Limit reference level and thus with the corresponding level of reduction to be applied. 
F estimates marginally exceeded the Limit level, corresponding to a 50-100% reduction, 
but uncertainty levels included estimates that were between the Threshold and Limit levels, 
correspond to a 0-50% reduction. A Medium productivity score suggests the reduction should 
be towards the middle of the suggested reduction range. 

3 Note this decision rule is more conservative than advised in Table 7.2. Given the high inherent 
vulnerability and recent history of catches we advise this more conservative decision rule, as a 
precautionary measure.
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7.3	 Implications for future monitoring and assessment

7.3.1 	 Pink snapper
The reproductive behaviour of pink snapper (i.e., aggregate in similar locations each year) makes 
spawning stocks inherently vulnerable to high levels of fishing. While current management of 
the recreational fishery in the inner gulfs mitigates the risk of overexploitation, monitoring of 
these stocks will continue, and the three separate stock assessments will be updated every 3-5 
years until the Freycinet Estuary stock has recovered to the Target level. Current management 
of the commercial fishery directed at the oceanic pink snapper stock (TACC currently ca. 50% 
of the level it was 1990-2003) mitigates the risk of future overexploitation of the spawning 
aggregations. However, the current risk to continued stock recovery and on-going sustainability 
will remain if recreational and charter catches are allowed to increase significantly in the future. 
Thus, catches from all sectors for all four pink snapper stocks in the Bioregion need to be 
monitored into the future. 

Recent work (Lenanton et al. 2009b) has identified the significance of post-release mortality on 
pink snapper in deeper (oceanic) waters (e.g. undersized fish in the commercial fishery, fish of 
all sizes in recreational fishery when bag limits have been achieved and fishing continues). This 
should be a key consideration for incorporating into future monitoring and stock assessments 
and may need to be specifically addressed through future management arrangements. 

7.3.2 	 Spangled emperor
The implementation of sanctuary zones within the Ningaloo Marine Park (MP) and that spangled 
emperor are primarily a recreational catch species are key considerations for future monitoring 
and assessments. 

Sanctuary zones have complicated the current assessments because it is unknown to what 
extent the absence of age structure information for fish that reside inside of sanctuary zones has 
influenced results, particularly for the North Gascoyne area. Age structure information was not 
available for fish residing within sanctuary zones because data were obtained from sampling 
the landed catches of recreational fishers, who are prohibited from fishing within sanctuary 
zones. The magnitude of any potential bias arising from this effect would depend on the level 
of fidelity of adults to remain within sanctuary zones and the amount of movement of fish 
from inside to outside of them. There is some evidence emerging to suggest that there are 
significantly more of the larger spangled emperor within than outside of sanctuary zones in the 
Ningaloo MP (Westera et al. 2003; Babcock et al. 2008; B. Fitzpatrick, unpublished data) and 
that the average home range of adults is approximately 3 km or less (Moran et al. 1993, Chateau 
and Wantiez 2008). These studies suggest that there may be limited movement of larger (older) 
spangled emperor beyond sanctuary zones and therefore the detected effect of fishing in the 
North Gascoyne presumably reflects effects on the component of the population that resided 
outside of the sanctuary zones only. In order to address such sources of uncertainty in future, 
data would need to be collected from both inside and outside of the sanctuary zones for analysis.

Obtaining representative recreational catch samples is generally more resource intensive than 
obtaining representative commercial catch samples. A sampling design for representative 
commercial catch sampling can be based around the few key landing ports, and sampling 
effort can be apportioned appropriately according to detailed spatial knowledge of catches and 
effort, which can be obtained from an analysis of data gathered from statutory logbook returns. 
Recreational catches, however, can be landed frequently by a large number of anglers and at many 
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(and some remote) landing sites throughout the Bioregion, and there is a paucity of recreational 
catch and effort data upon which to base sampling strategies with appropriately apportioned 
sampling effort*. Representative recreational catch samples were obtained for assessing stock 
status in 2007/08 because biological catch sampling was integrated with sampling effort for the 
recreational fishing survey in that year, which was economically viable. This level of resourcing 
for obtaining representative recreational catch samples for routine monitoring of the spangled 
emperor stock, however, is not currently available.

7.3.3 	 Goldband snapper
A different growth trend and habitat (deeper depth distribution) for goldband snapper in the 
GCB as compared to that described for the Kimberley stock by Newman and Dunk (2003) 
suggests that there may be some other important differences in aspects of biology between 
these stocks. Further, previous work on stock structure has identified that gene flow can be 
limited at spatial scales of 500 km or less (Ovenden et al. 2004), so the stock in the GCB could 
be a separate stock to goldband snapper in the Kimberley, and possibly the Pilbara. Given its 
Medium-level vulnerability status, high estimated sensitivity of egg production to increases in 
fishing mortality and recent observed increases in catches across all sectors, this GCB stock 
should continue to be closely monitored. Further, relevant aspects of its biology, such as its size 
and age at maturity and recruitment dynamics, should be investigated for the GCB stock. An 
improved understanding of population dynamics for the GCB stock can then be used to evaluate 
inferences made in this report about the likely sustainability of fishing the GCB stock based on 
experience and knowledge gained from researching and monitoring the Kimberley stock, which 
has sustained a much longer history of commercial harvest.

Scope for improved levels of assessment will be greatly enhanced when a sufficient time series 
(i.e. 5-10 years) of data are available from the commercial statutory daily/trip logbooks, which 
were implemented for the SBSF from February 2008. This dataset will have an improved 
resolution for exploring spatiotemporal trends in catches and catch rates using statistical 
models and for potentially obtaining a standardised catch rate to use as an index of abundance. 
A reliable index of abundance could reduce uncertainty in future assessments by providing 
a useful additional performance measure and/or providing scope for the development of an 
integrated assessment model for this stock and thus a higher-level assessment. Improved 
species identification (i.e., distinguishing between goldband snapper, sharptooth snapper and 
rosy jobfish) and the identification of targeted fishing effort by the commercial operators in 
completing these returns and validation programs to check the accuracy of submitted returns 
will help to achieve this goal.

7.4	 Summary of implications
1.	 At current (2007/08) levels of commercial catch and effort, the oceanic pink snapper 

stock is likely to continue to recover and reach the Target level (B40) within the agreed 
timeframe (by 2014). However, recreational and charter catches will need to be monitored 
and management action may need to be taken if these catches increase, to ensure stock 
sustainability. 

2.	 Depth-related discard mortality is likely significant with oceanic pink snapper across all 
sectors and needs be more adequately incorporated into future stock assessments. 

*	  Noting, however, that the Department has since initiated a state-wide recreational fishing survey that commenced in 2011, with 
plans to continue this survey on a 2-yearly cycle.
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3.	 At current (2007/08) levels of recreational catch and effort, risks to sustainability with inner 
gulf pink snapper stocks are considered to be acceptable. Under current arrangements, 
the Freycinet Estuary stock should reach the Target level within the agreed timeframe (by 
2012). However, recreational fishing activity in the inner gulfs will need to continue to be 
monitored in order to detect any future effort increases, e.g. due to displaced effort as a 
result of restrictions imposed in other fisheries in WA (e.g. West Coast Demersal Scalefish 
Fishery). 

4.	 Estimates of fishing mortality on spangled emperor in the North Gascoyne (north of Point 
Maud) for 2007/08 all exceeded the Threshold level and some of those estimates marginally 
exceeded the Limit level, indicating localised overfishing is likely to be occurring, despite no 
recent increase in catches and implementation of sanctuary areas. This suggests, according 
to the Decision rules developed by Wise et al. (2007) that fishing catches and/or effort need 
to be reduced from 0% to 100%. The wide range of reduction is attributed to uncertainty 
with relating F estimates to being either above or below the Limit reference level. 

5.	 Additional monitoring and assessment of the spangled emperor stock in the North Gascoyne 
is advised, given the estimated level of fishing mortality in 2007/08. Ongoing monitoring 
should ideally sample population age structures inside and outside of sanctuary zones and 
account for the resource-intensive nature of recreational catch sampling in this Bioregion.

6.	 Spangled emperor in the South Gascoyne (south of Point Maud) were assessed as being 
fished at a sustainable rate in 2007. 

7.	 If we assume similar abundances of spangled emperor in the North and South Gascoyne, 
the breeding stock for the whole Gascoyne Bioregion is likely to be at an acceptable level, 
noting significant reductions in the relative numbers of older (breeding age) spangled 
emperor in the North Gascoyne, outside of sanctuary zones.

8.	 Goldband snapper in the South Gascoyne was assessed as currently (as at 2007/08) being 
fished at a sustainable rate. Given increases in commercial catches of goldband snapper 
taken since 2007, ongoing monitoring is advised to ensure that the rate of fishing does 
not become unsustainable. Also, given that the targeting of goldband snapper has only 
occurred in recent years, the flow through of these catches to the age structure may not 
yet be complete and therefore subsequent stock assessments of sampled age structures are 
required to confirm the observed risk profile.

9.	 Future monitoring and assessment of the goldband snapper stock should consider additional 
research into describing relevant aspects of its biology for the GCB, such as the size and age 
at maturity and recruitment dynamics. Biological parameter estimates are required for the 
GCB stock because assessments in this report assumed that many of the unknown biological 
parameters were the same as estimates previously reported for the Kimberly stock. These 
biological parameter estimates assumed for the GCB stock, however, may differ to those 
reported for the Kimberly stock, given that differences in growth trends were observed in 
this report (Section 5.3), and known differences in climate and depth profiles inhabited by 
goldband snapper, exist between these areas. 
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9.0 	 Appendices

Appendix 1.	 Gascoyne demersal scalefish species that feature 
significantly in commercial, recreational and charter 
catches. Sources are CAES, charter vessel returns 
and recreational boat-fishing surveys. Species codes 
are those used in CAES, common names are CAAB 
names. Indicator species are in bold. 

Table A1.

Species Code Family name Common Name Scientific Name

346000 Caesionidae Fusiliers Caesio, Pterocaesio spp. 

320000 Glaucosomatidae Western Australian Dhufish Glaucosoma hebraicum

320001 Glaucosomatidae Northern Pearl Perch Glaucosoma buergeri

350000 Haemulidae Sweetlips Plectorhinchus spp.

350003 Haemulidae Painted Sweetlips Diagramma labiosum

384005 Labridae Bluespotted Tuskfish Choerodon cauteroma

384010 Labridae Blackspot Tuskfish Choerodon schoenleinii

384072 Labridae Blue Tuskfish Choerodon cyanodus

384904 Labridae Pigfishes, General Bodianus spp.

384999 Labridae Baldchin Groper Choerodon rubescens

351001 Lethrinidae Blue-Spotted Emperor Lethrinus punctulatus

351004 Lethrinidae Longnose Emperor Lethrinus olivaceus

351005 Lethrinidae Robinson’s Seabream Gymnocranius grandoculis

351006 Lethrinidae Grass Emperor Lethrinus laticaudis

351007 Lethrinidae Redspot Emperor Lethrinus lentjan

351008 Lethrinidae Spangled Emperor Lethrinus nebulosus

351009 Lethrinidae Redthroat Emperor Lethrinus miniatus

351012 Lethrinidae Spotcheek Emperor Lethrinus rubrioperculatus

351013 Lethrinidae Yellowtail Emperor Lethrinus atkinsoni

351031 Lethrinidae Variegated Emperor Lethrinus variegatus

346002 Lutjanidae Goldband Snapper Pristipomoides multidens

346004 Lutjanidae Red Emperor Lutjanus sebae

346005 Lutjanidae Crimson Snapper Lutjanus erythropterus

346007 Lutjanidae Saddletail Snapper Lutjanus malabaricus

346010 Lutjanidae Darktail Snapper Lutjanus lemniscatus

346011 Lutjanidae Stripey Snapper Lutjanus carponotatus

346012 Lutjanidae Moses Snapper Lutjanus russelli

346017 Lutjanidae Chinamanfish Symphorus nematophorus

346019 Lutjanidae Sharptooth Jobfish Pritstipomoides typus

346027 Lutjanidae Green Jobfish Aprion virescens

346029 Lutjanidae Red Bass Lutjanus bohar

346030 Lutjanidae Golden Snapper Lutjanus johnii

346031 Lutjanidae Tang’s Snapper Lipocheilus carnolabrum

346032 Lutjanidae Rosy Snapper Pristipomoides filamentosus
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Species Code Family name Common Name Scientific Name

346040 Lutjanidae Yellowlined Snapper Lutjanus rufolineatus

346910 Lutjanidae Perch, Red, Maroon Sea 
Perch

Lutjanus spp.

346912 Lutjanidae Mangrove Jack Lutjanus argentimaculatus

346914 Lutjanidae Ruby Snapper Etelis carbunculus

346003 Lutjanidae Seaperch, Striped Lutjanus vitta

311006 Polyprionidae Hapuku Polyprion oxygeneios

311170 Polyprionidae Bass Groper Polyprion americanus

326000 Priacanthidae Bigeye Priacanthus spp.

386000 Scaridae Parrotfish Scarus spp.

354001 Scianidae Mulloway Argyrosomus japonicus

311007 Serranidae Goldspotted Rockcod Epinephelus coioides

311009 Serranidae Yellowspotted Cod Epinephelus areolatus

311012 Serranidae Barcheek Coral Trout Plectropomus maculatus

311014 Serranidae Blacktip Rockcod Epinephelus fasciatus

311021 Serranidae Flowery Rockcod Epinephelus fuscoguttatus

311022 Serranidae Chinaman Rockcod Epinephelus rivulatus

311040 Serranidae Potato Rockcod Epinephelus tukula

311041 Serranidae Duskytail Groper Epinephelus bleekeri

311045 Serranidae Tomato Rockcod Cephalopholis sonnerati

311058 Serranidae Rankin Cod Epinephelus multinotatus

311063 Serranidae Birdwire Rockcod Epinephelus merra

311078 Serranidae Common Coral Trout Plectropomus leopardus

311083 Serranidae Coral Rockcod Cephalopholis miniata

311150 Serranidae Blackspotted Rockcod Epinephelus malabaricus

311152 Serranidae Eightbar Grouper (Grey 
Banded Cod)

Hyporthodus octofasciatus

311166 Serranidae Yellowedge Coronation Trout Variola louti

311903 Serranidae Cod, Spotted Epinephalus microdon/
areolatus/bilobatus

311904 Serranidae Radiant Rockcod/Comet 
Grouper

Epinephelus radiatus/
morrhua

353001 Sparidae Snapper, Pink Pagrus auratus

353002 Sparidae Yellowback Bream Dentex tumifrons

353006 Sparidae Frypan Bream Argyrops spinifer

118000 Synodontidae, 
Harpodontidae

Lizardfishes & Grinners Synodus spp., Saurida spp. 

264004 Zeidae John Dory Zeus faber
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Appendix 2.	 Datasheets for collecting catch and effort data. 
i. Monthly returns for Trap and Line: Commercial. Monthly summary sheets not shown.
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ii. SBSF Daily trip returns: Commercial
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iii. Charter fishing logbook return. Monthly summary sheets not shown.
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iv. Recreational Fishing Survey interview forms. 
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Appendix 3.	 Catch curve analyses for spangled emperor stocks 
repeated for different ‘year’ data groupings to 
evaluate sensitivity of results to data inputs.

Table A2.	 Estimates of Z, M, and the deterministic ratios of F (= Z – M) to M as a performance 
indicator for the spangled emperor stocks for data grouped by commercial year (1 
Sep 2006 – 31 Aug 2007). ‘Upper’ and ‘Lower’ refer to upper and lower bounds of 
bias-adjusted 95% confidence intervals. Reference levels: FTarget = 2/3 M; FThreshold 
= M; FLimit = 1.5 M (Wise et al., 2007), where management objective is to keep F 
to less than the FThreshold. Cells are coloured to indicate uncertainty for the catch 
curve estimates (i.e., Z only, ignoring uncertainty in M), in relation to corresponding 
reference levels for management, i.e.: (i) Exceeds Limit level; (ii) Between Limit & 
Threshold level; (iii) Between Threshold & Target level; (iv) Lower than Target level.

Z M F F: M Reference level

North Gascoyne; n = 270 
 Method I
    Upper 0.522 0.351
    Estimate 0.374 0.146 0.228 1.562 FLimit < F
    Lower 0.336 0.023
 Method II
    Upper 0.479 0.351
    Estimate 0.353 0.146 0.207 1.415 FThreshold < F < FLimit
    Lower 0.282 0.023
 Method III
    Upper 0.421 0.351
    Estimate 0.273 0.146 0.127 0.873 FTarget < F < FThreshold
    Lower 0.225 0.023
South Gascoyne; n = 201
 Method I
    Upper 0.332 0.351
    Estimate 0.218 0.146 0.072 0.493 F < FTarget
    Lower 0.149 0.023
 Method II
    Upper 0.164 0.351
    Estimate 0.143 0.146 -0.003 n/a F < FTarget
    Lower 0.104 0.023
 Method III
    Upper 0.1484 0.351
    Estimate 0.1482 0.146 0.004 0.028 F < FTarget
    Lower 0.146 0.023
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Table A3.	 Estimates of Z, M, and the deterministic ratios of F (= Z – M) to M as a performance 
indicator for the spangled emperor stocks for data grouped by calendar year (1 Jan – 
31 Dec 2007). ‘Upper’ and ‘Lower’ refer to upper and lower bounds of bias-adjusted 
95% confidence intervals. Reference levels: FTarget = 2/3 M; FThreshold = M; FLimit = 
1.5 M (Wise et al., 2007), where management objective is to keep F to less than the 
FThreshold. Cells are coloured to indicate uncertainty for the catch curve estimates (i.e., 
Z only, ignoring uncertainty in M), in relation to corresponding reference levels for 
management, i.e.: (i) Exceeds Limit level; (ii) Between Limit & Threshold level;  
(iii) Between Threshold & Target level; (iv) Lower than Target level.

Z M F F: M Reference level

North Gascoyne; n = 334 
 Method I
    Upper 0.485 0.351
    Estimate 0.376 0.146 0.230 1.573 FLimit < F
    Lower 0.329 0.023
 Method II
    Upper 0.392 0.351
    Estimate 0.338 0.146 0.192 1.312 FThreshold < F < FLimit
    Lower 0.272 0.023
 Method III
    Upper 0.396 0.351
    Estimate 0.284 0.146 0.138 0.949 FTarget < F < FThreshold
    Lower 0.233 0.023
South Gascoyne; n = 245
 Method I
    Upper 0.349 0.351
    Estimate 0.251 0.146 0.105 0.721 FTarget < F < FThreshold
    Lower 0.176 0.023
 Method II
    Upper 0.166 0.351
    Estimate 0.152 0.146 0.006 0.043 F < FTarget
    Lower 0.110 0.023
 Method III
    Upper 0.200 0.351
    Estimate 0.150 0.146 0.004 0.028 F < FTarget
    Lower 0.149 0.023
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Appendix 4.	 Catch curve analyses for goldband snapper stocks 
repeated for different ‘year’ data groupings to 
evaluate sensitivity of results to data inputs.

Table A4. 	 Estimates of Z, M, and the deterministic ratios of F (= Z – M) to M as a performance 
indicator for the goldband snapper stock for data grouped by calendar year (1 Jan 
– 31 Dec). 2006, 2007 data excluded due to low sample sizes. ‘Upper’, ‘Lower’ 
and ‘Estimate’ and refer to: (i) the upper and lower bounds of bias-adjusted 95% 
confidence intervals, and the deterministic estimate, for Z; and (ii) the upper end, 
lower end and median of the range estimated by Newman and Dunk (2003) for M. 
Reference levels: FTarget = 2/3 M; FThreshold = M; FLimit = 1.5 M (Wise et al., 2007), 
where management objective is to keep F to less than the FThreshold. Cells are 
coloured to indicate uncertainty for the catch curve estimates (i.e., Z only, ignoring 
uncertainty in M), in relation to corresponding reference levels for management, i.e.: 
(i) Exceeds Limit level; (ii) Between Limit & Threshold level; (iii) Between Threshold & 
Target level; (iv) Lower than Target level.

Z M F F: M Reference level

2005; n = 262
 Method I

    Upper 0.339 0.139

    Estimate 0.147 0.121 0.026 0.216 F < FTarget

    Lower 0.098 0.104

 Method II

    Upper 0.145 0.139

    Estimate 0.122 0.121 0.001 0.006 F < FTarget

    Lower 0.094 0.104

 Method III

    Upper 0.409 0.139

    Estimate 0.151 0.121 0.029 0.243 F < FTarget

    Lower 0.136 0.104

2008; n = 310
 Method I

    Upper 0.248 0.139

    Estimate 0.155 0.121 0.034 0.278 F < FTarget

    Lower 0.111 0.104

 Method II

    Upper 0.182 0.139

    Estimate 0.161 0.121 0.040 0.327 F < FTarget

    Lower 0.132 0.104

 Method III

    Upper 0.176 0.139

    Estimate 0.141 0.121 0.020 0.166 F < FTarget

    Lower 0.124 0.104
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Table A5. 	 Estimates of Z, M, and the deterministic ratios of F (= Z – M) to M as a performance 
indicator for the goldband snapper stock for data grouped by recreational year (1 
Apr – 31 Mar). 2006/07 data excluded due to low sample size. ‘Upper’, ‘Lower’ 
and ‘Estimate’ and refer to: (i) the upper and lower bounds of bias-adjusted 95% 
confidence intervals, and the deterministic estimate, for Z; and (ii) the upper end, 
lower end and median of the range estimated by Newman and Dunk (2003) for M. 
Reference levels: FTarget = 2/3 M; FThreshold = M; FLimit = 1.5 M (Wise et al., 2007), 
where management objective is to keep F to less than the FThreshold. Cells are 
coloured to indicate uncertainty for the catch curve estimates (i.e., Z only, ignoring 
uncertainty in M), in relation to corresponding reference levels for management, i.e.: 
(i) Exceeds Limit level; (ii) Between Limit & Threshold level; (iii) Between Threshold & 
Target level; (iv) Lower than Target level.

Z M F F: M Reference level
2005/06; n = 307
 Method I
    Upper 0.337 0.139
    Estimate 0.146 0.121 0.025 0.204 F < FTarget
    Lower 0.111 0.104
 Method II
    Upper 0.143 0.139
    Estimate 0.134 0.121 0.013 0.106 F < FTarget
    Lower 0.109 0.104
 Method III
    Upper 0.226 0.139
    Estimate 0.161 0.121 0.039 0.324 F < FTarget
    Lower 0.148 0.104
2007/08; n = 313
 Method I
    Upper 0.249 0.139
    Estimate 0.168 0.121 0.046 0.383 F < FTarget
    Lower 0.110 0.104
 Method II
    Upper 0.202 0.139
    Estimate 0.167 0.121 0.046 0.379 F < FTarget
    Lower 0.135 0.104
 Method III
    Upper 0.204 0.139
    Estimate 0.161 0.121 0.040 0.330 F < FTarget
    Lower 0.095 0.104
2008/09; n = 220
 Method I
    Upper 0.395 0.139
    Estimate 0.132 0.121 0.011 0.092 F < FTarget
    Lower 0.090 0.104
 Method II
    Upper 0.161 0.139
    Estimate 0.139 0.121 0.017 0.143 F < FTarget
    Lower 0.109 0.104
 Method III
    Upper 0.188 0.139
    Estimate 0.128 0.121 0.007 0.057 F < FTarget
    Lower 0.123 0.104
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Appendix 5.	 Supplementary analysis of spangled emperor catch 
rate data

Methods: standardisation for the effects of vessel and season

1.	 Generalized linear (GLM) and generalized linear mixed effects (GLMM) models were used 
to account for the influence of season (Summer, Autumn, Winter, Spring) and vessel on 
catch rates (CPUE) of spangled emperor from logbook returns submitted by commercial 
line fishers to the Department. These models were fitted to CPUE only for records when 
spangled emperor were caught and therefore resulting standardised CPUE trends should be 
treated with caution. The use of a CPUE standardisation method that utilises data for this 
type of fishing when spangled emperor were not caught (e.g., the “delta” method; Lo et al., 
1992) is an important component of CPUE standardisation and is an area for future study. 
The current analysis assumes that any such effect(s) are negligible.

2.	 For the North Gascoyne, only trends in CPUE for the coastal 60 x 60 nm block 22130 was 
analysed because blocks to its north represented the separately managed Pilbara line, trap 
and trawl fisheries from 1992 onwards. 

3.	 For the South Gascoyne, trends in CPUE were analysed for non-boundary blocks only. 
Since an inspection of available data per block and year revealed sample zeros for one block 
(24120) prior to 1984/85, records prior to 1984/85 were omitted, to reduce the influence 
of potential hyperstability on resulting trends (Walters, 2003). This was preferred to the 
generation of CPUE from interpolation or extrapolation methods for replacing the sample 
zeros because it avoided allocation of generated CPUE among vessels or months. Data 
for some blocks that had changed name over time but overlapped the same location were 
aggregated together.

4.	 Prior to the fitting of GLM and GLMMs, CPUE was calculated for all records (kg blockday-1) 
for handline fishing methods only (see Section 6.2). A natural-logarithmic transformation 
was applied to these CPUE to improve normality and to make the model terms additive 
(Hilborn and Walters 1992).

5.	 As there were relatively few records of CPUE data available for each vessel per year 
(Block 22130: mean = 3.9 ± 0.3; South Gascoyne blocks: mean = 5.7 ± 0.7), only a few 
key factors were incorporated as fixed (year, season) and random (vessel) factors in the 
standardisations. All models included a year term, as this was required to extract annual 
standardised CPUE by multiplying the geometric mean of the base vessel in the first year 
by back-transformed year coefficients estimated by the model (Maunder and Punt 2004). 
The simplest model was a GLM with the single treatment variable of year. GLMMs were 
fitted using the penalised quasi-likelihood algorithm of Schall (1991) to include the random 
vessel term for explaining ln(CPUE). The highest order model was a GLMM including all 
three treatment variables. All were of the Gaussian family and had identity link functions.

Results & Discussion

The simplest (GLM) standardisation for the single effect of year is an improvement over 
nominal trends in CPUE presented in Section 6.2 in principle because, in effect, these trends 
represent geometric means of annual CPUE across all monthly logbook reporting records, 
which is preferable to the method of simply dividing total catch by total effort (Walters 2003). 
Nevertheless, the displayed trends for single factor GLMs generally reflect patterns of nominal 
CPUE and catches shown in Figure 6.2.4. Vessel is shown to have an important influence on 
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CPUE, in that the greatest shift in pattern was observed when this term was added, and a 
negligible change when season was added, to the GLMMs fitted to both datasets (Fig. A1). 

The vessel term accounted for much variance in ln(CPUE) for the North Gascoyne (Block 

22130) dataset, and had a standard deviation (

	
  
Vσ̂ ) of 0.76, compared to a residual standard 

deviation (

	
  
εσ̂ ) of 0.93. Vessel resulted in an elevated CPUE from 1986/87 to 1995/96, possibly 

reflecting changing fleet dynamics over that period and corresponding differences in the fishing 
power of different vessels for catching spangled emperor in that area (see Section 6.1). The 
vessel term also seemed to have an important influence on standardised CPUE in the South 

Gascoyne, lowering the values notably from 1986/87 to 1994/95 (

	
  
Vσ̂ =0.55,

	
  
εσ̂ = 1.09). Declines 

in nominal CPUE from the late 1980s to mid 1990s for the North and from 1991/92 to 2000/01 
for the South in Section 6.2 were corroborated for these results, suggesting that these declines 
were not likely attributable to changes/differences in fishing power for catching spangled 
emperor among different vessels over this period, but to some other unknown factor(s). The 
limited spatiotemporal resolution of these data (i.e., monthly, 60 x 60 nautical mile blocks) 
precludes further exploration of such effects.
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b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1. Commercial catch rate data for spangled emperor, adjusted for the effect 
of vessel (random) and season (fixed) using a Generalised Linear Mixed Effects 
Model (GLMM) over time (Commercial years: 1 Sep – 31 Aug) for (a) North 
Gascoyne and (b) South Gascoyne (see Methods).  Red squares group spatial blocks 
from which CPUE data were analysed (inset).   
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Figure A1. 	 Commercial catch rate data for spangled emperor, adjusted for the effect of vessel 
(random) and season (fixed) using a Generalised Linear Mixed Effects Model 
(GLMM) over time (Commercial years: 1 Sep – 31 Aug) for (a) North Gascoyne and 
(b) South Gascoyne (see Methods). Red squares group spatial blocks from which 
CPUE data were analysed (inset). 
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