Department of
Primary Industries and Regional Development WESTERN AUSTRALIA

Fisheries Research Report No. 287

Statewide survey of boat-based recreational fishing in Western Australia 2015/16

K.L. Ryan, N.G. Hall, E.K. Lai, C.B. Smallwood, S.M. Taylor, B.S. Wise

Correct citation:

Ryan KL, Hall NG, Lai EK, Smallwood CB, Taylor SM, Wise BS 2017. Statewide survey of boatbased recreational fishing in Western Australia 2015/16. Fisheries Research Report No. 287, Department of Primary Industries and Regional Development, Western Australia. 205pp.

Enquiries:

WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920
Tel: +61 892030111
Email: library@fish.wa.gov.au
Website: www.fish.wa.gov.au

A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au

Important disclaimer

The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.

Department of Primary Industries and Regional Development
Gordon Stephenson House
140 William Street
PERTH WA 6000
Telephone: (08) 65514444
Website: dpird.wa.gov.au
ABN: 18951343745

ISSN: 1035-4549 (Print) ISBN: 978-1-921258-00-8 (Print)
ISSN: 2202-5758 (Online) ISBN: 978-1-921258-01-5 (Online)
Copyright © Department of Primary Industries and Regional Development, 2017.

Table of Contents

Executive Summary ix
1 Introduction 1
1.1 Importance of Recreational Fishing in Western Australia 1
1.2 Need for Recreational Fishing Information 1
1.3 Recreational Fishing Surveys in Australia 2
1.4 Recreational Fishing Surveys in Western Australia 3
1.5 Statewide Survey of boat-based Recreational Fishing 4
1.6 Survey Objectives 4
1.7 Report Structure 4
2 Survey Design and Analysis 6
2.1 Survey scope 6
2.1.1 Who was included in the survey? 6
2.1.2 What fishing activities were covered?. 7
2.1.3 What species were covered? 7
2.1.4 Survey Area 8
2.1.5 Survey Duration 8
2.1.6 Survey Data Elements 8
2.2 Survey Components 11
2.2.1 Phone Surveys 11
2.2.2 Boat Ramp Surveys 19
2.2.3 Remote Camera Survey 20
2.3 Phone-Diary Survey Expansion, Weighting and Analysis 21
2.4 Uncertainty 22
2.5 Reporting Notes 23
3 Participation. 24
3.1 Fishing Participation 24
3.2 Kimberley 26
3.3 Pilbara 27
3.4 Gascoyne 28
3.5 Mid West 29
3.6 Wheatbelt 30
3.7 Perth Metropolitan 31
3.8 Peel 32
3.9 South West 33
3.10 Great Southern 34
3.11 Goldfields-Esperance 35
3.12 Interstate 36
4 Fishing Effort 37
4.1 Statewide effort 38
4.2 North Coast 39
4.3 Gascoyne Coast 40
4.4 West Coast 41
4.5 South Coast 42
5 Statewide Estimates of Recreational Catch 43
5.1 Annual Catch (total, kept and released numbers) 43
5.2 Release Rates 43
5.3 Reasons for Release 44
6 Estimates of Catch for Key Species 61
6.1 Estuarine 63
6.1.1 Barramundi (Lates calcarifer) 63
6.1.2 Black Bream (Acanthopagrus butcheri) 64
6.1.3 Estuary Cobbler (Cnidoglanis macrocephalus) 65
6.1.4 Yellowtail Flathead (Platycephalus westraliae) 66
6.1.5 Southern Bluespotted Flathead (Platycephalus speculator) 67
6.2 Nearshore 68
6.2.1 Australian Herring (Arripis georgianus) 68
6.2.2 Western Australian Salmon (Arripis truttaceus) 69
6.2.3 Garfish (Hyporhamphus melanochir and Hemiramphus robustus) 70
6.2.4 Sea Mullet (Mugil cephalus) 71
6.2.5 Tailor (Pomatomus saltatrix) 72
6.2.6 Blue Threadfin (Eleutheronema tetradactylum) 73
6.2.7 King Threadfin (Polydactylus macrochir) 74
6.2.8 King George Whiting (Sillaginodes punctata) 75
6.2.9 School Whiting (Sillago bassensis, vittata and schomburgkii) 76
6.2.10 Western Trumpeter Whiting (Sillago burrus) 77
6.2.11 Mangrove Jack (Lutjanus argentimaculatus) 78
6.2.12 Silver Trevally (Pseudocaranx spp. complex) 79
6.2.13 Western Butterfish (Pentapodus vitta) 80
6.2.14 Western Yellowfin Bream (Acanthopagrus morrisoni) 81
6.2.15 Western King Wrasse (Coris auricularis) 82
6.2.16 Brownspotted Wrasse (Notolabrus parilus) 83
6.3 Inshore Demersal 84
6.3.1 Baldchin Groper (Choerodon rubescens) 84
6.3.2 Bight Redfish (Centroberyx gerrardi) 85
6.3.3 Blue Morwong (Nemadactylus valenciennesi) 86
6.3.4 Bluespotted Emperor (Lethrinus punctulatus) 87
6.3.5 Brownstripe Snapper (Lutjanus vitta) 88
6.3.6 Goldband Snapper (Pristipomoides multidens) 89
6.3.7 Pink Snapper (Chrysophrys auratus) 90
6.3.8 Rankin Cod (Epinephelus multinotatus) 91
6.3.9 Red Emperor (Lutjanus sebae) 92
6.3.10 Spangled Emperor (Lethrinus nebulosus) 93
6.3.11 West Australian Dhufish (Glaucosoma hebraicum) 94
6.3.12 Coral Trout (Plectropomus maculatus and P. leopardus) 95
6.3.13 Breaksea Cod (Epinephelides armatus) 96
6.3.14 Grass Emperor (Lethrinus laticaudis) 97
6.3.15 Redthroat Emperor (Lethrinus miniatus) 98
6.3.16 Stripey Snapper (Lutjanus carponotatus) 99
6.4 Offshore Demersal 100
6.4.1 Eightbar Grouper (Hyporthodus octofasciatus) 100
6.4.2 Hapuku (Polyprion oxygeneios) 101
6.4.3 Ruby Snapper (Etelis carbunculus) 102
6.5 Pelagic 103
6.5.1 Spanish Mackerel (Scomberomorus commerson) 103
6.5.2 Samsonfish (Seriola hippos) 104
6.5.3 Grey Mackerel (Scomberomorus semifasciatus) 105
6.5.4 Blue Mackerel (Scomber australasicus) 106
6.5.5 Yellowtail Scad (Trachurus novaezelandiae) 107
6.5.6 Billfish. 108
6.5.7 Southern Bluefin Tuna (Thunnus maccoyii) 109
6.6 Sharks 110
6.6.1 Whaler Sharks (Family Carcharhinidae) 110
6.6.2 Gummy Sharks (Mustelus antarcticus and M. stevensi) 111
6.6.3 Port Jackson Shark (Heterodontus portusjacksoni) 112
6.6.4 Wobbegong (Family Orectolobidae) 113
6.7 Crustaceans 114
6.7.1 Western Rock Lobster (Panulirus cygnus) 114
6.7.2 Mud Crab (Scylla olivacea and S. serrata) 115
6.7.3 Blue Swimmer Crab (Portunus armatus) 116
6.8 Molluscs 117
6.8.1 Abalone (Haliotis spp.) 117
6.9 Cephalopods 118
6.9.1 Cuttlefish (Order Sepiidae) 118
6.9.2 Squid (Order Teuthoidea) 119
6.9.3 Octopus (Order Octopodidae) 120
7 Estimates of Catch by Bioregion 121
7.1 North Coast 121
7.2 Gascoyne Coast 121
7.3 West Coast 121
7.4 South Coast 121
8 Estimates of Catch by Zones within Bioregions 140
8.1 Kimberley 140
8.2 Pilbara 140
8.3 Ningaloo 140
8.4 Carnarvon/Shark Bay 141
8.5 Mid West 141
8.6 Metropolitan 141
8.7 South West 141
8.8 Albany 142
8.9 Esperance 142
9 Harvest Weights 153
9.1 Nearshore and Estuarine Resources 153
9.2 Demersal Resources 156
9.3 Pelagic Resources 159
9.4 Crab Resources 160
9.5 Summary 160
10 Summary and Future Research 163
10.1 Overview 163
10.2 Fine-scale Estimates 166
10.3 Validation of Estimates from On-Site Surveys 166
10.4 Improving Accuracy and Precision of Estimates 166
11 Acknowledgements 168
12 References 169
13 Appendices 173
Appendix 1: Statewide and bioregion estimates of average weight of key species from Boat Ramp Surveys. 173
Appendix 2: Summary of launches and retrievals by power boat at 11 boat ramps from Remote Camera Survey in 2015/16. 177
Appendix 3: Harvest ranges from 2011/12 and 2013/14 statewide surveys 189

Executive Summary

The statewide survey of boat-based recreational fishing includes three components: (i) off-site Phone Surveys (encompassing an initial Screening Survey, a longitudinal Phone-Diary Survey, and Post-Enumeration Surveys); (ii) on-site Boat Ramp Surveys; and (iii) a Remote Camera Survey. The main data collection period was the 12-months from September 2015 to August 2016 inclusive, with the Post-Enumeration Surveys occurring from September to November 2016. This report presents results from the statewide survey in 2015/16 and provides comparisons with the previous statewide surveys in 2013/14 (May 2013 to April 2014) and 2011/12 (March 2011 to February 2012).

A total of 2,931 fishers completed the Phone-Diary Survey with 320,661 individual fish (including invertebrates) caught (kept or released) during the 12 month survey. Fishing activity reported by fishers during the survey included 39,416 boat days, 42,152 fishing events and 123,378 fishing hours, across every day of the survey year and the majority of the State's coastline. Additionally, 3,068 fishers were interviewed in Boat Ramp Surveys with 9,960 individual fish (or invertebrates) measured. Boating activity for more than $>160,000$ launches (or retrievals) were recorded in the Remote Camera Survey from 11 boat ramps statewide.

A diverse range of species/taxa were caught, including scalefish (182 species/taxa), elasmobranchs (18), crustaceans (7) and molluscs (5). An estimated 2.54 million individual fish (including invertebrates) were caught from boat-based recreational fishing in 2015/16. A similar proportion of the catch was either kept (1.18 million or 46%) or released (1.36 million or 54%). Approximately 55% of the total catch were finfish (1.39 million scalefish or elasmobranchs) in comparison to invertebrates (1.15 million crustaeans or molluscs). A similar proportion of finfish (53\%) and invertebrates (55\%) were released.

School Whiting (Sillago bassensis, S. vittata and S. schomburgkii) was the most commonly caught finfish species by boat-based recreational fishers (230,052 kept or released statewide by number, or 17% of the finfish catch), followed by Australian Herring (Arripis georgianus; 132,844 or 10\%), Pink Snapper (Chrysophrys auratus; 117,482 or 8\%), West Australian Dhufish (Glaucosoma hebraicum; 74,981 or 5\%), Silver Trevally (Pseudocaranx spp. complex; 60,887 or 4%), Black Bream (Acanthopagrus butcheri; 61,044 or 4\%), King George Whiting (Sillaginodes punctata; 47,563 or 3\%), Western King Wrasse (Coris auricularis; 36,235 or 3\%), Breaksea Cod (Epinephelides armatus; 28,733 or 2\%) and Baldchin Groper (Choerodon rubescens; 28,780 or 2\%). High release rates were observed for Western King Wrasse (83\%), Pink Snapper (76\%), Black Bream (74\%) and West Australian Dhufish (68\%). Release rates were lower for Silver Trevally (46\%), Baldchin Groper (42\%), Breaksea Cod (41\%), King George Whiting (25\%), School Whiting (24\%) and Australian Herring (21\%).

Blue Swimmer Crab (Portunus armatus) was the most commonly caught invertebrate species by boat-based recreational fishers (678,269 kept or released statewide by number, or 59% of the invertebrate catch), followed by Western Rock Lobster (Panulirus cygnus; 387,458 or 34\%), Squid (Order Teuthoidea; 65,025 or 6\%) and Mud Crab (Scylla olivacea and S serrata;

11,581 or 1\%). High release rates were observed for Blue Swimmer Crab (71\%) and Mud Crab (58\%) compared with Western Rock Lobster (35\%) and Squid (4\%).

Estimates of catch (by number) were converted to estimates of harvest (by weight) according to average weights for key species, obtained from Boat Ramp Surveys or Tour Operator Returns (Charter Logbooks). An overview of the information required for stock status reporting of major recreational fisheries, based on estimates of harvest and 95% confidence intervals during 2015/16, is provided in this report. At a statewide level, estimates of catch from boat-based recreational fishing were generally consistent across the three statewide surveys. At a bioregion level, comparisons can be made for both the species contributing to the top 10 species in each resource and the estimated harvest for each resource.

The top 10 nearshore and estuarine species (or species groupings) in 2015/16 represented: 83% of the total catch for the suite (kept by numbers) in the North Coast, 91% in the Gascoyne Coast, 93% in the West Coast, and 95% in the South Coast. The estimated recreational harvest ranges for the top 10 nearshore and estuarine species were steady in 2015/16 in the North Coast (95% CI 20-35 tonnes compared with 15-27 in 2013/14 and 2036 in 2011/12) and Gascoyne Coast (95% CI 6-13 compared with 9-22 in 2013/14 and 8-16 in 2011/12). The estimated recreational harvest range for the top 10 nearshore and estuarine species in the West Coast was steady in 2015/16 (95\% CI 58-77) compared with 2013/14 (68-87), but lower than 2011/12 (101-126). The estimated recreational harvest range for the top 10 nearshore and estuarine species in the South Coast was also steady in 2015/16 (95\% CI 13-21) compared with 2013/14 (20-31), but lower than 2011/12 (37-52).

The top 10 demersal species (or species groupings, 15 in the West Coast) in 2015/16 represented: 77% of the total catch for the suite (kept by numbers) in the North Coast, 82% in the Gascoyne Coast, 93% in the West Coast and 96% in the South Coast.

The estimated recreational harvest range for the top 10 demersal species in the North Coast was lower in 2015/16 (95\% CI 34-47 tonnes compared with 48-69 in 2013/14 and 73-92 in 2011/12). This decrease was consistent with lower estimates of effort by boat-based recreational fishers in the North Coast in 2015/16. Estimated recreational harvests were steady for Blackspot Tuskfish, Coral Trout, Golden Snapper, Grass Emperor, Mangrove Jack, Rankin Cod, Red Emperor and Stripey Snapper. The estimated recreational harvest range for Spangled Emperor was steady in 2015/16 (95\% CI 2-5 tonnes) compared with 2013/14 (39), but lower than 2011/12 (11-18).

The estimated recreational harvest range for the top 10 demersal species in the Gascoyne Coast was steady in 2015/16 (95\% CI 87-118 tonnes) compared with 2013/14 (88-115), but lower than 2011/12 (127-159). The estimated recreational harvest range of: Spangled Emperor was steady in 2015/16 (8-16) compared with 2013/14 (12-22), but lower than 2011/12 (27-45); Grass Emperor was steady in 2015/16 (3-7) compared with 2013/14 (514), but lower than 2011/12 (12-20); and Redthroat Emperor was steady in 2015/16 (1-5) compared with 2013/14 (2-4), but lower than 2011/12 (6-11). Estimated recreational harvests were steady for Baldchin Groper, Goldband Snapper, Goldspotted Rockcod, Pink Snapper, Rankin Cod, Red Emperor and Stripey Snapper.

The estimated recreational harvest range for the top 15 demersal species in the West Coast was higher in 2015/16 (95\% CI 193-230 tonnes compared with 140-169 in 2013/14 and 146-174 in 2011/12). The estimated recreational harvest range of West Australian Dhufish was higher in 2015/16 (97-129 compared with 69-94 in 2013/14 and 64-87 in 2011/12). The estimated recreational harvest range of Baldchin Groper was higher in 2015/16 (28-42) compared with 2013/14 (17-25), but similar to the harvest range in 2011/12 (24-36). The estimated recreational harvest range of Pink Snapper was steady in 2015/16 (30-42 compared with 25-36 in 2013/14 and 27-38 in 2011/12). Estimated recreational harvests were also steady for Baldchin Groper, Bight Redfish, Blue Morwong, Breaksea Cod, Emperor, Foxfish, Pink Snapper, Sea Sweep and Sergeant Baker.

The estimated recreational harvest range for the top 10 demersal species in the South Coast was steady in 2015/16 (95\% CI 38-51 tonnes compared with 30-38 in 2013/14 and 47-63 in 2011/12). Estimated recreational harvests were steady for Bight Redfish, Blue Morwong, Breaksea Cod, Foxfish, Harlequin Fish, Pink Snapper, Sea Sweep, West Australian Dhufish and Swallowtail.

The pelagic resource, as defined by the top 10 pelagic species (or groupings) in the North Coast in 2015/16 represented 99% of the total catch for the suite (kept by numbers). The estimated recreational harvest range for the top 10 pelagic species was steady in 2015/16 (95% CI 21-31 tonnes) compared with 2013/14 (23-41), but lower than 2011/12 (40-61). The estimated recreational harvest range of Spanish Mackerel was steady in 2015/16 (95\% CI 12-22) compared with 2013/14 (16-32), but lower than 2011/12 (27-47).

Estimated recreational harvest ranges of crab resources in each bioregion were also compared with previous statewide surveys. The estimated recreational harvest of Mud Crab in the North Coast represented 70% of the statewide catch (kept by numbers) in 2015/16. The estimated recreational harvest range of Mud Crab in the North Coast was lower in 2015/16 (95\% CI 23 tonnes) compared with 2013/14 (5-10) and 2011/12 (6-10).

The estimated recreational harvest of blue swimmer crab in the West Coast represented 92\% of the statewide catch (kept by numbers) in 2015/16. The estimated recreational harvest range for blue swimmer crab in the West Coast was steady in 2015/16 (95\% CI 36-50 tonnes) compared with 2013/14 (50-68), but lower than 2011/12 (75-97). The estimated recreational harvest ranges for Blue Swimmer Crab were steady in 2015/16 in the: North Coast (95\% CI $1-3$ tonnes compared with $2-6$ in 2013/14 and $2-5$ in 2011/12); Gascoyne Coast (1-2 compared with $1-4$ in 2013/14 and 1-8 in 2011/12); and South Coast ($0-1$ compared with $1-$ 3 in 2013/14 and 1-4 in 2011/12).

There have been significant changes in recreational fishing rules since the previous statewide surveys, including the cessation of harvest tags in Freycinet Estuary and the removal of the maximum size limit for Pink Snapper in Shark Bay, a reduction in the daily bag limit of Australian Herring (from 30 to 12) and an area closure for Southern Garfish (between Lancelin and Myalup).

Data collected from the integrated statewide surveys are extensive, and while this report summarises key findings, further analyses and refinement of analysis methods will continue.

Additional reports will compare estimates of effort and catch from the statewide surveys with previous surveys, as required for management purposes, and investigate the survey design and sample weighting in greater detail to identify any improvements that can be made.

While this report compares estimates from three statewide surveys of boat-based recreational fishing, additional catches from charter-boat recreational fishing (reported in Tour Operator Returns) and shore-based fishing (where available) are used to determine the total catch from the recreational sector. Specific performance indicators, reference levels and catch tolerances will be reported separately, and used to provide trends in total catch to assist in developing, monitoring and refining management arrangements.

1 Introduction

1.1 Importance of Recreational Fishing in Western Australia

Recreational fishing is a popular activity in Western Australia, providing important social and economic benefits to the State's population. The estimated number of recreational fishers increased from 315,000 in 1989/90 (Lindner and McLeod 1991) to 752,000 in 2015/16 (Department of Fisheries 2016). The participation rate of Western Australian residents is generally above the national average, with an estimated 26.6% of the population (aged 15 years or older) fishing in 1989/90 and 28.5\% (aged 5 years or older) fishing in 2000/01 (Lindner and McLeod 1991, Henry and Lyle 2003). The participation rate in recreational fishing was estimated to be 31.1% (95% CI 27.8-34.4\%) in 2015/16, and has remained constant for the last five years (Department of Fisheries 2016). The expenditure attributable to recreational fishing in Western Australia has been estimated at \$55-130 million in 1989/90 and \$338 million in 2000/01, with an average fisher expenditure of $\$ 415$ and $\$ 706$ per year, respectively (Lindner and McLeod 1991, Henry and Lyle 2003), and is likely to be higher now due to CPI and population growth.

Recreational fishers often have important catch-related motives such as fishing to 'obtain a feed' or 'for fresh seafood'. However, there are also significant social benefits from recreational fishing. Recreational fishers in Western Australia also have non-catch related motives (e.g. 'to relax and unwind', 'to be outdoors', 'for solitude', or 'to be with family and friends') as their primary motive for fishing (Henry and Lyle 2003). While most recreational fishers only catch a relatively small number of fish, collectively the recreational catch can be substantial. In 2000/01, the estimated total catch from boat- and shore-based recreational fishing in Western Australia included over 10.4 million finfish (by number) and 3.8 million invertebrates (by number; including crabs, prawns, lobster, and cephalopods) (Henry and Lyle 2003). The estimated total catch from boat-based recreational fishing in 2011/12 included 2.4 million finfish (by number) and 1.4 million invertebrates (Ryan et al. 2013), and in 2013/14 included 2.0 million finfish (by number) and 1.4 million invertebrates (Ryan et al. 2015) This reports provides an update of the estimated recreational catches from boat-based recreational fishing in 2015/16.

1.2 Need for Recreational Fishing Information

An understanding of recreational fishing effort and catch is used to inform stock assessments, resource allocation between fishing sectors, and the development, implementation and review of management plans. Effective management of fish resources requires accurate estimates of the catch taken by all sectors; therefore, a high priority has been placed on the collection of data for key recreational fisheries in Western Australia (Wise and Fletcher 2013, Ryan et al. 2016).

Obtaining suitable recreational data in Western Australia is challenging because of the State's large coastline ($20,781 \mathrm{~km}$) and ongoing regional development, which is changing the distribution and intensity of recreational fishing activity. In 2015/16, the proportion of days fished (by recall) from the annual Community Survey was highest in the West Coast bioregion
(74\%), around the capital city (Perth) and several of the State's large regional centres (Bunbury, Busselton and Geraldton; Department of Fisheries 2016). Recreational fishing effort in marine waters was lower elsewhere, such as in the South Coast (10.8\%), Gascoyne Coast (6.0\%) and North Coast (3.5\%; Department of Fisheries 2016).

Estimating the total recreational catch can be logistically difficult and is often relatively costly. These difficulties are especially apparent where there is no licence available to use as a sampling frame to easily identify recreational fishers. Historically, recreational fishers in Western Australia only required a licence for rock lobster, abalone, marron, freshwater angling and netting. Although the Recreational Fishing from Boat Licence (RFBL) was introduced in March 2010, there is still no licence required for shore-based recreational fishing. As a result, there are no contemporary estimates of the total boat- and shore-based catch. Importantly, in 2000/01, 57% of fishing effort and 54% of the recreational harvest was attributable to shore-based recreational fishing (Henry and Lyle 2003). It is likely that shore-based recreational fishing still represents a substantial component of the total recreational effort and harvest.
Recreational fishing licence fees raised $\$ 7.5$ million in 2015/16 (Department of Fisheries 2016). This revenue is invested in initiatives with direct benefit to recreational fishers in Western Australia, including recreational fishing surveys. These surveys provide harvest estimates and socio-economic information to inform management and policy, including Marine Stewardship Council certification and Integrated Fisheries Management (IFM), to ensure fish resources are managed sustainably and shared between fishing sectors (Department of Fisheries 2010, Ryan et al. 2016). To date, explicit resource allocations have been developed for: Western Rock Lobster (5\% recreational, 95\% commercial); metropolitan Roes’ Abalone (40t recreational, 36t commercial); and the West Coast Demersal Scalefish Fishery (36\% recreational, 64\% commercial). The implementation of the new Fisheries Act will require all new Aquatic Resource Management Strategies to have explicit sectoral allocations (Department of Fisheries 2010).

Long-term monitoring of recreational fishing will provide a greater understanding of temporal variability and trends in effort and catch that are essential for the assessment of stocks, resource allocation and management settings within the broad context of Ecologically Sustainable Development and Ecosystem Based Fisheries Management (Department of Fisheries 2016, Fletcher and Santoro 2017).

1.3 Recreational Fishing Surveys in Australia

The spatial resolution of monitoring recreational fishing needs to be matched to the spatial scale at which fisheries are managed. For many jurisdictions, this requires off-site methods appropriate for sampling large geographical areas, with numerous access points to the fishery and many recreational fishers (Pollock et al. 1994). The sampling frame used to randomly select recreational fishers for an off-site survey can range from a general population list (e.g. White Pages telephone directories) to specific lists (e.g. licence database). Sampling from the White Pages requires contacting many non-fishing households to locate fishing households and does
not include unlisted (silent or mobile) numbers. Sampling from licence databases has a higher probability of contacting fishers and includes fishers with or without a listed telephone; however, effectiveness is determined by exemptions, data availability and non-compliance (Ryan et al. 2009, Hartill et al. 2012).

The National Recreational and Indigenous Fishing Survey (NRFS) provided statewide estimates of boat- and shore-based recreational fishing across Australia from 1 May 2000 to 30 April 2001 (Henry and Lyle 2003). This survey used telephone interviews of fishers who were randomly selected from White Pages telephone directories. This methodology has been employed in subsequent statewide surveys in: South Australia from 1 November 2007 to 31 October 2008 (Jones 2009) and 1 December 2013 to 30 November 2014 (Giri and Hall 2015); Tasmania from 1 December 2007 to 30 November 2008 (Lyle et al. 2009) and 1 November 2012 to 31 October 2013 (Lyle et al. 2014); New South Wales from 1 June 2013 to 31 May 2014 (West et al. 2015); Northern Territory from 1 April 2009 to 31 March 2010 (West et al. 2012); and Queensland from 1 October 2010 to 30 September 2011 (Taylor et al. 2012) and 1 November 2013 to 31 October 2014 (Webley et al. 2015).

Licence databases have been used as sampling frames for surveys designed to estimate the total recreational catch for many specialised, low participation, licensed fisheries (e.g. abalone, rock lobster and scallops) in Australia (e.g. Lyle and Tracey 2016, Ryan et al. 2009, Ryan et al. 2016). The advantages of sampling from a licence database include: reduced costs for the initial screening survey, high response rates (reducing non-response bias), and the ability to use an optimal survey design where avid fishers are oversampled, which can effectively increase the number of fishing events in the sample and improve precision (Ryan et al. 2009).

1.4 Recreational Fishing Surveys in Western Australia

This report presents results from the statewide survey for the 12-months from September 2015 to August 2016 and provides comparisons with previous statewide surveys conducted from May 2013 to April 2014 (Ryan et al. 2015) and March 2011 to February 2012 (Ryan et al. 2013). Prior to these three surveys, large scale surveys of boat-based recreational fishing in Western Australia included the statewide component of the National Recreational and Indigenous Fishing Survey (Henry and Lyle 2003), and Boat Ramp Surveys at a bioregion level. These included 12month surveys in the West Coast in 1996/97 and 2005/06 (Sumner and Williamson 1999, Sumner et al. 2008, Wise and Fletcher 2013); Gascoyne Coast in 1998/99 (Sumner et al. 2002, Wise and Fletcher 2013) and 2007/08 (Marriott et al. 2012); North Coast in 1999/00 (Williamson et al. 2006); and South Coast in 2002/03 (Smallwood and Sumner 2007). The introduction of the Recreational Fishing from Boat Licence (RFBL) provided a suitable sampling frame for a comprehensive statewide survey (both spatially and temporally) to estimate catch from boat-based recreational fishing in Western Australia. An integrated system that obtained data from several survey methods, utilising the RFBL as the basis for sampling recreational fishers, was developed to provide the most robust approach for obtaining annual estimates of
catch from boat-based recreational fishing at both statewide and bioregion levels (Wise and Fletcher 2013).

1.5 Statewide Survey of boat-based Recreational Fishing

The statewide survey includes three complementary components: (i) off-site Phone Surveys using the RFBL as a sampling frame, with an initial Screening Survey to recruit respondents for the longitudinal Phone-Diary Survey, followed by Post-Enumeration Surveys to detect differences among licence holders (Wash-Up/Attitudinal, Non-Intending Fisher and Benchmark Surveys); (ii) on-site Boat Ramp Surveys to provide biological information; and (iii) a Remote Camera Survey using video cameras mounted at key boat ramps to monitor 24/7 launches and retrievals. The main period of data collection was the 12-months from September 2015 to August 2016, with the Post-Enumeration Surveys occurring from September to November 2016. Validation and analyses of data generated by these surveys commenced in December 2016 with estimates of effort and catch presented in this report.

1.6 Survey Objectives

The overall objectives of this survey were to generate estimates of participation (by number of RFBL holders), effort (boat days and hours fished), and catch for all species (total, kept and released, by number) from boat-based recreational fishing for 12 -months at statewide and bioregion levels. These estimates will complement data obtained routinely from the commercial sector. Additional objectives include: estimating recreational fishing effort and reasons for releasing any catch (e.g. size or bag limits, catch and release fishing, or personal preference). Furthermore, the implementation of regular, reliable and cost-effective surveys will provide data that will allow more realistic and rigorous assessments of recreational fisheries.

1.7 Report Structure

This report provides statewide and bioregion estimates of effort and catch from boat-based recreational fishing in Western Australia, with complete coverage temporally, spatially and for all recreational fishing methods (including line, pot, net and diving), from September 2015 to August 2016. Where appropriate, comparisons are made with estimates from the previous statewide surveys conducted in 2013/14 and 2011/12.

Each chapter covers specific details or outputs, including:
Chapter 2 (Survey Design and Analysis) outlines the survey design and scope for the Phone, Boat Ramp and Camera Surveys. Methods used for the expansion, weighting and analysis of survey data are discussed, along with measures of uncertainty associated with survey estimates.

Chapter 3 (Participation) presents estimates of the total number of RFBL holders that fished between September 2014 to August 2015 (Screening Survey) and September 2015 to August 2016 (Benchmark Survey). Participation estimates have been summarised by age, gender, bioregion fished and avidity.

Chapter 4 (Fishing Effort) presents estimates of effort from boat-based recreational fishing during the Phone-Diary Survey, including annual effort (boat days and hours fished), statewide and for each bioregion, by habitat, fishing method and month.

Chapter 5 (Statewide Recreational Catch) presents estimates of catch from boat-based recreational fishing during the Phone-Diary Survey, including annual catch (total, kept and released, by number), proportions released (release rates) and reasons for release for all species.

Chapter 6 (Estimates of Catch for Key Species) summarises estimates of catch from boatbased recreational fishing by bioregion, habitat, fishing method and season for key species, including indicator species within the Resource Assessment Framework.

Chapter 7 (Bioregion Fisheries) provides an overview of species composition and estimates of catch from boat-based recreational fishing in each bioregion, including annual catch (total, kept and released, by number) and proportions released for all species.

Chapter 8 (Small-scale estimates) provides an overview of species composition and estimates of catch from boat-based recreational fishing for zones within each bioregion, including annual catch (total, kept and released, by number) and proportions released for species where the sample size and relative standard error was considered acceptable (i.e. sample size ≥ 30 and relative standard error $\leq 40 \%$.

Chapter 9 (Harvest Weights) provides an overview of the estimated annual boat-based recreational catch (kept, by number), average weight and estimated harvest (by weight) for the most commonly caught demersal and nearshore species/species groupings in each bioregion.

2 Survey Design and Analysis

This section outlines the survey design and scope for the Phone, Boat Ramp and Camera Surveys, methods used for weighting and analysis of survey data, and measures of uncertainty associated with survey estimates. Most aspects were consistent with the previous statewide surveys conducted in 2013/14 and 2011/12, with any differences discussed below.

2.1 Survey scope

The integrated survey included three complementary components: (i) off-site Phone Surveys (encompassing an initial Screening Survey, a longitudinal Phone-Diary Survey, followed by post-enumeration Wash-Up/Attitudinal, Non-Intending Fisher and Benchmark Surveys); (ii) onsite Boat Ramp Surveys; and (iii) a Remote Camera Survey. Output specifications are listed in Table 1 to identify what was considered in-scope for each survey.

2.1.1 Who was included in the survey?

Persons in scope included recreational fishers that held a Recreational Fishing from Boat Licence (RFBL), which is required to undertake any general fishing activity from a motorised vessel in Western Australia. Boat-based recreational fishers are required to have a minimum of one RFBL holder on board, and adhere to boat limits according to the number of RFBL holders, and in practice, the number of fishers generally equals the number of RFBL holders on board. In the Phone Surveys, fishers that held their licence in the 12-months prior to each survey component were in scope. An additional criterion for the Phone-Diary Survey was an intention to fish in the next 12-months (either from a boat or the shore). Commercial fishers were considered in scope if they held a RFBL, but any commercial catches by these fishers were not included. Indigenous fishing was not considered to be in the scope of this survey.

Persons in scope were comparable with previous statewide surveys across all survey components, with the expection of an additional sample for the Screening Survey as described here. Consistent with previous Screening Surveys the sample was randomly selected from the RFBL database. This included any licence holders that concurrently held a Rock Lobster (RL) licence. However, approximately 40% of RL licence holders do not have a RFBL; consequently previous statewide surveys have underestimated the recreational catch of Western Rock Lobster. For this reason, the Screening Survey in 2015/16 included an additional sample of 600 who only held RL licences, with subsequent recruitment of intending fishers into the Phone-Diary Survey. This sample provided the appropriate data to estimate the recreational catch of Western Rock Lobster by fishers that only held the species-specific licence for rock lobster.

Only the results from the RFBL sample are presented in this report to maintain consistency and comparability with estimates from previous statewide surveys. Results from the RL only sample will be reported separately (in comparison with results from mail and phone-recall surveys).

A minimum age criterion of 5 years was applied to all surveys. In the Phone Surveys, parents were always a proxy for children aged 5-13 years and parent permission was required for
children aged 14-17 years. No further proxies were allowed, except for nominated individuals within a household where there was language difficulty or illness. No substitution of respondents occurred during the Phone Surveys.

2.1.2 What fishing activities were covered?

Activities in scope were all boat-based recreational fishing methods, including line fishing, diving, netting, potting and spear fishing, as undertaken from a motorised vessel as per recreational fishing rules. Respondents in the Phone-Diary Survey reported the effort and catch for all fishers on the boat, which were standardised by the number of RFBL holders on each boat. Although fishers in the Phone-Diary survey reported catch information from Charter-boat recreational fishing, this information was excluded from analysis because Charter-boat catches are reported through mandatory Tour Operator Returns (Charter Logbooks). Charter-boat recreational fishing was not included in the Boat Ramp Surveys. Unreported illegal (noncompliant) recreational fishing activity was not included in the surveys. The proportion of RFBL holders that fished from the shore was assessed in the Screening and Benchmark Surveys.

Activities in scope were comparable with previous statewide surveys across all survey components, except for the Phone-Diary Survey. Shore-based recreational fishers, and their attributable catch, were not included in the Phone-Diary Surveys in 2013/14 and 2011/12. For this reason, the Phone-Diary Survey in 2015/16 included both boat- and shore-based recreational fishing, with shore-based recreational fishing events reported on an individual basis. It is not known if the sample of RFBL holders is representative of shore-based recreational fishers that do not hold a RFBL, therefore, shore-based recreational fishing data collected in the Phone-Diary Survey in 2015/16 requires subsequent adjustment.
Only the results from boat-based recreational fishing are presented in this report to maintain consistency and comparability with estimates from the previous statewide surveys. Results from shore-based recreational fishing will be reported separately.

2.1.3 What species were covered?

Species in scope included any aquatic (animal) species caught from recreational fishing. This includes both finfish (e.g. scalefish, sharks and rays) and invertebrates (e.g. abalone, cephalopods, crabs, lobsters and prawns). Most catches are reported for individual species, but there are some instances where species have been reported in taxonomic groups (e.g. School Whiting includes Southern School Whiting, Western School Whiting and Yellowfin Whiting, King Snapper includes Pristipomoides spp., Whaler Sharks includes Bronze Whaler and Dusky Sharks). Aggregating species at higher-level reporting groups is particularly relevant for species where misidentification can occur, despite attempts to assist fishers in identifying fish. Where species or taxa groups are represented by few records, catches are reported in broad taxonomic categories (e.g. 'Other scalefish'). Species taxonomy follows the Codes for Australian Aquatic Biota (Rees et al. 2012, www.marine.csiro.au/caab/). Consistent with the management of many of the multi-species fisheries in Western Australia, the results were in some instances also reported at the species suite level.

2.1.4 Survey Area

The geographic scope was fishing activity in Western Australia only. Consistent with the bioregion approach to fisheries management, the spatial strata for boat-based recreational fishing were the four marine bioregions off Western Australia (Figure 1). The Phone Surveys provided statewide coverage from all access points, while the Camera Survey provided statewide coverage as accessible from the boat ramps in the survey design, and the Biological Survey included key boat ramps in the West Coast and South Coast Bioregions. Based on Ecosystem Based Fisheries Management policy, bioregions are divided into broad ecological depth based habitats (Department of Fisheries 2016, Fletcher and Santoro 2017). These were pelagic (surface waters across all depths), offshore demersal (greater than 250m), inshore demersal (20-250m), nearshore (to 20m deep), estuarine (saltwater and 'brackish' to river mouth), and freshwater (river, stream, dams) (Figure 2).

2.1.5 Survey Duration

The 12-months from September 2015 to August 2016 applied to the Phone-Diary, Boat Ramp and Camera Surveys. The Phone Surveys included an initial Screening Survey during the three months prior to the Phone-Diary Survey, and Post-Enumeration Surveys during the three months following the Phone-Diary Survey. The 12-months from September 2015 to August 2016 were different (start and finish) from previous statewide surveys (May 2013 to April 2014 and March 2011 to February 2012). These adjustments were made to transition the commencement of the Phone-Diary Survey to a month with lower fishing activity.

The 12-months from September to August also provides continuous coverage of peak fishing seasons in the West Coast and South Coast (i.e. summer and autumn) and peak fishing seasons in the North Coast and Gascoyne Coast (i.e. autumn and winter) (Ryan et al. 2013, Ryan et al. 2015). Starting the statewide surveys in September also includes: complete fishing seasons for Western Rock Lobster (south of North West Cape from mid-October to June (i.e. closed season from July to mid-October) and blue swimmer crab in Peel Harvey Estuary from November to August (i.e. closed season from September to October); and most of the fishing season for West Coast Demersal Scalefish (i.e. closed season mid-October to mid-December).

2.1.6 Survey Data Elements

Inherent differences between off-site (e.g. phone) and on-site (e.g. face-to-face) sampling were considered to ensure consistency (where possible) in the information collected from each survey component. A key difference between off-site and on-site sampling is whether fishing activity is recorded on an event or trip basis. For the Phone-Diary Survey, fishing information was collected on an 'event' basis, where separate events were recorded for changes in location, habitat, target species and/or fishing method. For example, line fishing and diving during a single trip would be recorded as separate events. Fishing activity in the Boat Ramp Surveys was recorded on a 'trip' or day basis. Where possible, data elements were standardised between surveys, in terms of question wording and responses. Reference tables for data elements (such as boat ramp, species and fishing method) were also standardised among survey components.

Table 1. Output Specifications for each survey component.

Specification	Item	Phone Surveys			Boat Ramp Surveys	Camera Survey
		Screening	Phone-Diary	Benchmark	Biological	
Persons in scope	Residency status	All, including Western Australian residents and interstate visitors			All	n/a
	Age	<5 years excluded			All	n/a
	Sampling frame	RFBL holders			Spatio-temporal frame	
		$\begin{aligned} & \text { Sep } 2014 \text { to } \\ & \text { Aug } 2015 \end{aligned}$	Sep 2015 to Aug 2016			
Activities	Sectors	Recreational fishing only (traditional/indigenous fishing excluded)				
	Platform	Boat- and shore-based recreational fishing (by RFBL holders only)			Boat-based recreational fishing only	
	Boat type	All, including private-boat, for-hire and charter-boat*			Private-boat and for-hire fishing (charter-boat excluded)	All, according to camera view at each ramp
	Methods	All methods including line fishing, diving, netting, potting and spearing				
Species	Species	All aquatic (animal) species				N/A
	Catch	Kept and Released			Kept	N/A
Geographic scope	Residency status	Western Australian residents, and interstate visitors			N/A	
	Fishing activity	Bioregion, marine vs freshwater	10×10 nautical mile grids statewide	Bioregion, marine vs freshwater	10×10 nautical mile grids statewide	N/A
	Fishing access	N/A	All, boat ramps (public and private), moorings and marinas	N/A	Key public boat ramps statewide	
Temporal scope	Annual coverage	12-months prior to Screening (by recall)	12-month longitudinal survey	12-months as per Phone-Diary (by recall)	Jan-Apr 2016	12-months as per Phone-Diary
	Day hours	All			Daylight hours	All
	Survey dates	$\begin{gathered} \text { Jun-Aug } \\ 2015 \end{gathered}$	1 Sep 201531 Aug 2016	$\begin{gathered} \text { Sep-Nov } \\ 2016 \end{gathered}$	Mid-Jan to Apr 2016	$\begin{aligned} & 1 \text { Sep 2015- } \\ & 31 \text { Aug } 2016 \end{aligned}$

[^0]

Figure 1. Marine bioregions for mangement of fisheries resources in Western Australian.

Figure 2. Habitat groups for mangement of fisheries resources in Western Australian.

2.2 Survey Components

2.2.1 Phone Surveys

Survey Overview

The Phone Surveys were the main component of the integrated survey. This off-site survey was based on the telephone/diary methodology, which has been developed and proven to provide cost-effective data over large spatial scales (i.e. statewide and bioregion). Detailed descriptions of the design philosophy and methodology are provided in Lyle et al. (2002) and Henry and Lyle (2003). Key features of this methodology include: (i) tested survey instruments to minimise recall bias (e.g. Diary Card); and (ii) frequent telephone contact by trained interviewers to collect data at consistent standards, reduce potential bias, explain difficult concepts, counter resistance and ensure confidentiality. The combination of the Diary Card and structured interviews is designed to minimise respondent burden, increase response rates and ensure data quality.

Interviews were conducted by Computer-Assisted Telephone Interview (CATI), which provides a cost-effective and flexible means of recording questionnaire data that is entered directly into survey databases during interviews. It also provides an effective system for ensuring data quality as work stations are networked with a supervisor. Electronic survey data is contained within secure computer networks with appropriate management systems. Interviewers were allocated fishers from a variety of Regional Development Commission Boundaries to reduce the potential for interviewer bias between strata. Where possible and practical, the same interviewer maintained repeat contacts with the same respondent. When required, interviewer notes were made available for alternative interviewers on subsequent follow-up calls.

The primary objectives of the Phone Surveys were to estimate participation (by number of RFBL holders), effort (boat days and hours fished), and catch for all species (total, kept and released, by number) for recreational fishing for 12 -months at statewide and bioregion levels.

The Phone Surveys used a multi-phase survey design (Figure 3) with: an initial Screening Survey to recruit fishers to the Phone-Diary Survey; a longitudinal Phone-Diary Survey to provide detailed effort and catch information over 12-months; and Post-Enumeration Surveys (i.e. Wash Up/Attitudinal, Non-Intending Fisher and Benchmark Surveys). These separate PostEnumeration Surveys were conducted concurrently at the end of the 12-month Phone-Diary Survey to determine and adjust for exceptions outside the distribution of behaviours covered by the Phone-Diary Survey, particularly new licence holders and non-respondents, and to enquire about opinions of RFBL holders for various fishing-related matters.

Figure 3. Components for the statewide survey of boat-based recreational fishing in Western Australia 2015/16

Screening Survey

The Screening Survey (Figure 3) aims to collect profiling information (i.e. avidity, previous and intended fishing activity) from a random sample of RFBL holders and identifies RFBL holders that intended to fish in Western Australia during 2015/16 that were eligible for the Phone-Diary Survey. The Screening Survey was conducted by telephone interview during June to August 2015, therefore, the sampling frame was obtained from a database of fishers who purchased a RFBL between July 2014 and June 2015. The earlier timing of this sample was required to complete the survey before the Phone-Diary Survey (i.e. September 2015), but was considered to represent the population of interest (i.e. September 2014 to August 2015, Figure 4).

Phone-Diary Survey

The Phone-Diary Survey (Figure 3) was conducted from 1 September 2015 to 31 August 2016 to estimate effort (boat days and hours fished), and catch for all species (total, kept and released, by number) for recreational fishing for 12-months at statewide and bioregion levels. Other information was also obtained in terms of public ramp usage, fishing method, fishing location, target species and reasons for release. The Phone-Diary Survey included all (boat- and shorebased) recreational fishing in Western Australia, using all fishing methods (such as line fishing, diving, nets, traps and spearfishing). Fishing activity was classified in terms of bioregion, habitat and fishing location as defined by unique location name, latitude and longitude co-ordinates, or 10 by 10 nautical mile grid blocks (Department of Fisheries 2011).

Respondents received a Diary Kit containing a Welcome Letter, Diary Card, Species Identification Guide (with clear colour images of common species) and Fishing Location Guide. The Diary Card was similar in format to that used previously in other surveys and is designed to be a 'memory jogger' rather than a traditional fishing logbook. Respondents were encouraged to use the Diary Card to record key fishing data that could easily be forgotten (e.g. start and finish times, number of fish kept and released) and were contacted regularly by survey interviewers, who were responsible for collecting this information. Respondents also received a brief Diary Explanation Interview with the survey interviewer after receiving the Diary Kit.

Species Identification Guides (Department of Fisheries 2017) were developed to help respondents identify common species, and enhance consistent and accurate species identification. Interviewers were trained in species identification (throughout the Phone-Diary Survey) and provided with relevant taxonomic references (Hutchins and Swainston 1999, Jones and Morgan 2002, Allen 2009, Rome and Newman 2010).
Fishing information was collected by monthly telephone interviews, even for fishers who indicated they were unlikely to fish in the subsequent month. More regular telephone interviews were made to the more avid fishers to minimise the potential for recall bias to influence fishing information. Some respondents did not actually fish during the Phone-Diary Survey, despite intending to during the Screening Survey. These fishers 'dropped-out' of the fishery, but this was in the range of expected behaviours for the survey.

Wash-Up/Attitudinal Surveys

The Wash-Up/Attitudinal Survey was conducted during September to November 2016 to confirm completion of the survey, assess opinions and attitudes for a range of fisheries related issues, and collect boat-profiling information. Other questions were included to assess respondents' perceptions as to whether they fished 'more, less or about the same’ amount of time in the last 12-months, compared with the prior 12-months. Different Wash-Up/Attitudinal Surveys were different (as appropriate) for respondents that fished, or did not fish, during the Phone-Diary Survey (Figure 3). This attitudinal information will be published separately.

Non-Intending Fisher Survey

The Non-Intending Fisher Survey (Figure 3) was conducted during September to November 2016 to record the incidence of fishing by RFBL holders sampled in the Screening Survey that were not intending to fish in the next 12 -months. These respondents were not eligible for the Phone-Diary Survey, but it was important to identify and account for 'unexpected fishing' that may have occurred during the 12 -months. This 'call-back' survey determined the impact of unexpected 'drop-ins' to the fishery.

Benchmark Survey

The Benchmark Survey (Figure 3) was conducted during September to November 2016 to identify the impact of additional 'drop-ins' to the fishery, such as RFBL holders who purchased a new licence in 2015/16 after the initial sample was drawn. This survey was essentially a repeat of the Screening Survey, with aims to collect profiling information (i.e. avidity, previous and intended fishing activity) for a random sample of people that purchased a RFBL for 12-months concurrent with the Phone-Diary Survey. Therefore, the sampling frame for the Benchmark Survey was obtained from a database of fishers who purchased a RFBL between September 2015 and August 2016 (Figure 5), but excluding RFBL holders that had been selected for the Screening Survey. Most importantly, the Benchmark Survey provided the necessary information for licence holders from the current RFBL population for calibration and expansion of results from the Phone-Diary Survey.

Survey Documentation

The Phone Survey methodology utilises survey instruments, including questionnaires and interviewer manuals, to facilitate the collection/recording of survey data. These were initally produced following extensive design and testing (Survey Development Working Group 2000), and have been revised with subsequent statewide surveys (in each state). Highly structured questionnaires, with due consideration to question wording, instructions to interviewers and precoded answer categories were included in accordance with a range of standardised interviewing conventions. An equivalent approach was employed for all Phone Survey components in the present study, including thorough training and monitoring of interviewers, and development of a comprehensive interviewer manual.

Figure 4. Number of RFBL holders within Regional Development Commission Boundaries from September 2014 to August 2015.

Figure 5. Number of RFBL holders within Regional Development Commission Boundaries from September 2015 to August 2016.

Response Profiles

A summary of response profiles relating to the Screening, Phone-Diary and Benchmark Surveys is given in Table 2. The majority (57\%) of sample loss in the Screening Survey was from disconnected telephone numbers (3.4% of the gross sample) and from mobile phones being switched off (3.1% of gross sample). Sample loss also occurred where the respondent was not known at the number (1.3% of the gross sample), the respondent had moved and was known, but no new contact details were available (0.9%), the respondent was away for the survey (2.1%), fax/modem numbers ($<0.1 \%$), language difficulties (0.1%), duplicate number (0.1%), or respondent incapacitated or deceased (0.4%).
There were 3,441 RFBL holders identified as eligible for the Phone-Diary Survey (i.e. having an intention to fish in Western Australia during September 2015 to August 2016). This represented 81% of the fully responding group from the Screening Survey. Of the eligible RFBL holders, 3,234 (94\%) agreed to participate in the Phone-Diary Survey. Subsequently, 2,931 respondents completed the Phone-Diary Survey, representing 98\% completion rate among uptake, or 92% among eligible (Table 2). The 303 respondents that failed to complete the Phone-Diary Survey were mainly from sample loss (number no longer connected) and refusals.

The majority (75%) of sample loss in the Benchmark Survey was from disconnected telephone numbers (4.5% of the gross sample) and mobile never on (3.4% of gross sample). Sample loss also occurred where the respondent was not known at the number (0.8% of the gross sample), the respondent was known but no new contact details were available (0.8%), or the respondent was away for the survey (0.4%), language difficulties ($<0.1 \%$), duplicate number (0.2%), or respondent incapacitated or deceased (0.5%).
The initial Screening Survey conducted prior to the Phone-Diary Survey was based on a sample of 4,953 RFBL holders, of which 97.1% were fully responding (i.e. completed all required interview questions) (Table 2). The 127 non-responding RFBL holders were either non-contacts (1.5% of the net sample) or refusals (1.4% of the net sample). Similarly, the Benchmark Survey conducted after the Phone-Diary Survey was based on a sample of 5,195 RFBL holders, of which 96.9% were fully responding. The 143 non-responding RFBL holders were non-contacts (1.6% of the net sample) or refusals (1.5% of the net sample).

Non-response in the Screening and Benchmark Surveys were minimised by completing a minimum 20 effective calls to each respondent number, over a range of day times and days of the week, during the survey. Refusal rates were low for both surveys, and could be attributable to the use of experienced interviewers and the fact that relevance of the subject matter strongly correlates with response propensity (i.e. an 'interest' in fishing).

Response rates were relatively consistent across all sampling strata, and with previous statewide surveys (see Ryan et al. 2013, Ryan et al. 2015). The response rates achieved in all components of this study were very high, which provides confidence in overall data quality and minimises the impact of non-response bias.

Table 2. Sample size and response profile for Screening, Phone-Diary and Benchmark Surveys by stratum.

SCREENING SURVEY	Total RFBL Holders	Initial sample	Sample loss	Net sample	Non- response	Full Response	Response rate
Kimberley	3,612	250	26	224	12	212	94.64%
Pilbara	6,513	250	40	210	8	202	96.19%
Gascoyne	2,331	250	30	220	8	212	96.36%
Mid West	7,578	250	23	227	5	222	97.80%
Wheat Belt	5,645	250	32	218	9	209	95.87%
Metro	68,028	2,003	252	1,751	45	1,706	97.43%
Peel	14,146	400	41	359	15	344	95.82%
South West	18,682	550	55	495	11	484	97.78%
Great Sth'n	5,475	250	23	227	12	215	94.71%
Gold fields	2,399	250	25	225	1	224	99.56%
Interstate	2,979	250	18	232	1	231	99.57%
TOTAL	137,388	4,953	565	4,388	127	4,261	97.11%

PHONE- DIARY SURVEY	Full response at screening	Eligible for the Diary Survey	Diary Uptake	Diary Survey Completed	Uptake rate among eligible (\%)	Completion rate among uptake (\%)	Completion rate among eligible (\%)
Kimberley	212	194	185	163	95.36%	88.11%	84.02%
Pilbara	202	170	160	145	94.12%	90.63%	85.29%
Gascoyne	212	169	152	137	89.94%	90.13%	81.07%
Mid West	222	180	167	149	92.78%	89.22%	82.78%
Wheatbelt	209	162	152	142	93.83%	93.42%	87.65%
Metro	1,706	1,387	1,315	1,189	94.81%	90.42%	85.72%
Peel	344	290	269	243	92.76%	90.33%	83.79%
South West	484	422	399	363	94.55%	90.98%	86.02%
Great Sth'n	215	193	184	170	95.34%	92.39%	88.08%
Goldfields	224	183	174	159	95.08%	91.38%	86.89%
Interstate	231	91	77	71	84.62%	92.21%	78.02%
TOTAL	4,261	3,441	3,234	2,931	93.98%	90.63%	85.18%

BENCHMARK SURVEY	Total RFBL Holders	Initial sample	Sample loss	Net sample	Non- response	Full response	Response rate
Kimberley	3,592	261	38	223	4	219	98.21%
Pilbara	6,549	290	36	254	10	244	96.06%
Gascoyne	2,305	255	31	224	12	212	94.64%
Mid West	7,698	307	41	266	7	259	97.37%
Wheatbelt	5,798	265	26	239	3	236	98.74%
Metro	68,946	2,038	191	1,847	55	1,792	97.02%
Peel	13,940	442	49	393	13	380	96.69%
South West	18,457	558	57	501	23	478	95.41%
Great Sth'n	5,500	252	25	227	4	223	98.24%
Goldfields	2,455	263	25	238	8	230	96.64%
Interstate	3,010	264	26	238	4	234	98.32%
TOTAL	138,250	5,195	545	4,650	143	4,507	96.92%

2.2.2 Boat Ramp Surveys

In 2015/16, on-site surveys were completed at 23 boat ramps from January to April 2016 in the West Coast and South Coast to obtain length and weight information that would allow estimates of catch (by number) from the Phone-Diary Survey to be converted to catch (by weight). This enables direct comparison of recreational harvest estimates to commercial fishery information, which is routinely recorded as weights. Data were collected from 3,068 boat-based recreational fishing parties in the West Coast and South Coast, with over 9,960 fish and other aquatic organisms measured. Due to the limited availability of resources, data were not collected in the Gascoyne Coast and North Coast.

The target population included boat-based recreational fishers who retrieved from the key boat ramps where research staff conducted face-to-face interviews with recreational fishers. The Biological Survey in 2015/16 was based on a targeted design informed by data collected during the Boat Ramp and Remote Camera Surveys in 2011/12 (Ryan et al. 2013) and 2013/14 (Ryan et al. 2015). By targeting key boat ramps at peak times of fishing activity (i.e. season, day type and time of day) the surveys aimed to maximise the collection of biological information. The primary sampling unit was sample day and the secondary sampling unit was fishing party, which could include both RFBL holders and non-licensed fishers.

Spatial stratification for the Biological Survey in 2015/16 included marine bioregions, regions and zones, within which 23 boat ramps were sampled, including: 19 ramps in the West Coast (4 ramps in the North zone, 10 in the Metro zone, 5 ramps in the South zone); and 4 ramps in the South Coast (2 ramps in the Albany region and 2 ramps in the Esperance region).

The temporal stratification of the Biological Survey varied for each bioregion, depending on factors that are known to influence boating activity (Table 3). In the West Coast, the aim was to collect the same number of fish measurements as the previous Biological Surveys in 2013/14 and 2011/12 and, as a result, 1-2 surveys per week were scheduled at each ramp, with equal allocation across month, day type and time of day (Table 3). Sample days were approximately 4 hours duration and confined to daylight hours only. In the South Coast, it was aimed to maximise the number of fish measured and surveys were completed up to 5 days per week.

Prior to the commencement of the surveys in each bioregion, interviewers were provided with training in interview techniques, survey instruments and species identification as well as documentation relating to interviewer guidelines, forms and questionnaires.

Summaries of average weight of species (whole weight) collected from the West Coast and South Coast during the Boat Ramp Surveys in 2015/16 are given in Appendix 1 and includes the number of weight measurements recorded, average weight (measured in grams where >10 measurements were obtained statewide) and standard error. Summaries of average weight are also provided for the North Coast and Gascoyne Coast average weight by aggregating data collected from the Boat Ramp Surveys in 2013/14 and 2011/12. Statewide summaries were determined by aggregating data from Boat Ramp Surveys in 2015/16, 2013/14 and 2011/12.

Additional results from the three Biological Surveys are provided in a separate report (Smallwood et al. 2017).

Table 3: Temporal stratification in each bioregion and zone for the Biological Survey in 2015/16.

Bioregion	Zone	Months	Key factor/s determining shift time
West Coast	Mid West	Mid-January to April	Day type and time of day
	Metropolitan		Day type and time of day
	South West		Day type and time of day
South Coast	Albany		Time of day
	Esperance		Time of day

2.2.3 Remote Camera Survey

The Remote Camera Survey monitors recreational boating activity via video cameras at key boat ramps to assist with the corroboration and validation of estimated effort (from the Phone-Diary Survey) and determining levels of boating activity between statewide surveys. Eleven boat ramps were selected for comparison with the Phone-Diary Survey: Dampier in the North Coast; Denham and Monkey Mia in the Gascoyne Coast; Mindarie, Ocean Reef, Hillarys, Leeuwin, Woodman Point (public and private) and Point Peron in the West Coast; and Albany in the South Coast. The position of cameras at each boat ramp was determined by the available infrastructure and logistics of transmitting information (Blight and Smallwood 2015). Camera data was aggregated to provide the number of powerboat launches and retrievals over 24-hours for 12months concurrent with the Phone-Diary Survey.

Although remote cameras are expected to operate continously, outages occurred as a result of technological failure and extreme weather (e.g. power loss and cyclones). Methods have been established to accommodate short-term data loss by extrapolating the temporal distribution of activity for the missing time (see Wise and Fletcher 2013). Extended loss of data can also occur; e.g. data for the camera at Denham were not recorded between July and August 2016. The total activity reported for Denham, therefore, only represents values for available monthly data over the survey (i.e. 10 months) rather than estimates of total activity over 12-months.

Summaries of total launches and retrievals of power boats during 2015/16, by year, month and hourly (within month), are given in Appendix 2, along with the ramp location and any data loss during the 12 -months. Estimates provided in this report are the best that are currently available, but may be revised as a result of refinement of the methods used for reading and analysing camera footage. A framework for integration of Remote Camera Surveys with recreational fishing surveys is provided in a separate report (Steffe et al. 2017).

2.3 Phone-Diary Survey Expansion, Weighting and Analysis

The Phone Surveys design incorporate stratified random sampling with samples divided into homogenous units to reduce sampling variance (Cochran 1977, Pollock et al. 1994, Lohr 2010, Särndal et al. 2003). These strata related to Regional Development Commission Boundaries in Western Australia. The number of samples within each stratum were selected proportionally to the size of the stratum. A single residential stratum applied to interstate RFBL holders ($<2 \%$ of all RFBL holders). Overseas RFBL holders ($<0.02 \%$ of all RFBL holders) were excluded from the Phone Surveys. Exclusions from the sampling frame occurred before sample selection where currency of address information was invalid or fishers were identified as having multiple licences. All sampling was done without replacement.

Data from Phone Surveys that use the White Pages as a sampling frame can be expanded to the total population using profiles from the Australian Bureau of Statistics, based on household structure, age and gender (Giri and Hall 2015, Lyle et al. 2014, Webley et al. 2015, West et al. 2012, West et al. 2015). However, a different approach is required for surveys that use licence sampling frames, particularly if the database is constantly changing. Analysis of the RFBL database (in 2013/14 and 2011/12 compared with 2015/16) indicates approximately 25\% RFBL holders do not renew their licence (i.e. 'drop-out'), while approximately 25% RFBL holders take up a new licence (i.e. ‘drop-in’), each year. Samples were taken prior to each Screening Survey for all licence holders eligible to fish in the previous 12 months and the Phone-Diary Survey did not progressively sample and recruit new entrants to the RFBL population during the survey.

The Benchmark and Non-Intending Fisher Surveys were designed to assist in matching respondents from the Phone-Diary Survey (sampled from the RFBL population in 14/15) to the RFBL population in 2015/16 (i.e. people that had a licence) during the Phone-Diary Survey. Calculation of weighting factors requires counter-parting respondents in the Phone-Diary Survey (based on actual days fished) with respondents in the Benchmark Survey (based on recalled days fished). This process accounts for behavioural differences that result from the dynamic nature of the RFBL population. Counter-parting was based on recall and actual effort collected during the Phone-Diary Survey to account for a likely overestimate of recalled effort in the Benchmark Survey. The sample weight (or expansion factor) for a given subsample was determined by the inverse of the fraction it represented in the population, according to the following equation, where $\alpha_{h i}=$ weight for RFBL holder i in stratum $h, N_{h}=$ total number of RFBL holders in stratum $h, n_{h}=$ number of RFBL holders sampled in stratum h.

$$
\alpha_{h i}=\frac{N_{h}}{n_{h}}
$$

The total catch of species in each stratum over the Phone-Diary Survey was calculated by multiplying the weighted catch for all respondents in each stratum by the number of RFBL holders in each stratum for the relevant RFBL population, as determined by the Benchmark Survey. This approach accounts for: fishers that unexpectedly 'drop-out' from the Phone-Diary Survey (i.e. respondents that intended to fish, but did not); fishers that unexpectedly 'drop-in'
during the Phone-Diary Survey (i.e. respondents in the Screening Survey that did not intend to fish during the Phone-Diary Survey, but actually did); and additional 'drop-in' fishers (i.e. fishers who were not eligible for sample selection for the Screening Survey, but purchased a RFBL during the Phone-Diary Survey).

Raw data collected from respondents have been initially expanded by the number of RFBL holders in the residential stratum divided by the number of RFBL holders sampled in residential stratum. Future estimates may be based on adjustment of weighting factors to account for avidity bias and non-intending fishing and will be reported separately (as required). Parameter estimates in this report are based on expanded data, scaled-up to represent the appropriate stratum population. Estimates were determined for participation (by number of RFBL holders), effort (boat days and hours fished) and catch for all species (total, kept and released, by number). Estimates of average weight were obtained from Boat Ramp Surveys or Tour Operator Returns. Expansion of Phone Survey data to population estimates was undertaken using the survey package (Lumley 2004, 2010) in the statistical computing language R (R Core Team 2016). Detailed descriptions of the survey and recsurvey packages are given in Lumley (2010) and Lyle et al. (2010) respectively.

2.4 Uncertainty

The integrated surveys provide catch estimates in a cost-effective manner; however, they are still surveys, and as such, cannot be expected to provide the level of precision that would be available from a total census. As such, three measures of uncertainty are used:
i. Standard error indicates the difference between the estimate (obtained from a sample) and the true value (of the population). The standard error of the estimate is calculated from the standard deviation of the sample divided by the sample size.
ii. Relative standard error indicates the uncertainty expressed as a percentage of the estimate (or as decimal values from 0.00 to 1.00), allowing comparisons between estimates that accounts for differences in the magnitude of estimates. The relative standard error of the estimate is calculated from the standard error of the sample divided by the estimate.
iii. Confidence intervals represent the range in which the population value is likely to occur as determined by the estimate and associated standard error. The 95\% confidence intervals are equal to the estimate plus or minus 1.96 multiplied by the standard error. This indicates the chance of the population value occurring within approximately two standard errors of the estimate. Confidence intervals are most frequently used to determine statistical significance where the difference between two estimates is considered statistically significant if the probability that they are different is at least 95%.

Interpretation of estimates requires consideration of both the number of fishers that contributed to the estimate and the magnitude of the relative standard error. Where required, estimates in tables have been highlighted to identify sample size <30 fishers and relative standard error $>40 \%$ (or 0.40) (Lyle et al. 2014, Ryan et al. 2015, Webley et al. 2015, West et al. 2015). For estimates
of catch, the sample size refers to the number of fishers reporting a catch of that species (either kept or released). These cautions indicate that estimates may not be robust.

2.5 Reporting Notes

Estimates include uncertainty, with associated standard errors provided in all tables and figures, although these are not routinely cited in text. The tables also provide an indication of whether estimates are considered robust (i.e. sample size ≥ 30 and relative standard error ≤ 0.40). Estimates from the current statewide survey are compared with previous statewide surveys in 2013/14 and 2011/12, as appropriate.

Recreational fishers that did not hold a RFBL (including many shore-based only recreational fishers) and RFBL holders that intended to fish only in freshwater were out of scope for the Phone-Diary Survey. Therefore, estimates of catch for inland, estuarine and nearshore species provided in this report, particularly those harvested with high proportions of shore-based effort, will be underestimated. Additionally, catch estimates for Western Rock Lobster, which can be harvested by fishers with only a Rock Lobster licence, will also be underestimated.

This report presents estimates for boat-based recreational fishing to maintain consistency and comparability with estimates from previous statewide surveys. Estimates for shore-based recreational fishing and Rock Lobster will be reported separately.

Confidence intervals are used to determine statistical significance between annual estimates. If the 95% confidence intervals overlap, then there is no statistical difference, and this is described in this report as "steady". If the 95% confidence intervals do not overlap, then there is a statistical difference (i.e. the probability that they are different is at least 95%), which is described in this report as "increasing" (if the latest estimate is higher than previous) or "decreasing" (if the latest estimate is lower than previous).

While this report compares estimates from three statewide surveys of boat-based recreational fishing, additional catches from charter-boat recreational fishing (reported in Tour Operator Returns) and shore-based fishing (where available) are used to determine the total catch from the recreational sector. Specific performance indicators, reference levels and catch tolerances will be reported separately, and used to provide trends in total catch to assist in developing, monitoring and refining management arrangements.

3 Participation

This section presents results from the Screening and Benchmark Surveys. These cross sectional, recall surveys were based on respondents that held a Recreational Fishing from Boat Licence (RFBL) between September 2014 to August 2015 (Screening) and September 2015 to August 2016 (Benchmark). These results are highly comparable to those from the previous statewide surveys conducted in 2013/14 (Ryan et al. 2015) and 2011/12 (Ryan et al. 2013).

3.1 Fishing Participation

From the population of 137,388 RFBL holders that held a licence in the 12 months prior to September 2015 (2014/15; Figure 4) an estimated 117,023 (85\%) RFBL holders fished at least once, and an estimated 20,366 (15\%) did not fish (Figure 6a). Similarly, from the population of 138,250 RFBL holders in the 12 months prior to September 2016 (2015/16; Figure 5) an estimated 109,380 (79\%) RFBL holders fished at least once, and an estimated 28,870 (21\%) did not fish.

Higher participation occurred for boat-based recreational fishing compared with both (boat- and shore-based) (Figure 6b) and in marine water compared with freshwater and both (salt- and freshwater) (Figure 6c); however, participation in shore-based and freshwater-only recreational fishing may be lower for RFBL holders than for shore-based fishers (i.e. non-RFBL holders).
Most RFBL holders were male in the 12-months prior to September 2015 (85% of all RFBL holders in 2014/15) and the 12-months prior to September 2016 (85% of all RFBL holders in 2015/16). Females accounted for 15\% of RFBL holders in 2014/15 and 2015/16 (Figure 6d).
The highest numbers of RFBL holders that fished were in the 45 to 59-year age group (31% of all RFBL holders that fished in 2014/15 and 30% in 2015/16), followed by the 30 to 44-year age group (28% in 2014/15 and 2015/16; Figure 6e), the 15 to 29-year age group (15% in 2014/15 and 14% in 2015/16), and the 60 to 74 -year age group (19% in $2014 / 15$ and 21% in 2015/16). The lowest numbers of RFBL holders that fished were in the 5 to 14 -year age group (4% in 2014/15 and 3% in 2015/16) and the 75 year or older group (3% in 2014/15 and 4% in 2015/16).

The number of days fished (by recall) in the 12-months prior to each survey is a measure of the fishing avidity. RFBL holders were equally likely to recall fishing 5 to 14 days (35% in 2014/15 and 37% in $2015 / 16$) or 15 days or more (36% in $2014 / 15$ and 34% in $2015 / 16$; Figure 6 f). Lower proportions of RFBL holders (29\% in 2014/15 and 2015/16) recalled fishing less than 5 days during each 12-months.

RFBL holders were most likely to recall fishing in the West Coast (64% in 2014/15 and 66% in 2015/16; Figure 6g). Lower proportions of RFBL holders recalled fishing in the South Coast (16% in $2014 / 15$ and 12% in 2015/16); North Coast (11% in $2014 / 15$ and 2015/16); and Gascoyne Coast (9% in 2014/15 and 11\% in 2015/16).
Similar statewide trends were observed in estimated participation for the 12-months prior to March 2011, March 2012, May 2013 and May 2014 (see Ryan et al. 2013, Ryan et al. 2015).

However, differences in estimated participation occurred according to residence (Perth Metropolitan, Regional Development Commissions, and Interstate), which are discussed in the remainder of this chapter. Notably, RFBL holders were most likely to fish in the bioregion closest to their home residence (e.g. residents from the Kimberley and Pilbara were most likely to fish in the North Coast). However, many RFBL holders travel throughout the state (e.g. residents from the Mid West, Metro and Peel fished in the South Coast, and residents from the Kimberley, Pilbara and Gascoyne fished in the West Coast).

Figure 6. Estimated number of RFBL holders aged five years and older who fished recreationally in the 12-months prior to September 2015 (white bars, SCREEN) and September 2016 (grey bars, BENCH); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.2 Kimberley

A total of 3,612 residents in the Kimberley RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 3,356 (93\%) fishing at least once in 2014/15; Figure 7a). Similarly, 3,592 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 3,051 (85\%) fishing at least once in 2015/16. Most RFBL holders were male (79% in $2014 / 15$ and 72% in 2015/16), and higher proportions of females participated in fishing (21% in 2014/15 and 28\% in 2015/16; Figure 7d) compared with statewide estimates. The majority of RFBL holders that fished were in the 30 to 44-year age group (35% in 2014/15) or the 45 to 59-year age group (34% in 2015/16; Figure 7e). Most RFBL holders recalled fishing 15 days or more (54% in 2014/15 and 49% in 2015/16; Figure 7f) and fished in the North Coast (98% in 2014/15 and 93\% in 2015/16; Figure 7g).

Figure 7. Estimated number of Kimberley RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.3 Pilbara

A total of 6,513 residents in the Pilbara RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 5,739 (88\%) fishing at least once in 2014/15 (Figure 8a). Similarly, 6,549 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 5,717 (87%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders (79% in $2014 / 15$ and 84% in $2015 / 16$), and higher proportions of females participated in fishing (21% in $2014 / 15$ and 16% in $2015 / 16$; Figure $8 d$) compared with statewide estimates. Most RFBL holders that fished were in the 30 to 44 -year age group (47% in 2014/15 and 52\% in 2015/16; Figure 8e), recalled fishing 15 days or more (47% in 2014/15 and 44% in 2015/16; Figure 8f), and fished in the North Coast (88% in $2014 / 15$ and 83% in 2015/16; Figure 8g).

Figure 8. Estimated number of Pilbara RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.4 Gascoyne

A total of 2,331 residents in the Gascoyne RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 1,979 (85\%) fishing at least once in 2014/15 (Figure 9a). Similarly, 2,305 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 1,914 (83\%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders (80% in $2014 / 15$ and 77% in 2015/16), and higher proportions of females participated in fishing (20% in 2014/15 and 23% in 2015/16; Figure 9d) compared with statewide estimates. Most RFBL holders were in the 30 to 44-year age group (34% in 2014/15 and 2015/16; Figure 9e). RFBL holders were most likely to recall fishing 15 days or more (44% in 2014/15 and 42% in 2015/16; Figure 9f), and most likely to fish in the Gascoyne Coast (92% in 2014/15 and 91\% in 2015/16; Figure 9g).

Figure 9. Estimated number of Gascoyne RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.5 Mid West

A total of 7,578 residents in the Mid West RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an 6,452 (85\%) fishing at least once in 2014/15 (Figure 10a). Similarly, 7,698 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 6,152 (80%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders (86% in $2014 / 15$ and 85% in $2015 / 16$), and lower proportions of females participated in fishing (14% in $2014 / 15$ and 15% in 2015/16; Figure 10d) consistent with statewide estimates. Most RFBL holders were in the 45 to 59-year age group (31% in 2014/15 and 33% in $2015 / 16$; Figure 10e); recalled fishing 5 to 14 days (39% in 2014/15) or 15 days or more (36% in 2015/16; Figure 10f); and most likely to recall fishing in the West Coast (87% in 2014/15 and 86% in 2015/16; Figure 10g).

Figure 10. Estimated number of Mid West RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.6 Wheatbelt

A total of 5,645 residents in the Wheatbelt RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 4,646 (82\%) fishing at least once in 2014/15 (Figure 11a). Similarly, 5,798 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 3,857 (67\%) fishing at least once in 2015/16. Most fishers were male (79% in $2014 / 15$ and 80% in 2015/16), and higher proportions of females fished (21% in 2014/15 and 20% in 2015/16; Figure 11d) compared with statewide estimates. Most RFBL holders were in the 30 to 44 age group (27% in 2014/15) , or the 45 to 59 -year age group (26% in 2014/15 and 32\% in 2015/16; Figure 11e). Most RFBL holders recalled fishing less than 5 days (39% in $2015 / 16$) or 5 to 14 days (37% in 2014/15 and 38% in 2015/16; Figure 11f), and fished in the West Coast (70\% in 2014/15 and 2015/16; Figure 11g).

Figure 11. Estimated number Wheatbelt RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.7 Perth Metropolitan

A total of 68,028 residents in Perth Metropolitan held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 57,501 (85\%) fishing at least once in 2014/15 (Figure 12a). Similarly, 68,946 residents in Perth Metropolitan held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 55,134 (80\%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders (87% in $2014 / 15$ and 88% in 2015/16), and lower proportions of females participated in fishing (13% in 2014/15 and 12% in 2015/16, Figure 12d) consistent with statewide estimates. Most RFBL holders were in the 45 to 59-year age group (31% in 2014/15 and 2015/16; Figure 12e). RFBL holders were most likely to recall fishing 5 to 14 days (35% in $2014 / 15$ and 38% in 2015/16) or 15 days or more (35% in 2014/15; Figure 12f). RFBL holders were most likely to recall fishing in the West Coast (82% in 2014/15 and 80% in 2015/16; Figure 12g).

Figure 12. Estimated number of Perth Metropolitan residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.8 Peel

A total of 14,146 residents in the Peel RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 11,596 (82\%) fishing at least once in 2014/15 (Figure 13a). Similarly, 13,940 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 10,785 (77%) fishing at least once in $2015 / 16$. Most RFBL holders were male (81% in 2014/15 and 83% in 2015/16), and higher proportions of females participated in fishing (19% in $2014 / 15$ and 17% in 2015/16; Figure 13d) compared with statewide estimates. Most RFBL holders were in the 60 to 74-year age group (32% in 2014/15 and 30% in 2015/16; Figure 13e). RFBL holders were most likely to recall fishing 5 to 14 days (34% in 2014/15) or 15 days or more (34% in $2014 / 15$ and 36% in 2015/16; Figure 13f), and most likely to recall fishing in the West Coast (75% in 2014/15 and 82% in 2015/16; Figure 13g).

Figure 13. Estimated number of Peel RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.9 South West

A total of 18,682 residents in the South West RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 16,675 (89\%) fishing at least once in 2014/15 (Figure 14a). Similarly, 18,457 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 14,596 (79%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders (81% in $2014 / 15$ and 84% in 2015/16), and higher proportions of females participated in fishing (19% in 2014/15 and 16% in 2015/16; Figure 14d) compared with statewide estimates. Most RFBL holders were in the 45 to 59-year age group (32% in 2014/15 and 28% in 2015/16; Figure 14e). RFBL holders were most likely to recall fishing 5 to 14 days (37% in $2014 / 15$ and 38% in 2015/16) or 15 days or more (41% in $2014 / 15$ and 38% in 2015/16; Figure 14f), and fished in the West Coast (51% in 2014/15 and 67% in 2015/16), followed by the South Coast (39% in 2014/15 and 21\% in 2015/16; Figure 14g).

Figure 14. Estimated number of South West RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.10 Great Southern

A total of 5,475 residents in the Great Southern RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 4,686 (86\%) fishing at least once in 2014/15 (Figure 15a). Similarly, 5,500 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 4,144 (75%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders (89% in $2014 / 15$ and 85% in 2015/16), and lower proportions of females participated in fishing (11% in 2014/15 and 15% in 2015/16; Figure 15d) consistent with statewide estimates. Most RFBL holders were in the 45 to 59-year age group (31% in 2014/15 and 35% in 2015/16; Figure 15e). RFBL holders were most likely to recall fishing 15 days or more (40% in $2014 / 15$ and 35% in 2015/16; Figure 15f), and most likely to recall fishing in the South Coast (91 \% in 2014/15 and 80\% in 2015/16; Figure 15g).

Figure 15. Estimated number of Great Southern RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.11 Goldfields-Esperance

A total of 2,399 residents in the Goldfields-Esperance RDC held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 1,981 (83\%) fishing at least once in 2014/15 (Figure 16a). Similarly, 2,455 residents held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 1,921 (78\%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders (89% in 2014/15 and 2015/16), and lower proportions of females participated in fishing (11% in $2014 / 15$ and 2015/16; Figure 16d) compared with statewide estimates. Most RFBL holders were in the 45 to 59-year age group (36% in 2014/15 and 29\% in 2015/16; Figure 16e). RFBL holders most likely to recall fishing less than 5 days (35% in $2014 / 15$ and 39% in 2015/16) or 5 to 14 days (36% in $2014 / 15$ and 34% in 2015/16; Figure 16 f). RFBL holders were most likely to recall fishing in the South Coast (84\% in 2014/15 and 2015/16; Figure 16g).

Figure 16. Estimated number of Goldfields-Esperance RDC residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

3.12 Interstate

A total of 2,979 interstate visitors held a RFBL in the 12 months prior to September 2015 (Figure 4), with an estimated 2,412 (81\%) fishing at least once in 2014/15 (Figure 17a). Similarly, 3,010 Interstate visitors held a RFBL in the 12 months prior to September 2016 (Figure 5), with an estimated 2,110 (70\%) fishing at least once in 2015/16. Males accounted for the majority of RFBL holders in 2014/15 and 2015/16 (89\% and 86\% respectively), and lower proportions of females participated in fishing in 2014/15 and 2015/16 (11\% and 14\% respectively; Figure 17d) compared with statewide estimates. Most RFBL holders were in the 45 to 59 -year age group (35% in 2014/15), or the 60 to 74 -year age group (38% in $2015 / 16$; Figure 17e). Interstate RFBL holders were most likely to recall fishing 5 to 14 days in 2014/15 and 2015/16 (47\% and 42\% respectively; Figure 17f), and most likely to recall fishing in the North Coast (46\% in 2014/15 and 42\% in 2015/16; (Figure 17g).

Figure 17. Estimated number of Interstate residents (RFBL holders aged five years and older) who fished recreationally in the 12-months prior to September 2015 (white bars) and September 2016 (grey bars); a) non-fishers and fishers; b) boat-based and both (including shore-based); c) marine and freshwater; d) gender; e) age (years); f) avidity (days fished per year); and g) bioregion fished.

4 Fishing Effort

This section presents estimates of effort from boat-based recreational fishing for the 12-months from September 2015 to August 2016. Estimates are summarised by habitat, fishing method and month, statewide (Figure 18) and for each bioregion: North Coast (Figure 19), Gascoyne Coast (Figure 20), West Coast (Figure 21) and South Coast (Figure 22).

Estimates of effort are measured in boat days (separate days in which fishing occurred on a 'boat party' basis, regardless of the number of fishers or RFBL holders on board) and number of fishing events, which accounts for multiple events during a boat day (i.e. events where fishing method or location changed during the boat day).

The boat-based recreational fishing effort for the 12-months from September 2015 to August 2016 was estimated to be 370,368 boat days, with 387,707 separate fishing events (Table 4). Fishers undertook an average of 1.05 events per fisher day statewide. The estimated total time spent boatbased recreational fishing was $1,112,579$ hours. Approximately three quarters of the statewide estimated total effort (in boat days, fishing events and hours fished) was reported from the West Coast. While statewide effort has declined again in 2015/16, there was an increase in proportion of fishing effort in the West Coast which was consistent with results from the annual Community Survey (Department of Fisheries 2016), where the proportion of days fished in 2015/16 (74\%) was higher than 2013/14 (62\%).

Table 4. Annual fishing effort, expressed as boat days and fishing events, for boat-based recreational fishing in Western Australia during 2011/12, 2013/14 and 2015/16 (se=standard error).

Bioregion	Boat Days	se	Fishing Events	se	Hours Fished	se
2011/12						
North Coast	47,721	3,778	51,175	4,306	187,112	14,105
Gascoyne Coast	58,123	3,672	61,616	3,895	253,930	17,245
West Coast	293,112	10,688	317,543	11,972	820,693	31,111
South Coast	40,073	3,354	41,897	3,556	136,771	12,505
State-wide Total	$\mathbf{4 3 9 , 0 2 9}$	$\mathbf{1 1 , 1 6 0}$	$\mathbf{4 7 2 , 2 3 2}$	$\mathbf{1 2 , 5 2 1}$	$\mathbf{1 , 4 0 0 , 1 5 0}$	$\mathbf{4 1 , 7 0 0}$
$\mathbf{2 0 1 3 / 1 4}$						
North Coast	45,604	3,603	47,836	3,757	188,744	15,536
Gascoyne Coast	53,832	3,603	56,334	3,849	211,967	15,671
West Coast	249,719	10,563	267,664	11,561	716,722	31,145
South Coast	28,277	2,323	29,831	2,497	91,640	7,447
State-wide Total	$\mathbf{3 8 3 , 1 0 7}$	$\mathbf{1 2 , 3 8 5}$	401,730	$\mathbf{1 3 , 1 9 7}$	$\mathbf{1 , 2 0 9 , 2 6 3}$	40,279
2015/16						
North Coast	31,375	2,414	33,046	2,520	122,192	9,748
Gascoyne Coast	43,237	3,152	44,407	3,234	169,312	12,914
West Coast	271,311	11,032	285,157	11,672	740,815	28,047
South Coast	24,444	2,042	25,097	2,100	80,260	6,762
Statewide Total	$\mathbf{3 7 0 , 3 6 8}$	$\mathbf{1 1 , 5 6 7}$	$\mathbf{3 8 7 , 7 0 7}$	$\mathbf{1 2 , 1 9 1}$	$\mathbf{1 , 1 1 2 , 5 7 9}$	$\mathbf{3 2 , 7 3 1}$

4.1 Statewide effort

At a statewide level, most boat-based recreational fishing effort (boat days) during 2015/16 occurred in the West Coast (74\%), with lower proportions in the North Coast (8\%), Gascoyne Coast (12\%) and South Coast (6\%; Figure 18b). Most boat-based recreational fishing effort occurred in nearshore habitat (60\%), followed by inshore demersal (25\%) and estuary (11\%), with lowest proportions in pelagic (2\%), offshore demersal (1\%) and freshwater (1\%; Figure 18a). Most boat-based recreational fishing effort was attributed to line fishing (62\%) and pots (32\%), with lower proportions from diving (4\%), nets (1\%) and other (<1\%; Figure 18c). Most boat-based recreational fishing effort occurred during summer (39\%) and autumn (26\%), with effort highest in December 2015 (16\%) and lowest in August 2016 (4\%; Figure 18d). Estimated boat-based recreational fishing effort in 2015/16 was higher in the West Coast compared with previous statewide surveys, but lower in the North Coast, Gascoyne Coast and South Coast.

Figure 18. Boat-based recreational fishing effort (boat days $\times 1000 \pm$ standard errors) in Western Australia during 2015/16 (white bars) compared with mean from 2011/12 and 2013/14 (grey bars); a) effort by habitat; b) map of the proportion (\%, 15/16 only) of the effort by fishing bioregion; c) effort by fishing method; and d) effort by month.

4.2 North Coast

The majority of boat-based recreational fishing effort (boat days) during September 2015 to August 2016 in the North Coast occurred in nearshore habitat (50\%), followed by inshore demersal (25\%) and estuary (15\%), with lower proportions of fishing effort in pelagic (5\%), freshwater (4\%) and offshore demersal (1\%; Figure 19a). The majority of boat-based recreational fishing effort was attributed to line fishing (88\%), with lower proportions of fishing effort from pots (7\%), diving (4%), nets ($<1 \%$) and other ($<1 \%$; Figure 19b). The majority of boat-based recreational fishing effort occurred during winter (36\%), followed by spring (25\%), autumn (24\%) and summer (15\%). In 2015/16, fishing effort was highest in July 2016 (14\%) and lowest in December 2015 (5\%; Figure 19c). Estimated boat-based recreational fishing effort was lower in the North Coast in 2015/16 compared with previous statewide surveys, notably for line fishing, inshore and nearshore habitats, and from March to August.

Figure 19. Boat-based recreational fishing effort (boat days $\times 1000 \pm$ standard errors) in the North Coast during 2015/16 (white bars) compared with mean from 2011/12 and 2013/14 (grey bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

4.3 Gascoyne Coast

The majority of boat-based recreational fishing effort (boat days) during September 2015 to August 2016 in the Gascoyne Coast occurred in nearshore (53\%) and inshore demersal (38\%) habitats, with lower proportions of fishing effort in pelagic (6\%), offshore demersal (1\%), estuary ($<1 \%$) and freshwater ($<1 \%$; Figure 20a). The majority of boat-based recreational fishing effort was attributed to line fishing (94\%), with lower proportions of fishing effort from diving (4%), pots (2%), nets ($<1 \%$) and other ($<1 \%$; Figure 20b). The majority of boat-based recreational fishing effort occurred during autumn (43\%) and winter (35\%) and was lowest in spring (15\%) and summer (7\%). In 2015/16, fishing effort was highest in May 2016 (20\%) and lowest in February 2016 (1\%; Figure 20c). Estimated boat-based recreational fishing effort was lower in the Gascoyne Coast in 2015/16 compared with previous statewide surveys, notably for line fishing, inshore habitat, from April to August.

Figure 20. Boat-based recreational fishing effort (boat days $\times 1000 \pm$ standard errors) in the Gascoyne Coast during 2015/16 (white bars) compared with mean from 2011/12 and 2013/14 (grey bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

4.4 West Coast

The majority of boat-based recreational fishing effort (boat days) during September 2015 to August 2016 in the West Coast occurred in nearshore habitat (62\%), followed by inshore demersal (23\%) and estuary (12\%), with lower proportions of fishing effort in offshore demersal (1\%), pelagic ($<1 \%$) and freshwater ($<1 \%$; Figure 21a). The majority of boat-based recreational fishing effort was attributed to line fishing (52\%) and pots (42\%), with lower proportions of fishing effort from diving (4\%), nets (1\%) and other ($<1 \%$; Figure 21b). The majority of boatbased recreational fishing effort occurred during summer (46\%), autumn (23\%) and spring (23\%) and was lowest in winter (8\%). In 2015/16, fishing effort was highest in December 2015 (20\%) and lowest in August 2016 (2\%; Figure 21c). Estimated boat-based recreational fishing effort in the West Coast in 2015/16 was generally consistent with previous statewide surveys, with higher fishing effort for potting, nearshore habitat, and from November to December.

Figure 21. Boat-based recreational fishing effort (boat days $\times 1000 \pm$ standard errors) in the West Coast during 2015/16 (white bars) compared with mean from 2011/12 and 2013/14 (grey bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

4.5 South Coast

The majority of boat-based recreational fishing effort (boat days) during September 2015 to August 2016 in the South Coast occurred in nearshore habitat (51\%), followed by inshore demersal (28\%) and estuary (18\%), with lower proportions of fishing effort in freshwater (2\%), offshore demersal (1\%) and pelagic ($<1 \%$; Figure 22a). The majority of boat-based recreational fishing effort was attributed to line fishing (94\%), with lower proportions of fishing effort from pots (3\%), diving (2%), nets ($<1 \%$) and other ($<1 \%$; Figure 22b). The majority of boat-based recreational fishing effort occurred during summer (42\%), followed by autumn (26\%) and spring (22\%) and was lowest in winter (10\%). In 2015/16, fishing effort was highest in January 2016 (16\%) and lowest in July 2016 (2\%; Figure 22c). Estimated boat-based recreational fishing effort was lower in the South Coast in 2015/16 compared with previous statewide surveys, notably for line fishing, inshore and nearshore habitats, and throughout the year.

Figure 22. Boat-based recreational fishing effort (boat days $\times 1000 \pm$ standard errors) in the South Coast during 2015/16 (white bars) compared with mean (11/12 and 13/14) (grey bars); a) effort by habitat; b) map of the bioregion; c) effort by fishing method; and d) effort by month.

5 Statewide Estimates of Recreational Catch

This section presents estimates of boat-based recreational catch for the 12-months from September 2015 to August 2016. Estimates presented for all species include: annual catch (total, kept and released, by number), proportions released (\% released) and reasons for release.

5.1 Annual Catch (total, kept and released numbers)

The estimated annual catch (total, kept and released numbers) and proportion released for the 12months from September 2015 to August 2016 is given in Table 5. A diverse range of species/taxa were caught, including scalefish (182 species/taxa), elasmobranchs (18), crustaceans (seven) and molluscs (five). A total of 2.54 million individual species/taxa were caught. A similar proportion of the catch was either kept (approx. 1.18 million or 46%) or released (approx. 1.36 million or 54%). Approximately 55\% of the recreational catch comprised finfish (1.39 million) in comparison to invertebrates (1.15 million). A similar proportion of finfish (53\%) and invertebrates (55\%) were released.

School Whiting (Sillago bassensis, S. vittata and S. schomburgkii) were the most commonly caught finfish species statewide with (230,052 kept or released statewide by number, or 17% of the finfish catch), followed by Australian Herring (Arripis georgianus) (132,844 or 10\%), Pink Snapper (Chrysophrys auratus) (117,482 or 8\%), West Australian Dhufish (Glaucosoma hebraicum) (74,981 or 5\%), Silver Trevally (Pseudocaranx spp. complex) (60,887 or 4\%), Black Bream (Acanthopagrus butcheri) (61,044 or 4\%), King George Whiting (Sillaginodes punctata) (47,563 or 3%), Western King Wrasse (Coris auricularis) (36,235 or 3%), Breaksea Cod (Epinephelides armatus) (28,733 or 2\%) and Baldchin Groper (Choerodon rubescens) (28,780 or 2\%). High release rates were observed for many of these species, including Western King Wrasse (83\%), Pink Snapper (76\%), Black Bream (74\%) and West Australian Dhufish (68\%). Release rates were lower for Silver Trevally (46\%), Baldchin Groper (42\%), Breaksea Cod (41\%), King George Whiting (25\%), School Whiting (24\%) and Australian Herring (21\%).
Blue Swimmer Crab (Portunus armatus) was the most commonly caught invertebrate species (678,269 kept or released statewide by number, or 59% of the invertebrate catch), followed by Western Rock Lobster (Panulirus cygnus) (387,458 or 34%), Squid (Order Teuthoidea) (65,025 or 6\%) and Mud Crab (Scylla olivacea and S. serrata) (11,581 or 1\%). High release rates were observed for Blue Swimmer Crab (71\%) and Mud Crab (58\%) compared with Western Rock Lobster (35\%) and Squid (4\%).

5.2 Release Rates

A summary of release rates for species released by fishers during 2015/16 by RFBL holders aged five years or older is given Table 6. Lowest release rates were observed for Squid (4\%), Blue Morwong (15\%), Octopus (16\%), Harlequin Fish (19\%), Southern Bluefin Tuna (21\%), Australian Herring (21\%), Goldband Snapper (21\%) and School Whiting (24\%).

Highest release rates were observed for Tarwhine (81\%), Southern Maori Wrasse (82\%), Yellowtail Flathead (82\%), Western King Wrasse (83\%), Leatherjacket (84\%), Samsonfish (84\%), Dusky Whaler (84\%), Blacktip Reef Shark (85\%), Southern Bluespotted Flathead (86\%), Bighead Gurnard Perch (86\%), Queenfish (89\%), Western Striped Grunter (91\%), Gurnard (92\%), Sea Trumpeter (92\%), Port Jackson Shark (96\%) and Giant Sea Catfish (98\%).

5.3 Reasons for Release

A summary of the proportions for common reasons for release during 2015/16 is given in Table 7. The most common reasons for release were: "Too Small" (personal preference), "Undersize" (below legal limit), "Too Many" (personal preference), "Over Limit" (Above legal bag limit), "Catch Release" (sport fishing) and "Other", which includes protected females and species.
"Too Small" includes catches that are too small in terms of personal preference, not related to regulations. This reason for release occurred in proportions of 40% or more for Australian Herring, Bluespotted Emperor, Goldband Snapper, Golden Snapper, Saddletail Snapper, School Mackerel, School Whiting, Southern Garfish and Squid.
"Under Size" includes catches below the legal size. This reason for release occurred in proportions of 60% or more for Baldchin Groper, Blue Swimmer Crab, Blue Tuskfish, Breaksea Cod, Brown Mud Crab, Grass Emperor, Green Mud Crab, King George Whiting, Painted Sweetlips, Pink Snapper, Roe's Abalone, Southern Bluespotted Flathead, West Australian Dhufish and Western Rock Lobster.
"Too Many" includes catches the fisher did not want/need anymore/any, had enough, not wanted, not targeted, no preference. This reason for release occurred in proportions of 40% for more for Bludger Trevally, Cuttlefish, Shark Mackerel, Snook, Yellowspotted Rockcod and Yellowtail Flathead.
"Over Limit" includes catches above the legal bag limit. This reason for release did not occur in proportions greater than 20%, except Chinaman Rockcod (29\%) and King Threadfin (35\%). "Over Limit" catches generally occurred in proportions of 10-20\% for Bight Redfish, Blue Morwong, Blue Tuskfish, Coral Trout, Foxfish, Grass Emperor, Harlequin Fish, Redthroat Emperor, Spangled Emperor and West Australian Dhufish.
"Catch Release" fishing includes sport fishing, where fish are not tagged before release. This reason for release only occurred in proportions of 30% or more for Western Australian Salmon (46\%). "Catch Release" catches generally occurred in proportions of $20-30 \%$ for Black Bream, Coral Trout, Giant Trevally, Golden Trevally, Mangrove Jack, Mulloway, Queenfish and Samsonfish.
"Other" reasons for release included greater than legal limit, too big, too few (not enough for a meal/dinner/all of us), tag \& release, conservation (other than legally protected species), sick (fish has signs of disease), damaged, deformed (not sick or damaged), dangerous, female (berried, eggs, setose, tar spot), poor eating quality (don't taste good, not nice to eat, slimy, hard to clean, many bones, too much effort to cook, perceived or known), species unknown (not sure
about species, eating quality or taste), poisonous (flesh or spines), did not have tag to keep (e.g. Pink Snapper), protected species (e.g. sawfish), mistake (caught but got away, nothing to store fish in) or depredated (taken or damaged by another animal either below or at the surface). Collectively, these "Other" reasons for release occurred in proportions of 60% or more for Bighead Gurnard Perch, Dusky Whaler, Giant Sea Catfish, Leatherjacket, Lizardfish Grinners, Sea Trumpeter and Western King Wrasse.

Table 5. Estimated annual catch (total, kept and released numbers) and proportion released during 2015/16 by RFBL holders aged five years or Table 5. se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 respondents recorded catches of the species).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Abalone	Roe's Abalone	Haliotis roei	4,074	1,519	12	12	4,087	1,519	0\%
Abalone	Greenlip Abalone	Haliotis laevigata	904	593	0	0	904	593	0\%
Cephalopod	Cuttlefish	Sepia spp.	1,963	338	704	198	2,667	401	26\%
Cephalopod	Octopus	Octopodidae - undifferentiated	1,159	264	220	67	1,379	278	16\%
Cephalopod	Squid	Order Teuthoidea - undifferentiated	62,173	6,102	2,852	854	65,025	6,374	4\%
Lobster	Western Rock Lobster	Panulirus cygnus	250,337	20,217	137,121	15,985	387,458	33,348	35\%
Lobster	Southern Rock Lobster	Jasus edwardsii	608	330	44	37	652	341	7\%
Lobster	Painted Rock Lobster	Panulirus versicolor	795	239	197	110	992	289	20\%
Lobster	Ornate Rock Lobster	Panulirus ornatus	140	68	9	8	149	68	6\%
Crab	Blue Swimmer Crab	Portunus armatus	197,050	15,197	481,219	39,583	678,269	51,693	71\%
Crab	Green Mud Crab	Scylla serrata	2,232	753	4,022	1,778	6,254	2,314	64\%
Crab	Brown Mud Crab	Scylla olivacea	2,644	656	2,683	817	5,327	1,379	50\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	207	77	1,212	251	1,419	273	85\%
Sharks	Bronze Whaler	Carcharhinus brachyurus	354	87	881	232	1,235	251	71\%
Sharks	Dusky Whaler	Carcharhinus obscurus	230	94	1,237	555	1,467	573	84\%
Sharks	Greynurse Shark	Carcharias taurus	0	0	27	20	27	20	100\%
Sharks	Gummy Sharks	Mustelus antarcticus \& stevensi	521	129	413	154	934	204	44\%
Sharks	Hammerhead Shark	Sphyrnidae - undifferentiated	53	33	161	47	214	57	75\%
Sharks	Lemon Shark	Negaprion acutidens	0	0	146	61	146	61	100\%
Sharks	Port Jackson Shark	Heterodontus portusjacksoni	37	36	1,011	207	1,047	210	96\%
Sharks	Sandbar Shark	Carcharhinus plumbeus	0	0	108	54	108	54	100\%
Sharks	Tiger Shark	Galeocerdo cuvier	0	0	199	75	199	75	100\%
Sharks	Whiskery Shark	Furgaleus macki	180	62	199	100	379	143	52\%
Sharks	Whitetip Reef Shark	Triaenodon obesus	43	25	496	235	539	240	92\%
Sharks	Wobbegong	Orectolobidae - undifferentiated	99	37	561	163	660	167	85\%
Sharks	Other Whaler	Carcharhinidae, Hemigaleidae - undiff	65	34	300	186	366	192	82\%
Sharks	Other Shark	Sharks - undifferentiated	389	153	2,350	480	2,739	519	86\%
Rays	Sawfishes	Pristidae - undifferentiated	0	0	90	42	90	42	100\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	0	0	288	76	288	76	100\%
Rays	Other Rays Skates	Order Rajiformes - undifferentiated	38	37	2,203	362	2,241	364	98\%
Billfish	Black Marlin	Makaira indica	57	40	709	254	765	257	93\%

T	Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
$\stackrel{5}{6}$	Billfish	Blue Marlin	Makaira nigricans	0	0	102	42	102	42	100\%
D.	Billfish	Sailfish	Istiophorus platypterus	78	42	314	92	392	122	80\%
8	Billfish	Striped Marlin	Tetrapturus audax	0	0	30	21	30	21	100\%
T	Bonito	Bonito	Sarda australis \& Cybiosarda elegans	351	104	412	150	763	217	54\%
D	Bonito	Oriental Bonito	Sarda orientalis	218	90	125	80	343	122	36\%
2	Bream	Black Bream	Acanthopagrus butcheri	15,979	5,160	45,065	8,028	61,044	12,005	74\%
\checkmark	Bream	Frypan Bream	Argyrops spinifer	50	26	135	67	185	81	73\%
D	Bream	Northwest Black Bream	Acanthopagrus palmaris	77	33	884	284	962	299	92\%
O	Bream	Pink Snapper	Chrysophrys auratus	28,030	2,340	89,453	8,780	117,482	10,286	76\%
-	Bream	Tarwhine	Rhabdosargus sarba	1,624	489	7,149	1,887	8,772	2,030	81\%
\sum_{0}	Bream	Western Yellowfin Bream	Acanthopagrus morrisoni	265	151	1,478	549	1,744	578	85\%
\sim	Bream	Other Bream	Sparidae - undifferentiated	25	23	176	90	201	103	88\%
\%	Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	0	0	249	113	249	113	100\%
D	Catfish	Estuary Cobbler	Cnidoglanis macrocephalus	681	375	73	56	754	380	10\%
5	Catfish	Giant Sea Catfish	Netuma thalassina	130	49	5,457	1,072	5,587	1,076	98\%
0	Catfish	Silver Cobbler	Neoarius midgleyi	0	0	941	513	941	513	100\%
ص.	Catfish	Other Catfish	Ariidae - undifferentiated	201	186	2,008	511	2,209	543	91\%
Z	Cobia	Cobia	Rachycentron canadum	1,644	284	716	231	2,360	417	30\%
\bigcirc	Cod	Barramundi Cod	Chromileptes altivelis	80	60	76	39	156	91	49\%
$\begin{aligned} & N \\ & \hline 1 \end{aligned}$	Cod	Blackspotted Rockcod	Epinephelus malabaricus	1,537	294	4,930	1,056	6,468	1,131	76\%
)	Cod	Blacktip Rockcod	Epinephelus fasciatus	16	14	206	186	222	187	93\%
	Cod	Breaksea Cod	Epinephelides armatus	16,963	1,481	11,769	1,398	28,733	2,493	41\%
	Cod	Chinaman Rockcod	Epinephelus rivulatus	6,092	2,051	13,193	4,588	19,285	6,262	68\%
	Cod	Eightbar Grouper	Hyporthodus octofasciatus	617	224	75	36	692	231	11\%
	Cod	Frostback Rockcod	Epinephelus bilobatus	11	9	95	49	106	50	90\%
	Cod	Goldspotted Rockcod	Epinephelus coioides	2,697	629	2,885	488	5,582	870	52\%
	Cod	Harlequin Fish	Othos dentex	2,246	280	510	119	2,757	320	19\%
	Cod	Potato Rockcod	Epinephelus tukula	46	37	84	37	130	56	65\%
	Cod	Queensland Grouper	Epinephelus lanceolatus	55	53	66	33	121	63	55\%
	Cod	Rankin Cod	Epinephelus multinotatus	4,479	540	2,351	427	6,831	788	34\%
	Cod	Temperate Basses \& Rockcods	Percichthyidae, Serranidae - undiff	691	154	3,005	715	3,696	743	81\%
	Cod	Tomato Rockcod	Cephalopholis sonnerati	0	0	47	31	47	31	100\%
	Cod	Yellowspotted Rockcod	Epinephelus areolatus	461	145	1,832	728	2,293	750	80\%
	Coral Trout	Coral Trout	Plectropomus maculatus \& leopardus	4,827	580	4,501	1,293	9,329	1,562	48\%
$\stackrel{\wedge}{\square}$	Coral Trout	Yellowedge Coronation Trout	Variola louti	141	52	245	133	386	148	63\%

∞	Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
	Emperor	Bluespotted Emperor	Lethrinus punctulatus	1,711	447	1,826	505	3,537	883	52\%
	Emperor	Grass Emperor	Lethrinus laticaudis	9,659	1,547	15,725	3,356	25,384	4,311	62\%
	Emperor	Longnose Emperor	Lethrinus olivaceus	411	257	132	70	543	323	24\%
	Emperor	Redspot Emperor	Lethrinus lentjan	12	12	3	2	15	12	18\%
	Emperor	Redthroat Emperor	Lethrinus miniatus	5,412	1,191	10,443	2,360	15,855	3,316	66\%
	Emperor	Robinsons' Seabream	Gymnocranius grandoculis	702	189	240	186	942	291	25\%
	Emperor	Spangled Emperor	Lethrinus nebulosus	8,310	1,092	13,231	2,044	21,541	2,697	61\%
	Emperor	Yellowtail Emperor	Lethrinus atkinsoni	129	80	430	191	559	245	77\%
	Emperor	Other Emperor	Lethrinidae - undifferentiated	593	180	1,305	514	1,897	619	69\%
	Flathead	Northern Sand Flathead	Platycephalus endrachtensis	156	104	105	51	261	116	40\%
	Flathead	Southern Bluespotted Flathead	Platycephalus speculator	4,718	1,115	27,942	8,212	32,661	8,663	86\%
	Flathead	Yellowtail Flathead	Platycephalus westraliae	1,459	465	6,678	2,202	8,138	2,359	82\%
	Flounder	Smalltooth Flounder	Pseudorhombus jenynsii	342	91	230	82	572	124	40\%
T.	Flounder	Other Flatfish	Bothidae, Psettodidae \& Pleuronectidae	116	52	44	29	160	60	27\%
$\stackrel{\sim}{0}$	Garfish	Southern Garfish	Hyporhamphus melanochir	2,267	1,005	229	125	2,497	1,021	9\%
$\stackrel{\square}{\square}$	Garfish	Three-by-two Garfish	Hemiramphus robustus	33	28	58	56	90	62	64\%
D	Garfish	Other Garfish	Hemiramphidae - undifferentiated	250	208	158	108	408	248	39\%
Dod	Giant Perch	Barramundi	Lates calcarifer	1,425	294	3,412	1,462	4,837	1,651	71\%
D	Giant Perch	Sand Bass	Psammoperca waigiensis	0	0	77	52	77	52	100\%
$\stackrel{2}{2}$	Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	478	202	1,688	478	2,167	577	78\%
\checkmark	Grunter	Sea Trumpeter	Pelsartia humeralis	700	434	8,322	3,370	9,022	3,405	92\%
T	Grunter	Western Sooty Grunter	Hephaestus jenkinsi	197	178	1,134	800	1,331	839	85\%
\bigcirc	Grunter	Western Striped Grunter	Pelates octolineatus	634	392	6,634	1,814	7,268	1,922	91\%
\cdots	Grunter	Striped Grunter	Terapontidae - undifferentiated	0	0	585	236	585	236	100\%
$\underset{D}{B}$	Grunter Bream	Painted Sweetlips	Diagramma labiosum	733	176	1,017	280	1,749	365	58\%
$\stackrel{\sim}{0}$	Grunter Bream	Barred Javelin	Pomadasys kaakan	276	95	743	293	1,019	360	73\%
\square	Grunter Bream	Blotched Javelin	Pomadasys maculatus	60	40	210	147	270	154	78\%
D	Grunter Bream	Grunter Bream	Haemulidae - undifferentiated	0	0	53	37	53	37	100\%
0	Gurnard	Bighead Gurnard Perch	Neosebastes pandus	401	172	2,465	623	2,866	656	86\%
0.	Gurnard	Gurnard	Neosebastidae - undifferentiated	320	101	3,715	776	4,035	790	92\%
ص	Jewfish	Black Jewfish	Protonibea diacanthus	227	62	769	293	996	312	77\%
Z	Jewfish	Mulloway	Argyrosomus japonicus	709	223	1,164	352	1,873	507	62\%
N	King Snapper	Goldband Snapper	Pristipomoides multidens	3,716	973	1,014	745	4,729	1,566	21\%
-	King Snapper	Rosy Snapper	Pristipomoides filamentosus	253	158	13	12	266	169	5\%
	King Snapper	Sharptooth Snapper	Pristipomoides typus	282	242	66	63	348	250	19\%

Reporting Group	Common Name
Leatherjacket	Horseshoe Leatherjacket
Leatherjacket	Sixspine Leatherjacket
Leatherjacket	Leatherjacket
Lizardfish	Lizardfish Grinners
Longtom	Longtom
Mackerel	Blue Mackerel
Mackerel	Grey Mackerel
Mackerel	School Mackerel
Mackerel	Shark Mackerel
Mackerel	Spanish Mackerel
Mackerel	Spotted Mackerel
Mackerel	Wahoo
Mackerel	Other Mackerel \& Tuna
Mahi Mahi	Mahi Mahi
Morwong	Blue Morwong
Morwong	Dusky Morwong
Mullet	Bluetail Mullet
Mullet	Greenback Mullet
Mullet	Sea Mullet
Mullet	Yelloweye Mullet
Mullet	Other Mullet
Pearl Perch	Sergeant Baker
Pearl Perch	Nusthern Pearl Perch
Pike	West Australian Dhufish
Pike	Great Barracuda
Pike	Snook
Pike	Yellowtail Barracuda
Queenfish	Quer Pike
Redfish	Sight Redfish
Redfish	Sedloweye Redfish
Redfish	Salmon Herring

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Meuschenia hippocrepis	415	141	869	254	1,284	321	68\%
Meuschenia freycineti	66	42	186	61	252	83	74\%
Monacanthidae - undifferentiated	538	156	2,759	657	3,297	680	84\%
Bathysauridae, Synodontidae - undiff	449	214	1,181	728	1,629	823	72\%
Belonidae - undifferentiated	0	0	210	119	210	119	100\%
Scomber australasicus	77	74	810	708	887	782	91\%
Scomberomorus semifasciatus	98	68	132	64	230	118	57\%
Scomberomorus queenslandicus	1,853	569	2,597	1,598	4,449	2,104	58\%
Grammatorcynus bicarinatus	470	98	998	335	1,468	358	68\%
Scomberomorus commerson	4,788	503	3,515	654	8,303	1,000	42\%
Scomberomorus munroi	351	124	303	111	654	190	46\%
Acanthocybium solandri	226	94	60	40	287	109	21\%
Scombridae - undifferentiated	500	127	258	115	758	182	34\%
Coryphaena spp.	463	141	72	40	535	158	13\%
Nemadactylus valenciennesi	5,308	769	907	241	6,214	826	15\%
Dactylophora nigricans	49	34	0	0	49	34	0\%
Valamugil buchanani	208	167	0	0	208	167	0\%
Liza subviridis	68	58	0	0	68	58	0\%
Mugil cephalus	3,969	1,479	245	150	4,214	1,487	6\%
Aldrichetta forsteri	7,292	6,061	0	0	7,292	6,061	0\%
Mugilidae - undifferentiated	2,801	2,163	378	201	3,179	2,202	12\%
Glaucosoma buergeri	681	207	540	179	1,221	296	44\%
Glaucosoma hebraicum	23,818	1,640	51,164	4,159	74,981	5,563	68\%
Sphyraena barracuda	8	7	708	235	716	235	99\%
Sphyraena novaehollandiae	1,820	574	1,381	638	3,200	947	43\%
Sphyraena obtusata	774	257	584	196	1,358	328	43\%
Sphyraenidae - undifferentiated	335	106	38	37	374	113	10\%
Scomberoides spp.	202	73	1,653	501	1,855	546	89\%
Centroberyx gerrardi	11,592	1,535	6,634	1,655	18,226	2,809	36\%
Centroberyx lineatus	2,402	693	1,274	359	3,675	1,010	35\%
Centroberyx australis	0	0	10	9	10	9	100\%
Arripis georgianus	104,468	12,573	28,376	5,141	132,844	15,309	21\%
Arripis truttaceus	4,568	733	17,287	3,767	21,855	4,167	79\%
Latropiscis purpurissatus	2,784	684	5,364	708	8,148	1,135	66\%
Clupeidae, Pristigasteridae - undiff	793	634	303	156	1,097	653	28\%

딩	Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
	Sweep	Banded Sweep	Scorpis georgiana	803	268	1,252	280	2,055	403	61\%
	Sweep	Sea Sweep	Scorpis aequipinnis	2,069	356	1,089	345	3,157	509	34\%
	Tailor	Tailor	Pomatomus saltatrix	8,215	1,626	5,668	1,223	13,883	2,498	41\%
	Threadfin	Blue Threadfin	Eleutheronema tetradactylum	2,061	424	1,228	334	3,289	632	37\%
	Threadfin	King Threadfin	Polydactylus macrochir	1,501	525	876	284	2,376	785	37\%
	Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	96	49	7	7	103	50	7\%
	Threadfin Bream	Western Butterfish	Pentapodus vitta	6,660	1,775	21,454	5,799	28,114	6,593	76\%
	Trevalla	Blue-Eye Trevalla	Hyperoglyphe antarctica	163	94	4	4	168	94	3\%
	Trevally	Amberjack	Seriola dumerili	102	73	516	266	618	285	83\%
	Trevally	Bludger Trevally	Carangoides gymnostethus	602	185	1,976	561	2,579	663	77\%
	Trevally	Common Dart	Trachinotus botla	39	26	96	56	135	72	71\%
	Trevally	Giant Trevally	Caranx ignobilis	571	249	1,842	438	2,413	511	76\%
	Trevally	Golden Trevally	Gnathanodon speciosus	1,205	186	2,825	498	4,030	588	70\%
T!	Trevally	Rainbow Runner	Elagatis bipinnulata	27	25	91	59	118	73	77\%
$\stackrel{\square}{\square}$	Trevally	Samsonfish	Seriola hippos	1,962	258	10,533	1,876	12,495	1,971	84\%
O.	Trevally	Silver Trevally	Pseudocaranx spp. complex	32,776	3,850	28,111	6,539	60,887	9,288	46\%
\%	Trevally	Turrum	Carangoides fulvoguttatus	77	55	129	74	206	93	63\%
\%	Trevally	Yellowtail Kingfish	Seriola lalandi	1,167	261	938	266	2,105	454	45\%
¢	Trevally	Yellowtail Scad	Trachurus novaezelandiae	1,176	614	822	347	1,998	923	41\%
0	Trevally	Other Trevally	Carangidae - undifferentiated	1,464	757	1,964	912	3,428	1,628	57\%
$\stackrel{\square}{5}$	Tripletail	Tripletail	Lobotes surinamensis	101	36	45	29	146	51	31\%
,	Tropical Snapper	Brownstripe Snapper	Lutjanus vitta	27	17	410	356	437	370	94\%
\bigcirc	Tropical Snapper	Chinamanfish	Symphorus nematophorus	301	101	572	279	873	301	66\%
$\stackrel{7}{8}$	Tropical Snapper	Crimson Snapper	Lutjanus erythropterus	1,065	203	1,743	455	2,808	586	62\%
\sum_{0}	Tropical Snapper	Darktail Snapper	Lutjanus lemniscatus	94	47	98	55	192	80	51\%
$\stackrel{\sim}{0}$	Tropical Snapper	Flame Snapper	Etelis coruscans	0	0	19	19	19	19	100\%
9	Tropical Snapper	Golden Snapper	Lutjanus johnii	2,133	575	2,403	699	4,535	1,221	53\%
D	Tropical Snapper	Mangrove Jack	Lutjanus argentimaculatus	2,336	437	2,754	620	5,090	929	54\%
尔	Tropical Snapper	Moses' Snapper	Lutjanus russellii	344	91	962	513	1,307	551	74\%
\%	Tropical Snapper	Red Emperor	Lutjanus sebae	5,831	908	6,098	1,310	11,929	2,023	51\%
\because	Tropical Snapper	Ruby Snapper	Etelis carbunculus	1,067	322	93	43	1,159	357	8\%
3	Tropical Snapper	Saddletail Snapper	Lutjanus malabaricus	781	210	886	550	1,667	641	53\%
N	Tropical Snapper	Stripey Snapper	Lutjanus carponotatus	4,965	1,321	12,063	2,297	17,028	3,329	71\%
\bigcirc	Tropical Snapper	Other Snapper	Lutjanidae - undifferentiated	264	106	357	117	621	176	57\%
	Tuna	Dogtooth Tuna	Gymnosarda unicolor	0	0	30	19	30	19	100\%

Reporting Group	Common Name
Tuna	Longtail Tuna
Tuna	Mackerel Tuna
Tuna	Skipjack Tuna
Tuna	Southern Bluefin Tuna
Tuna	Yellowfin Tuna
Tuskfish Wrasse	Baldchin Groper
Tuskfish Wrasse	Blackspot Tuskfish
Tuskfish Wrasse	Blue Tuskfish
Tuskfish Wrasse	Bluebarred Parrotfish
Tuskfish Wrasse	Bluespotted Tuskfish
Tuskfish Wrasse	Brownspotted Wrasse
Tuskfish Wrasse	Foxfish
Tuskfish Wrasse	Goldspot Pigfish
Tuskfish Wrasse	Humphead Maori Wrasse
Tuskfish Wrasse	Purple Tuskfish
Tuskfish Wrasse	Southern Maori Wrasse
Tuskfish Wrasse	Western Blue Groper
Tuskfish Wrasse	Western King Wrasse
Tuskfish Wrasse	Other Parrotfish
Tuskfish Wrasse	Other Tuskfish
Tuskfish Wrasse	Other Wrasse
Western Blue Devil	Western Blue Devil
Whiting	Goldenline Whiting
Whiting	King George Whiting
Whiting	School Whiting
Whiting	Western Trumpeter Whiting
Whiting	Other Whiting
Wreckfish	Bass Groper
Wreckfish	Hapuku
Finfish Other	Archerfishes
Finfish Other	Butterfish
Finfish Other	Dory
Finfish Other	Conger Eel
Finfish Other	Other Eel
Finfish Other	Moonfish Batfish

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Thunnus tonggol	484	137	482	177	966	235	50\%
Euthynnus affinis	583	139	858	245	1,441	307	60\%
Katsuwonus pelamis	629	280	192	108	822	305	23\%
Thunnus maccoyii	2,009	344	524	159	2,533	442	21\%
Thunnus albacares	442	101	714	504	1,156	566	62\%
Choerodon rubescens	16,612	1,537	12,167	1,831	28,780	2,893	42\%
Choerodon schoenleinii	1,584	313	2,585	689	4,170	827	62\%
Choerodon cyanodus	1,563	321	2,815	756	4,378	934	64\%
Scarus ghobban spp. complex	675	318	1,875	507	2,551	620	74\%
Choerodon cauteroma	6	6	83	53	89	53	93\%
Notolabrus parilus	4,431	1,180	14,269	1,688	18,700	2,183	76\%
Bodianus frenchii	1,777	300	1,303	341	3,080	586	42\%
Bodianus perditio	42	21	0	0	42	21	0\%
Cheilinus undulatus	37	36	18	18	55	53	33\%
Choerodon cephalotes	183	74	939	607	1,122	618	84\%
Ophthalmolepis lineolatus	1,110	394	4,994	992	6,104	1,142	82\%
Achoerodus gouldii	590	186	53	22	644	190	8\%
Coris auricularis	6,317	1,300	29,917	3,385	36,235	3,820	83\%
Scaridae - undifferentiated	778	552	1,752	637	2,531	844	69\%
Choerodon spp.	167	61	5	5	173	61	3\%
Labridae - undifferentiated	725	484	2,777	768	3,502	913	79\%
Paraplesiops sinclairi	101	59	669	212	770	234	87\%
Sillago analis	178	106	199	144	377	243	53\%
Sillaginodes punctata	35,820	4,665	11,743	2,477	47,563	6,367	25\%
Sillago schomburgkii, bassensis \& vittata	173,989	24,811	56,063	18,445	230,052	39,348	24\%
Sillago burrus	500	250	3,555	1,025	4,055	1,064	88\%
Sillaginidae - undifferentiated	74	72	141	105	215	143	65\%
Polyprion americanus	26	15	17	11	43	21	40\%
Polyprion oxygeneios	310	113	37	34	347	124	11\%
Toxotidae - undifferentiated	0	0	25	21	25	21	100\%
Stromateidae - undifferentiated	0	0	611	281	611	281	100\%
Zeidae - undifferentiated	32	22	13	12	45	25	29\%
Congridae, Colocongridae - undiff	0	0	96	77	96	77	100\%
Order Anguilliformes - undifferentiated	0	0	196	86	196	86	100\%
Ephippidae, Drepaneidae - undifferentiated	40	28	147	70	187	75	79\%

Reporting Group	Common Name
Finfish Other	Silver Toadfish
Finfish Other	Weeping Toadfish
Finfish Other	Other Toadfish
Finfish Other	Other Boxfish
Finfish Other	Other Boarfish

Scientific Name
Lagocephalus sceleratus
Torquigener pleurogramma
Tetraodontidae - undifferentiated Ostraciidae - undifferentiated

Pentacerotidae - undifferentiated

Kept
Released
2,940
1,798

1,798
10,656
3,108
37
0

Total	se	\% Rel
2,940	594	100%
1,798	473	100%
10,694	3,110	100%
$\mathbf{4 7}$	38	82%
$\mathbf{5 1}$	$\mathbf{2 9}$	0%

Table 6. Summary of release rates for selected species during 2015/16 by RFBL holders aged five years or older.

0 to 24\%	25 to 39\%	40 to 59\%	60 to 74\%	75 to 89\%	90 to 100\%
Squid	King George Whiting	Tailor	Mackerel Tuna	Pink Snapper	Western Striped Grunter
Blue Morwong	Cuttlefish	Breaksea Cod	Banded Sweep	Blackspotted Rockcod	Gurnard
Octopus	Cobia	Baldchin Groper	Spangled Emperor	Brownspotted Wrasse	Sea Trumpeter
Harlequin Fish	Rankin Cod	Foxfish	Yellowfin Tuna	Western Butterfish	Port Jackson Shark
Southern Bluefin Tuna	Sea Sweep	Spanish Mackerel	Grass Emperor	Giant Trevally	Giant Sea Catfish
Australian Herring	Swallowtail	Yellowtail Barracuda	Blackspot Tuskfish	Bludger Trevally	
Goldband Snapper	Western Rock Lobster	Snook	Crimson Snapper	Bluespotted Goatfish	
School Whiting	Bight Redfish	Northern Pearl Perch	Mulloway	Western Australian Salmon	
	King Threadfin	Gummy Sharks	Blue Tuskfish	Tarwhine	
	Blue Threadfin	Yellowtail Kingfish	Green Mud Crab	Southern Maori Wrasse	
		Silver Trevally	Sergeant Baker	Yellowtail Flathead	
		Coral Trout	Redthroat Emperor	Western King Wrasse	
		Brown Mud Crab	Shark Mackerel	Leatherjacket	
		Red Emperor	West Australian Dhufish	Samsonfish	
		Goldspotted Rockcod	Chinaman Rockcod	Dusky Whaler	
		Golden Snapper	Golden Trevally	Blacktip Reef Shark	
		Mangrove Jack	Barramundi	Sthn Bluespotted Flathead	
		Painted Sweetlips	Stripey Snapper	Bighead Gurnard Perch	
		School Mackerel	Blue Swimmer Crab	Queenfish	
			Bronze Whaler		
			Bluebarred Parrottish		
			Black Bream		

Table 7. Proportion released by specified reasons during 2015/16 by RFBL holders aged five years or older (values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
Abalone	Roe's Abalone	Haliotis roei	0\%	100\%	0\%	0\%	0\%	0\%
Cephalopod	Cuttlefish	Sepia spp.	18\%	5\%	41\%	0\%	0\%	36\%
Cephalopod	Octopus	Octopodidae - undifferentiated	19\%	7\%	38\%	0\%	0\%	37\%
Cephalopod	Squid	Order Teuthoidea - undifferentiated	54\%	9\%	24\%	7\%	3\%	2\%
Lobster	Western Rock Lobster	Panulirus cygnus	1\%	67\%	2\%	9\%	0\%	21\%
Lobster	Southern Rock Lobster	Jasus edwardsii	0\%	100\%	0\%	0\%	0\%	0\%
Lobster	Painted Rock Lobster	Panulirus versicolor	2\%	27\%	2\%	0\%	0\%	68\%
Lobster	Ornate Rock Lobster	Panulirus ornatus	0\%	0\%	0\%	0\%	0\%	100\%
Crab	Blue Swimmer Crab	Portunus armatus	3\%	88\%	1\%	0\%	0\%	9\%
Crab	Green Mud Crab	Scylla serrata	11\%	83\%	5\%	0\%	0\%	1\%
Crab	Brown Mud Crab	Scylla olivacea	1\%	89\%	0\%	1\%	0\%	9\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	5\%	8\%	39\%	0\%	15\%	34\%
Sharks	Bronze Whaler	Carcharhinus brachyurus	2\%	2\%	35\%	6\%	28\%	27\%
Sharks	Dusky Whaler	Carcharhinus obscurus	0\%	0\%	23\%	0\%	14\%	62\%
Sharks	Greynurse Shark	Carcharias taurus	0\%	0\%	70\%	0\%	0\%	30\%
Sharks	Gummy Sharks	Mustelus antarcticus \& stevensi	36\%	0\%	24\%	0\%	26\%	15\%
Sharks	Hammerhead Shark	Sphyrnidae - undifferentiated	0\%	12\%	60\%	0\%	8\%	20\%
Sharks	Lemon Shark	Negaprion acutidens	0\%	0\%	31\%	0\%	47\%	22\%
Sharks	Port Jackson Shark	Heterodontus portusjacksoni	0\%	0\%	49\%	0\%	12\%	39\%
Sharks	Sandbar Shark	Carcharhinus plumbeus	0\%	0\%	88\%	0\%	12\%	0\%
Sharks	Tiger Shark	Galeocerdo cuvier	0\%	0\%	34\%	0\%	0\%	66\%
Sharks	Whiskery Shark	Furgaleus macki	0\%	0\%	71\%	0\%	10\%	19\%
Sharks	Whitetip Reef Shark	Triaenodon obesus	48\%	0\%	32\%	0\%	3\%	17\%
Sharks	Wobbegong	Orectolobidae - undifferentiated	9\%	5\%	43\%	0\%	0\%	43\%
Sharks	Other Whaler	Carcharhinidae, Hemigaleidae - undiff	9\%	0\%	91\%	0\%	0\%	0\%
Sharks	Other Shark	Sharks - undifferentiated	4\%	2\%	24\%	0\%	14\%	56\%
Rays	Sawfishes	Pristidae - undifferentiated	0\%	0\%	18\%	0\%	0\%	82\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	0\%	0\%	68\%	0\%	0\%	32\%
Rays	Other Rays Skates	Order Rajiformes - undifferentiated	4\%	3\%	27\%	0\%	1\%	65\%
Billfish	Black Marlin	Makaira indica	0\%	0\%	0\%	0\%	59\%	41\%
Billfish	Blue Marlin	Makaira nigricans	0\%	36\%	0\%	0\%	24\%	40\%
Billfish	Sailfish	Istiophorus platypterus	12\%	20\%	2\%	0\%	38\%	28\%

Reporting Group	Common Name
Billfish	Striped Marlin
Bonito	Bonito
Bonito	Oriental Bonito
Bream	Black Bream
Bream	Frypan Bream
Bream	Northwest Black Bream
Bream	Pink Snapper
Bream	Tarwhine
Bream	Western Yellowfin Bream
Bream	Other Bream
Catfish	Eeltail Catfishes
Catfish	Estuary Cobbler
Catfish	Giant Sea Catfish
Catfish	Silver Cobbler
Catfish	Other Catfish
Cobia	Cobia
Cod	Barramundi Cod
Cod	Blackspotted Rockcod
Cod	Blacktip Rockcod
Cod	Breaksea Cod
Cod	Chinaman Rockcod
Cod	Eightbar Grouper
Cod	Frostback Rockcod
Cod	Goldspotted Rockcod
Cod	Harlequin Fish
Cod	Potato Rockcod
Cod	Queensland Grouper
Cod	Rankin Cod
Cod	Temperate Basses \& Rockcods
Cod	Tomato Rockcod
Cod	Yellowspotted Rockcod
Coral Trout	Coral Trout
Coral Trout	Yellowedge Coronation Trout
Emperor	Bluespotted Emperor

Scientific Name	Too	Under	Too	Over		
Limit						Catch
---:	:---	---:	---:			
Release	\quad Other					

תু	Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
	Emperor	Grass Emperor	Lethrinus laticaudis	9\％	68\％	6\％	12\％	2\％	4\％
	Emperor	Longnose Emperor	Lethrinus olivaceus	44\％	37\％	15\％	0\％	0\％	4\％
	Emperor	Redspot Emperor	Lethrinus lentjan	0\％	100\％	0\％	0\％	0\％	0\％
	Emperor	Redthroat Emperor	Lethrinus miniatus	22\％	30\％	17\％	15\％	3\％	13\％
	Emperor	Robinsons＇Seabream	Gymnocranius grandoculis	6\％	86\％	8\％	0\％	0\％	0\％
	Emperor	Spangled Emperor	Lethrinus nebulosus	10\％	56\％	11\％	12\％	2\％	8\％
	Emperor	Yellowtail Emperor	Lethrinus atkinsoni	0\％	70\％	22\％	0\％	9\％	0\％
	Emperor	Other Emperor	Lethrinidae－undifferentiated	5\％	67\％	0\％	0\％	1\％	27\％
	Flathead	Northern Sand Flathead	Platycephalus endrachtensis	0\％	59\％	4\％	0\％	37\％	0\％
	Flathead	Southern Bluespotted Flathead	Platycephalus speculator	16\％	61\％	14\％	0\％	0\％	8\％
	Flathead	Yellowtail Flathead	Platycephalus westraliae	7\％	31\％	56\％	0\％	3\％	4\％
	Flounder	Smalltooth Flounder	Pseudorhombus jenynsii	0\％	34\％	39\％	0\％	27\％	0\％
T	Flounder	Other Flatfish	Bothidae，Psettodidae \＆Pleuronectidae	0\％	44\％	56\％	0\％	0\％	0\％
$\stackrel{\square}{\square}$	Garfish	Southern Garfish	Hyporhamphus melanochir	92\％	4\％	0\％	0\％	0\％	4\％
合．	Garfish	Three－by－two Garfish	Hemiramphus robustus	0\％	100\％	0\％	0\％	0\％	0\％
冎	Garfish	Other Garfish	Hemiramphidae－undifferentiated	0\％	0\％	39\％	0\％	0\％	61\％
完	Giant Perch	Barramundi	Lates calcarifer	4\％	35\％	10\％	6\％	14\％	33\％
D	Giant Perch	Sand Bass	Psammoperca waigiensis	0\％	0\％	100\％	0\％	0\％	0\％
登	Goatfish	Bluespotted Goatfish	Upeneichthys vlamingii	28\％	7\％	31\％	3\％	4\％	28\％
$\stackrel{\sim}{\sim}$	Grunter	Sea Trumpeter	Pelsartia humeralis	3\％	2\％	6\％	0\％	2\％	87\％
To	Grunter	Western Sooty Grunter	Hephaestus jenkinsi	20\％	66\％	1\％	0\％	5\％	8\％
\bigcirc	Grunter	Western Striped Grunter	Pelates octolineatus	0\％	15\％	31\％	0\％	5\％	49\％
\cdots	Grunter	Striped Grunter	Terapontidae－undifferentiated	20\％	0\％	7\％	0\％	0\％	74\％
\sum_{0}^{∞}	Grunter Bream	Painted Sweetlips	Diagramma labiosum	10\％	60\％	18\％	0\％	1\％	11\％
0	Grunter Bream	Barred Javelin	Pomadasys kaakan	14\％	61\％	23\％	0\％	2\％	0\％
$\stackrel{0}{\square}$	Grunter Bream	Blotched Javelin	Pomadasys maculatus	13\％	0\％	17\％	0\％	0\％	70\％
D	Grunter Bream	Grunter Bream	Haemulidae－undifferentiated	46\％	54\％	0\％	0\％	0\％	0\％
\％	Gurnard	Bighead Gurnard Perch	Neosebastes pandus	5\％	14\％	12\％	0\％	0\％	69\％
E	Gurnard	Gurnard	Neosebastidae－undifferentiated	4\％	24\％	15\％	0\％	1\％	55\％
気	Jewfish	Black Jewfish	Protonibea diacanthus	15\％	37\％	44\％	0\％	3\％	1\％
Z	Jewfish	Mulloway	Argyrosomus japonicus	6\％	54\％	12\％	0\％	25\％	4\％
\bigcirc	King Snapper	Goldband Snapper	Pristipomoides multidens	80\％	5\％	1\％	1\％	6\％	7\％
$\begin{aligned} & N \\ & 0 \\ & \hline 1 \end{aligned}$	King Snapper	Rosy Snapper	Pristipomoides filamentosus	0\％	0\％	0\％	100\％	0\％	0\％
	King Snapper	Sharptooth Snapper	Pristipomoides typus	0\％	100\％	0\％	0\％	0\％	0\％

ત	Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
	Threadfin	Blue Threadfin	Eleutheronema tetradactylum	14\％	39\％	37\％	3\％	0\％	7\％
	Threadfin	King Threadfin	Polydactylus macrochir	11\％	33\％	9\％	35\％	0\％	13\％
	Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	0\％	100\％	0\％	0\％	0\％	0\％
	Threadfin Bream	Western Butterfish	Pentapodus vitta	15\％	6\％	35\％	0\％	6\％	37\％
	Trevalla	Blue－Eye Trevalla	Hyperoglyphe antarctica	0\％	0\％	100\％	0\％	0\％	0\％
	Trevally	Amberjack	Seriola dumerili	57\％	18\％	14\％	0\％	0\％	10\％
	Trevally	Bludger Trevally	Carangoides gymnostethus	16\％	21\％	40\％	0\％	3\％	20\％
	Trevally	Common Dart	Trachinotus botla	0\％	60\％	0\％	0\％	0\％	40\％
	Trevally	Giant Trevally	Caranx ignobilis	18\％	36\％	5\％	3\％	27\％	12\％
	Trevally	Golden Trevally	Gnathanodon speciosus	11\％	24\％	25\％	0\％	29\％	10\％
	Trevally	Rainbow Runner	Elagatis bipinnulata	0\％	6\％	0\％	30\％	0\％	65\％
	Trevally	Samsonfish	Seriola hippos	2\％	16\％	18\％	5\％	24\％	34\％
T	Trevally	Silver Trevally	Pseudocaranx spp．complex	21\％	34\％	35\％	2\％	5\％	3\％
$\stackrel{1}{6}$	Trevally	Turrum	Carangoides fulvoguttatus	18\％	25\％	0\％	0\％	0\％	56\％
合．	Trevally	Yellowtail Kingfish	Seriola lalandi	10\％	41\％	35\％	0\％	12\％	3\％
B	Trevally	Yellowtail Scad	Trachurus novaezelandiae	33\％	0\％	39\％	0\％	0\％	28\％
\％	Trevally	Other Trevally	Carangidae－undifferentiated	6\％	16\％	44\％	13\％	0\％	21\％
D	Tripletail	Tripletail	Lobotes surinamensis	43\％	0\％	57\％	0\％	0\％	0\％
禁	Tropical Snapper	Brownstripe Snapper	Lutjanus vitta	0\％	80\％	0\％	0\％	0\％	20\％
－	Tropical Snapper	Chinamanfish	Symphorus nematophorus	18\％	8\％	56\％	9\％	9\％	0\％
\％	Tropical Snapper	Crimson Snapper	Lutjanus erythropterus	21\％	42\％	23\％	2\％	3\％	8\％
\bigcirc	Tropical Snapper	Darktail Snapper	Lutjanus lemniscatus	45\％	0\％	55\％	0\％	0\％	0\％
$\stackrel{7}{7}$	Tropical Snapper	Flame Snapper	Etelis coruscans	0\％	100\％	0\％	0\％	0\％	0\％
\sum	Tropical Snapper	Golden Snapper	Lutjanus johnii	41\％	33\％	18\％	4\％	3\％	1\％
O	Tropical Snapper	Mangrove Jack	Lutjanus argentimaculatus	5\％	45\％	13\％	5\％	27\％	5\％
辺	Tropical Snapper	Moses＇Snapper	Lutjanus russellii	28\％	29\％	40\％	0\％	2\％	0\％
D	Tropical Snapper	Red Emperor	Lutjanus sebae	18\％	60\％	13\％	6\％	2\％	1\％
5	Tropical Snapper	Ruby Snapper	Etelis carbunculus	0\％	32\％	0\％	26\％	0\％	41\％
\％	Tropical Snapper	Saddletail Snapper	Lutjanus malabaricus	64\％	31\％	0\％	3\％	2\％	0\％
気	Tropical Snapper	Stripey Snapper	Lutjanus carponotatus	10\％	52\％	14\％	1\％	9\％	13\％
Z	Tropical Snapper	Other Snapper	Lutjanidae－undifferentiated	23\％	49\％	21\％	0\％	0\％	8\％
－	Tuna	Dogtooth Tuna	Gymnosarda unicolor	0\％	0\％	55\％	0\％	0\％	45\％
N	Tuna	Longtail Tuna	Thunnus tonggol	8\％	28\％	16\％	0\％	48\％	0\％
\checkmark	Tuna	Mackerel Tuna	Euthynnus affinis	4\％	5\％	19\％	17\％	21\％	33\％

Reporting Group	Common Name
Tuna	Skipjack Tuna
Tuna	Southern Bluefin Tuna
Tuna	Yellowfin Tuna
Tuskfish Wrasse	Baldchin Groper
Tuskfish Wrasse	Blackspot Tuskfish
Tuskfish Wrasse	Blue Tuskfish
Tuskfish Wrasse	Bluebarred Parrotfish
Tuskfish Wrasse	Bluespotted Tuskfish
Tuskfish Wrasse	Brownspotted Wrasse
Tuskfish Wrasse	Foxfish
Tuskfish Wrasse	Humphead Maori Wrasse
Tuskfish Wrasse	Purple Tuskfish
Tuskfish Wrasse	Southern Maori Wrasse
Tuskfish Wrasse	Western Blue Groper
Tuskfish Wrasse	Western King Wrasse
Tuskfish Wrasse	Other Parrotfish
Tuskfish Wrasse	Other Tuskfish
Tuskfish Wrasse	Other Wrasse
Western Blue Devil	Western Blue Devil
Whiting	Goldenline Whiting
Whiting	King George Whiting
Whiting	School Whiting
Whiting	Western Trumpeter Whiting
Whiting	Other Whiting
Wreckfish	Bass Groper
Wreckfish	Hapuku
Finfish Other	Archerfishes
Finfish Other	Butterfish
Finfish Other	Dory
Finfish Other	Conger Eel
Finfish Other	Other Eel
Finfish Other	Moonfish Batfish
Finfish Other	Silver Toadfish
Finfish Other	Weeping Toadfish

Scientific Name
Katsuwonus pelamis
Thunnus maccoyii
Thunnus albacares
Choerodon rubescens
Choerodon schoenleinii
Choerodon cyanodus
Scarus ghobban spp. complex
Choerodon cauteroma
Notolabrus parilus
Bodianus frenchii
Cheilinus undulatus
Choerodon cephalotes
Ophthalmolepis lineolatus
Achoerodus gouldii
Coris auricularis
Scaridae - undifferentiated
Choerodon spp.
Labridae - undifferentiated
Paraplesiops sinclairi
Sillago analis
Sillaginodes punctata
Sillago schomburgkii, bassensis \& vittata
Sillago burrus
Sillaginidae - undifferentiated
Polyprion americanus
Polyprion oxygeneios
Toxotidae - undifferentiated
Stromateidae - undifferentiated
Congridae, Colocongridae - undiff
Ephippidae, Drepaneidae - undifferentiated
Lagocephalus sceleratus pleurogramma
Torquigerentiated
Chillormes - undifferentiated
Cha
Cher

Too Small	Under Size	Too Many	Over Limit	Catch Release	Other
0\%	50\%	10\%	0\%	0\%	40\%
38\%	28\%	14\%	4\%	14\%	2\%
7\%	34\%	44\%	0\%	12\%	3\%
10\%	76\%	6\%	7\%	1\%	0\%
28\%	52\%	15\%	4\%	2\%	1\%
8\%	67\%	5\%	17\%	0\%	3\%
7\%	15\%	31\%	0\%	0\%	47\%
40\%	4\%	0\%	0\%	57\%	0\%
11\%	6\%	20\%	0\%	4\%	59\%
10\%	36\%	24\%	17\%	1\%	13\%
0\%	0\%	0\%	0\%	0\%	100\%
10\%	79\%	4\%	0\%	3\%	5\%
7\%	21\%	14\%	0\%	3\%	55\%
41\%	44\%	0\%	15\%	0\%	0\%
8\%	4\%	24\%	0\%	4\%	60\%
0\%	0\%	10\%	0\%	0\%	90\%
100\%	0\%	0\%	0\%	0\%	0\%
2\%	6\%	14\%	0\%	0\%	79\%
6\%	3\%	22\%	0\%	20\%	50\%
74\%	0\%	26\%	0\%	0\%	0\%
19\%	66\%	8\%	3\%	4\%	0\%
44\%	44\%	8\%	0\%	1\%	2\%
14\%	47\%	2\%	0\%	11\%	26\%
5\%	21\%	0\%	0\%	0\%	74\%
39\%	0\%	0\%	0\%	0\%	61\%
0\%	100\%	0\%	0\%	0\%	0\%
0\%	0\%	0\%	0\%	0\%	100\%
0\%	0\%	0\%	0\%	2\%	98\%
0\%	100\%	0\%	0\%	0\%	0\%
100\%	0\%	0\%	0\%	0\%	0\%
7\%	0\%	20\%	0\%	0\%	74\%
39\%	7\%	54\%	0\%	0\%	0\%
0\%	1\%	0\%	1\%	0\%	98\%
0\%	0\%	0\%	0\%	0\%	100\%

Reporting Group	Common Name	Scientific Name	Too Small	Under Size	Too Many	Over Limit	$\begin{aligned} & \text { Catch } \\ & \text { Release } \end{aligned}$	Other
Finfish Other	Other Toadfish	Tetraodontidae - undifferentiated	1\%	0\%	1\%	0\%	4\%	94\%
Finfish Other	Other Boxfish	Ostraciidae - undifferentiated	0\%	0\%	0\%	0\%	0\%	100\%

6 Estimates of Catch for Key Species

This section presents estimates of boat-based recreational catch (kept, released and total, by number) for the 12-months from September 2015 to August 2016. Estimates are summarised by habitat, fishing method and month for key species.

Summaries are provided by bioregion, habitat, fishing method and season for priority species identified on the basis of reported catches and importance for management. Key Species have been allocated to habitat types according to the Resource Assessment Framework (RAF) (Department of Fisheries 2011). However, the following RAF indicator species were caught in low numbers and are not included in this section: Blue-eye Trevalla (Hyperoglyphe antarctica); Perth Herring (Nematalosa vlaminghi); Pilchard (Sardinops sagax); Sandbar Shark (Carcharhinus plumbeus); Western Blue Groper (Achoerodus gouldii); Whiskery Shark (Furgaleus macki); Whitebait (Hyperlophus vittatus); and Silver Cobbler (Neoarius midgleyi).

Estimates of recreational catch for key species are presented by habitat type. This includes:

- 5 species/taxa for estuarine; Barramundi (Lates calcarifer), Black Bream (Acanthopagrus butcheri), Estuary Cobbler (Cnidoglanis macrocephalus), Yellowtail Flathead (Platycephalus westraliae), and Southern Bluespotted Flathead (Platycephalus speculator).
- 17 species/taxa for nearshore; Australian Herring (Arripis georgianus), Western Australian Salmon (Arripis truttaceus), Garfish (Hyporhamphus melanochir and Hemiramphus robustus), Sea Mullet (Mugil cephalus), Tailor (Pomatomus saltatrix), Blue Threadfin (Eleutheronema tetradactylum), King Threadfin (Polydactylus macrochir), King George Whiting (Sillaginodes punctata), School Whiting (Sillago bassensis, vittata and schomburgkii), Western Trumpeter Whiting (Sillago burrus), Mangrove Jack (Lutjanus argentimaculatus), Silver Trevally (Pseudocaranx spp. complex), Western Butterfish (Pentapodus vitta), Western Yellowfin Bream (Acanthopagrus morrisoni), Western King Wrasse (Coris auricularis), Brownspotted Wrasse (Notolabrus parilus) and Yellowtail Scad (Trachurus novaezelandiae).
- 17 species/taxa for inshore demersal; Baldchin Groper (Choerodon rubescens), Bight Redfish (Centroberyx gerrardi), Blue Morwong (Nemadactylus valenciennesi), Bluespotted Emperor (Lethrinus punctulatus), Brownstripe Snapper (Lutjanus vitta), Goldband Snapper (Pristipomoides multidens), Pink Snapper (Chrysophrys auratus), Rankin Cod (Epinephelus multinotatus), Red Emperor (Lutjanus sebae), Spangled Emperor (Lethrinus nebulosus), West Australian Dhufish (Glaucosoma hebraicum), Barcheek Coral Trout (Plectropomus maculatus), Common Coral Trout (Plectropomus leopardus), Breaksea Cod (Epinephelides armatus), Grass Emperor (Lethrinus laticaudis), Redthroat Emperor (Lethrinus miniatus) and Stripey Snapper (Lutjanus carponotatus).
- 3 species/taxa for offshore demersal; Eightbar Grouper (Hyporthodus octofasciatus), Hapuku (Polyprion oxygeneios) and Ruby Snapper (Etelis carbunculus)
- 6 species/taxa for pelagic; Spanish Mackerel (Scomberomorus commerson), Samsonfish (Seriola hippos), Grey Mackerel (Scomberomorus semifasciatus), Blue Mackerel (Scomber australasicus), Billfish and Southern Bluefin Tuna (Thunnus maccoyii).
- 4 species/taxa for sharks; Whaler Sharks (Family Carcharhinidae), Gummy Sharks (Mustelus antarcticus and M. stevensi), Port Jackson Shark (Heterodontus portusjacksoni) and Wobbegong (Family Orectolobidae).
- 3 species/taxa for crustaceans; Western Rock Lobster (Panulirus cygnus), Mud Crab (Scylla olivacea and S. serrata) and Blue Swimmer Crab (Portunus armatus).
- 1 species/taxa for molluscs; Abalone (Haliotis spp.).
- 3 species/taxa for cephalopods; Cuttlefish (Order Sepiidae), Squid (Order Teuthoidea) and Octopus (Order Octopodidae).

6.1 Estuarine

Estimates of catches for estuarine species will be underestimated as shore-based recreational fishers were out of scope of the survey.

6.1.1 Barramundi (Lates calcarifer)

Barramundi is an indicator species in the North Coast bioregion. All boat-based recreational catches of Barramundi occurred in the North Coast (kept only, Figure 23b and c). The majority of catches were released (71\%; Table 5, Figure 23a) and attributed to "Too Many" and "Other" (Table 7). Catches were taken predominantly from estuary habitat (38\%), nearshore (30\%; Figure 23d) and freshwater (29%, not shown). Barramundi were harvested throughout the year, with highest catches in spring (38\%), followed by winter (28\%) and summer (23\%; Figure 23f). All catches were taken by line fishing (Figure 23e). The estimated kept recreational catch of Barramundi in 2015/16 was similar with previous statewide surveys (Figure 23a, Table 5).

Figure 23. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Barramundi in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14)$; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.1.2 Black Bream (Acanthopagrus butcheri)

Black Bream is an indicator species in the West Coast and South Coast bioregions. Most boatbased recreational catches of Black Bream occurred in the South Coast, followed by the West Coast (kept only, Figure 24b and c). The majority of catches were released (74\%; Table 5, Figure 24a) and attributed to "Under Size" (Table 7). Catches were taken predominantly from estuary habitat (66%), nearshore (27%; Figure 24d) and freshwater (8%, not shown). Black Bream were harvested throughout the year, with higher catches in spring (31\%) and summer (35\%) compared with autumn (23\%) and winter (11\%; Figure 24f). Most catches were taken by line fishing (99\%; Figure 24e). The estimated kept recreational catch of Black Bream in 2015/16 was similar with previous statewide surveys, although the estimated released recreational catch was lower in 2015/16 (Figure 24a, Table 5).

Figure 24. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Black Bream in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.1.3 Estuary Cobbler (Cnidoglanis macrocephalus)

Estuary Cobbler is an indicator species in the West Coast and South Coast bioregions. Most boat-based recreational recreational catches of Estuary Cobbler occurred in the South Coast, with some catches in the West Coast (kept only, Figure 25b and c). The majority of catches were catches were retained (10% released; Table 5, Figure 25 a) with most releases attributed to "Other" (Table 7). Catches were taken predominantly from estuary habitat (67\%) and nearshore (29\%; Figure 25d). Estuary Cobbler were harvested in summer (51\%) and autumn (49\%; Figure 25f). Most catches were taken by line fishing (58\%), with some fishing from diving (32\%) and nets (10%; Figure 25e). The estimated kept recreational catch of Estuary Cobbler was higher in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 25a, Table 5).

Figure 25. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers \times 1000) of Estuary Cobbler in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14)$; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.1.4 Yellowtail Flathead (Platycephalus westraliae)

Most boat-based recreational recreational catches of Yellowtail Flathead occurred in the West Coast, with some catches in the North Coast and Gascoyne Coast (kept only, Figure 26b and c). The majority of catches were released (82\%; Table 5, Figure 26a) and attributed to "Too Many" (Table 7). Catches were taken predominantly from nearshore (49\%; Figure 26d). Yellowtail Flathead were harvested throughout the year, with higher catches in spring (34\%) and summer (49\%) compared with autumn (14\%) and winter (2\%; Figure 26f). All catches were taken by line fishing (Figure 26e). The estimated kept and released recreational catches of Yellowtail Flathead in 2015/16 were similar with previous statewide surveys (Figure 26a, Table 5).

Figure 26. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Yellowtail Flathead in Western Australia during 2015/16 a) kept and released; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.1.5 Southern Bluespotted Flathead (Platycephalus speculator)

Most boat-based recreational catches of Southern Bluespotted Flathead occurred in the West Coast, followed by the South Coast (kept only, Figure 27b and c). The majority of catches were released (86%; Table 5, Figure 27a) and attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore and inshore demersal (Figure 27d). Southern Bluespotted Flathead were harvested throughout the year, with higher catches in summer (51\%) compared with spring (21\%), autumn (20\%) and winter (8\%; Figure 27f). All catches were taken by line fishing (Figure 27e). The estimated kept and released recreational catches of Southern Bluespotted Flathead in 2015/16 were similar with previous statewide surveys (Figure 27a, Table 5).

Figure 27. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Southern Bluespotted Flathead in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2 Nearshore

Estimates of catch for nearshore species provided in this report, particularly those harvested with high proportions of shore-based effort, will be underestimated.

6.2.1 Australian Herring (Arripis georgianus)

Australian Herring is an indicator species in the West Coast and South Coast bioregions. Most boatbased recreational catches of Australian Herring occurred in the West Coast, followed by the South Coast (kept only, Figure 28b and c). The majority of catches were retained (21% released; Table 5, Figure 28a) with most releases attributed to "Too Small" and "Too Many" (Table 7). Catches were taken from nearshore (85\%; Figure 28d) by line fishing (Figure 28e). Australian Herring were harvested throughout the year, with higher catches in summer (36\%) and autumn (36\%; Figure $28 f)$. The estimated kept recreational catch was lower in 2015/16 compared with previous statewide surveys, although the released recreational catches were similar (Figure 28a, Table 5).

Figure 28. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Australian Herring in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.2 Western Australian Salmon (Arripis truttaceus)

Western Australian Salmon is an indicator species in the South Coast bioregion. Most boat-based recreational catches of Western Australian Salmon occurred in the West Coast, followed by the South Coast (kept only, Figure 29b and c). The majority of catches were released (79\%; Table 5, Figure 29a) and attributed to "Catch and Release" and "Too Many" (Table 7). Catches were taken predominantly from nearshore (86%; Figure 29d). The majority of catches were in autumn (90%; Figure 29f). All catches were taken by line fishing (Figure 29e). The estimated kept recreational catch of Western Australian Salmon was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was higher (Figure 29a, Table 5).

Figure 29. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Western Australian Salmon in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.3 Garfish (Hyporhamphus melanochir and Hemiramphus robustus)

Garfish species include Southern Garfish (Hyporhamphus melanochir), three-by-two Garfish (Hemiramphus robustus) and Other Garfish (Hemiramphidae - undifferentiated). Garfish is an indicator species in the West Coast bioregion. Most boat-based recreational catches of Garfish occurred in the West Coast, with some catches in the Gascoyne Coast and South Coast (kept only, Figure 30b and c). The majority of catches of Southern Garfish were retained (9% released; Table 5, Figure 30a) with most releases attributed to "Too Small" (Table 7). Catches were taken predominantly from nearshore (95\%; Figure 30d). Garfish were mostly harvested in autumn (76%; Figure 30f). All catches were taken by line fishing (Figure 30e). The estimated recreational catches of Garfish were lower in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 30a, Table 5).

Figure 30. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Garfish in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.4 Sea Mullet (Mugil cephalus)

Sea Mullet is an indicator species in the Gascoyne, West and South Coast bioregions. Most boatbased recreational catches of Sea Mullet occurred in the West Coast, with some catches in the North Coast, Gascoyne Coast and South Coast (kept only, Figure 31b and c). The majority of catches were retained (6% released; Table 5, Figure 31a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (74\%; Figure 31d). Sea Mullet were harvested throughout the year, with higher catches in autumn (51\%) compared with summer (27%), winter (10\%) and spring (12\%; Figure 31f). Catches were mostly taken by netting (77%), followed by line fishing (21%; Figure 31e). The estimated recreational catches of Sea Mullet were lower in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 31a, Table 5).

Figure 31. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers \times 1000) of Sea Mullet in Western Australia during 2015/16 a) kept and released; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.5 Tailor (Pomatomus saltatrix)

Tailor is an indicator species in the Gascoyne Coast and West Coast bioregions. Most boat-based recreational catches of Tailor occurred in the West Coast, with some catches in the Gascoyne Coast and South Coast (kept only, Figure 32b and c). The majority of catches were retained (41% released; Table 5, Figure 32a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (52%; Figure 32d). Tailor were harvested throughout the year, with higher catches in summer (48\%) compared with spring (27\%), autumn (20\%) and winter (5\%; Figure 32f). Catches were mostly taken by line fishing (96%; Figure 32e). The estimated kept and released recreational catches of Tailor were lower in 2015/16 compared with previous statewide surveys (Figure 32a, Table 5).

Figure 32. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Tailor in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.6 Blue Threadfin (Eleutheronema tetradactylum)

Blue Threadfin is an indicator species in the North Coast bioregion. Most boat-based recreational catches of Blue Threadfin occurred in the North Coast (kept only, Figure 33b and c). The majority of catches were retained (37% released; Table 5, Figure 33a) with most releases attributed to "Under Size" and "Over Limit" (Table 7). Catches were taken predominantly from nearshore (42\%) and estuary (30\%; Figure 33d). Blue Threadfin were harvested throughout the year, with higher catches in winter (37\%) compared with spring (28\%), autumn (23\%) and summer (12\%; Figure 33f). All catches were taken by line fishing (Figure 33e). The estimated kept and released recreational catches of Blue Threadfin were similar in 2015/16 compared with previous statewide surveys (Figure 33a, Table 5).

Figure 33. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Blue Threadfin in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.7 King Threadfin (Polydactylus macrochir)

King Threadfin is an indicator species in the North Coast bioregion. All boat-based recreational catches of King Threadfin occurred in the North Coast (kept only, Figure 34b and c). The majority of catches were retained (37% released; Table 5, Figure 34a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (79\%; Figure 34d). King Threadfin were harvested throughout the year, with higher catches in spring (30\%) and summer (36\%) compared with autumn (18\%) and winter (16\%; Figure 34f). All catches were taken by line fishing (Figure 34e). The estimated kept and released recreational catches of King Threadfin were higher in 2015/16 compared with previous statewide surveys (Figure 34a, Table 5).

Figure 34. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of King Threadfin in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.8 King George Whiting (Sillaginodes punctata)

Whiting species, including King George Whiting, are indicator species in the Gascoyne Coast, South Coast and West Coast bioregions. Most boat-based recreational catches of King George Whiting occurred in the West Coast, followed by the South Coast (kept only, Figure 35b and c). The majority of catches were retained (25% released; Table 5, Figure 35a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (74\%; Figure 35d). King George Whiting were harvested throughout the year, with higher catches in spring (42\%) and summer (31\%) compared with autumn (13\%) and winter (14\% Figure 35f). All catches were taken by line fishing (Figure 35e). The estimated kept and released recreational catches of King George Whiting were lower in 2015/16 compared with previous statewide surveys (Figure 35a, Table 5).

Figure 35. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of King George Whiting in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.9 School Whiting (Sillago bassensis, vittata and schomburgkii)

Whiting species, including School and Yellowfin Whiting, are indicator species in the Gascoyne Coast, South Coast and West Coast bioregions. School Whiting includes Southern School Whiting (Sillago bassensis), Western School Whiting (S. vittata) and Yellowfin Whiting (S. schomburgkii). Most boat-based recreational catches of School Whiting occurred in the West Coast, with some catches in the Gascoyne Coast and South Coast (kept only, Figure 36b and c). The majority of catches were retained (24% released; Table 5, Figure 36a) with most releases attributed to "Too Small" and "Under Size" (Table 7). Catches were taken predominantly from nearshore (68\%; Figure 36d). School Whiting were harvested throughout the year, with higher catches in spring (29\%), summer (32\%) and autumn (25\%) compared with winter (14\%; Figure 36f). All catches were taken by line fishing (Figure 36e). The estimated kept recreational catch of School Whiting was lower in 2015/16 compared with previous statewide surveys, although the estimated released recreational catches were similar (Figure 36a, Table 5).

Figure 36. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of School Whiting in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.10 Western Trumpeter Whiting (Sillago burrus)

Most boat-based recreational catches of Western Trumpeter Whiting occurred in the West Coast (kept only, Figure 37b and c). The majority of catches of were released (88\%; Table 5, Figure 37a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (69\%; Figure 37d). Western Trumpeter Whiting were mostly harvested in summer (47\%), followed by spring (32\%) and autumn (20\%; Figure 37f). All catches were taken by line fishing (Figure 37e). The estimated kept and released recreational catches of Western Trumpeter Whiting were similar in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 37a, Table 5).

Figure 37. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Western Trumpeter Whiting in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.11 Mangrove Jack (Lutjanus argentimaculatus)

Mangrove Jack is an indicator species in the North Coast bioregion. Most boat-based recreational catches of Mangrove Jack occurred in the North Coast, with some catches in the Gascoyne Coast (kept only, Figure 38b and c). Almost half of all catches were retained (54\% released; Table 5, Figure 38a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (39%) and estuary (30%; Figure 38d). Mangrove Jack were harvested throughout the year, with higher catches in autumn (29\%), winter (29\%) and spring (23%) compared with summer (19%; Figure 38f). Most catches were taken by line fishing (99\%; Figure 38e). The estimated kept and released recreational catches of Mangrove Jack were lower in 2015/16 compared with previous statewide surveys (Figure 38a, Table 5).

Figure 38. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Mangrove Jack in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.12 Silver Trevally (Pseudocaranx spp. complex)

Most boat-based recreational catches of Silver Trevally occurred in the West Coast, with some catches in the South Coast (kept only, Figure 39b and c). More than half of all catches were catches were retained (46% released; Table 5, Figure 39a) with most releases attributed to "Too Many" (Table 7). Catches were taken predominantly from nearshore (67\%; Figure 39d). Silver Trevally were harvested throughout the year, with similar catches in spring (29\%), summer (23\%), autumn (24\%) and winter (24\%; Figure 39f). Catches were mostly taken by line fishing (99\%; Figure 39e). The estimated kept and released recreational catches of Silver Trevally were lower in 2015/16 compared with previous statewide surveys (Figure 39a, Table 5).

Figure 39. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Silver Trevally in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14)$; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.13 Western Butterfish (Pentapodus vitta)

Most boat-based recreational catches of Western Butterfish occurred in the West Coast, with some catches in the Gascoyne Coast (kept only, Figure 40b and c). The majority of catches were released (76%; Table 5, Figure 40a) with most releases attributed to "Other" and "Too Many" (Table 7). Catches were taken predominantly from nearshore (86\%; Figure 40d). Western Butterfish were harvested throughout the year, with higher catches in spring (32\%), summer (24\%) and autumn (31\%) compared with winter (13\%; Figure 40f). All catches were taken by line fishing (Figure 40e). The estimated kept and released recreational catches of Western Butterfish were similar in 2015/16 compared with previous statewide surveys (Figure 40a, Table 5).

Figure 40. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Western Butterfish in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.14 Western Yellowfin Bream (Acanthopagrus morrisoni)

Most boat-based recreational catches of Western Yellowfin Bream occurred in the Gascoyne Coast, with some catches in the North Coast (kept only, Figure 41b and c). The majority of catches were released (85\%; Table 5, Figure 41a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (67\%; Figure 41d). Western Yellowfin Bream were harvested throughout the year, with higher catches in winter (45\%) compared with autumn (27\%), spring (19\%) and summer (9\%; Figure 41f). Most catches were taken by line fishing (98\%; Figure 41e). The estimated kept and released recreational catches of Western Yellowfin Bream were lower in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 41a, Table 5).

Figure 41. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Western Yellowfin Bream in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.15 Western King Wrasse (Coris auricularis)

Most boat-based recreational catches of Western King Wrasse occurred in the West Coast, with some catches in the South Coast (kept only, Figure 42b and c). The majority of catches were released (83\%; Table 5, Figure 42a) with most releases attributed to "Other" (Table 7). Catches were taken predominantly from nearshore (54\%) and inshore demersal (46\%; Figure 42d). Western King Wrasse were harvested throughout the year, with higher catches in spring (35\%), summer (37\%) and autumn (23\%) compared with winter (6\%; Figure 42f). All catches were taken by line fishing (Figure 42e). The estimated kept recreational catch of Western King Wrasse was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower (Figure 42a, Table 5).

Figure 42. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Western King Wrasse in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.2.16 Brownspotted Wrasse (Notolabrus parilus)

Most boat-based recreational catches of Brownspotted Wrasse occurred in the West Coast, with some catches in the Gascoyne Coast and South Coast (kept only, Figure 43b and c). The majority of catches were released (76%; Table 5, Figure 43a) with most releases attributed to "Other" (Table 7). Catches were taken predominantly from nearshore (70%; Figure 43d). Brownspotted Wrasse were harvested throughout the year, with higher catches in spring (36\%) and summer (37\%) compared with autumn (19\%) and winter (8\%; Figure 43f). The estimated kept recreational catch of Brownspotted Wrasse was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower (Figure 43a, Table 5).

Figure 43. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Brownspotted Wrasse in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3 Inshore Demersal

6.3.1 Baldchin Groper (Choerodon rubescens)

Baldchin Groper is an indicator species in the West Coast bioregion. Most boat-based recreational catches of Baldchin Groper occurred in the West Coast, with some catches in the Gascoyne Coast (kept only, Figure 44b and c). The majority of catches were retained (42% released; Table 5, Figure 44a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (68%; Figure 44d). Baldchin Groper were harvested throughout the year, with higher catches in summer (41\%) and autumn (44\%) compared with spring (10%) and winter (6%; Figure 44 f). Most catches were taken by line fishing (97%; Figure 44e). The estimated kept and released recreational catches of Baldchin Groper were similar in 2015/16 compared with previous statewide surveys (Figure 44a, Table 5).

Figure 44. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Baldchin Groper in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.2 Bight Redfish (Centroberyx gerrardi)

Bight Redfish is an indicator species in the West and South Coast bioregions. Most boat-based recreational catches of Bight Redfish occurred in the South Coast, with some catches in the West Coast (kept only, Figure 45b and c). The majority of catches were retained (36% released; Table 5, Figure 45a) with most releases attributed to "Too Small" and "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (82\%; Figure 45d). Bight Redfish were harvested throughout the year, with higher catches in summer (36\%) and autumn (32\%) compared with winter (11\%) and spring (21%; Figure 45f). All catches were taken by line fishing (Figure 45e). The estimated kept and released recreational catches of Bight Redfish were similar in 2015/16 compared with previous statewide surveys (Figure 45a, Table 5).

Figure 45. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Bight Redfish in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.3 Blue Morwong (Nemadactylus valenciennesi)

Blue Morwong is an indicator species in the South Coast bioregion. Most boat-based recreational catches of Blue Morwong occurred in the South Coast, followed by the West Coast (kept only, Figure 46b and c). The majority of catches were retained (15% released; Table 5, Figure 46a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (74\%; Figure 46d). Blue Morwong were harvested throughout the year, with higher catches summer (45\%) compared with spring (25\%), autumn (23\%) and winter (7\%; Figure 46 f). Most catches were taken by line fishing (87%), with some fishing from diving (13\%; Figure 46e). The estimated kept and released recreational catches of Blue Morwong were similar in 2015/16 compared with previous statewide surveys (Figure 46a, Table 5).

Figure 46. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Blue Morwong in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.4 Bluespotted Emperor (Lethrinus punctulatus)

Bluespotted Emperor is an indicator species in the North Coast bioregion. Most boat-based recreational catches of Bluespotted Emperor occurred in the North Coast, followed by the Gascoyne Coast (kept only, Figure 47b and c). Almost half of all catches were retained (52\% released; Table 5, Figure 47a) with most releases attributed to "Too Small" and "Under Size" (Table 7). Catches were taken from inshore demersal (44\%) and nearshore (44\%; Figure 47d). Bluespotted Emperor were harvested throughout the year, with higher catches in autumn (35\%) and winter (34\%) compared with spring (23%) and summer (8%; Figure 47 f). All catches were taken by line fishing (Figure 47e). The estimated kept recreational catch of Bluespotted Emperor was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower (Figure 47a, Table 5).

Figure 47. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Bluespotted Emperor in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.5 Brownstripe Snapper (Lutjanus vitta)

Brownstripe Snapper is an indicator species in the North Coast bioregion. Most boat-based recreational catches of Brownstripe Snapper occurred in the North Coast, followed by the Gascoyne Coast (kept only, Figure 48b and c). The majority of catches were released (94\%; Table 5, Figure 48a) with most releases attributed to "Too Small" (Table 7). Catches were taken predominantly from nearshore (98\%; Figure 48d). Brownstripe Snapper were harvested mostly in autumn (98\%; Figure 48f). All catches were taken by line fishing (Figure 48e). The estimated kept and released recreational catches of Brownstripe Snapper were similar in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 48a, Table 5).

Figure 48. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Brownstripe Snapper in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.6 Goldband Snapper (Pristipomoides multidens)

Goldband Snapper is an indicator species in the North Coast and Gascoyne Coast bioregions. Most boat-based recreational catches of Goldband Snapper occurred in the Gascoyne Coast, with some catches in the North Coast (kept only, Figure 49b and c). The majority of catches were released (94\%; Table 5, Figure 49a) with most releases attributed to "Too Small" (Table 7). Catches were taken predominantly from inshore demersal (86\%; Figure 49d). Goldband Snapper were harvested mostly in spring (38\%) and autumn (34\%) compared with winter (27\%) and summer ($<1 \%$; Figure 49f). All catches were taken by line fishing (Figure 49e). The estimated kept and released recreational catches of Goldband Snapper were similar in 2015/16 compared with previous statewide surveys (Figure 49a, Table 5).

Figure 49. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Goldband Snapper in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.7 Pink Snapper (Chrysophrys auratus)

Pink Snapper is an inshore demersal indicator species in the Gascoyne Coast, West Coast and South Coast bioregions. It is also a nearshore indicator species in the Gascoyne Coast bioregion. Most boat-based recreational catches of Pink Snapper occurred in the West Coast and Gascoyne Coast, with some catches in the South Coast (kept only, Figure 50b and c). The majority of catches were released (76\%; Table 5, Figure 50a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (55\%) and inshore (37\%; Figure 50d). Pink Snapper were harvested throughout the year, with higher catches in autumn (32\%) and winter (32\%) compared with spring (20\%) and summer (16%; Figure 50f). All catches were taken by line fishing (Figure 50e). The estimated kept and released recreational catches of Pink Snapper were similar in 2015/16 compared with previous statewide surveys (Figure 50a, Table 5).

Figure 50. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Pink Snapper in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.8 Rankin Cod (Epinephelus multinotatus)

Rankin Cod is an indicator species in the North Coast bioregion. Most boat-based recreational catches of Rankin Cod occurred in the Gascoyne Coast, followed by the North Coast and West Coast (kept only, Figure 51b and c). The majority of catches were retained (34% released; Table 5, Figure 51a) with most releases attributed to "Too Small" and "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (61\%) and nearshore (34\%; Figure 51d). Rankin Cod were harvested throughout the year, with higher catches in autumn (39\%) and spring (31\%) compared with winter (23\%) and summer (7\%; Figure 51f). Most catches were taken by line fishing (97\%; Figure 51e). The estimated kept recreational catch of Rankin Cod was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower (Figure 51a, Table 5).

Figure 51. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Rankin Cod in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.9 Red Emperor (Lutjanus sebae)

Red Emperor is an indicator species in the Gascoyne Coast and North Coast bioregions. Most boat-based recreational catches of Red Emperor occurred in the Gascoyne Coast, followed by the North Coast and West Coast (kept only, Figure 52b and c). Similar proportions of the boat-based recreational catch were kept and released (52% released; Table 5, Figure 52a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (83\%; Figure 52d). Red Emperor were harvested throughout the year, with higher catches in autumn (44\%) and winter (33\%) compared with spring (16\%) and summer (7\%; Figure 52f). All catches were taken by line fishing (Figure 52e). The estimated kept and released recreational catches of Red Emperor were similar in 2015/16 compared with previous statewide surveys (Figure 52a, Table 5).

Figure 52. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Red Emperor in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.10 Spangled Emperor (Lethrinus nebulosus)

Spangled Emperor is an indicator species in the Gascoyne Coast bioregion. Most boat-based recreational catches of Spangled Emperor occurred in the Gascoyne Coast, followed by the North Coast and West Coast (kept only, Figure 53b and c). The majority of catches were released (61\%; Table 5, Figure 53a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (55\%) and nearshore (41\%; Figure 53d). Spangled Emperor were harvested throughout the year, with higher catches in autumn (36\%) and winter (30\%) compared with spring (24\%) and summer (10\%; Figure 53f). Most catches were taken by line fishing (98\%; Figure 53e). The estimated kept and released recreational catches of Spangled Emperor were lower in 2015/16 compared with previous statewide surveys (Figure 53a, Table 5).

Figure 53. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Spangled Emperor in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.11 West Australian Dhufish (Glaucosoma hebraicum)

West Australian Dhufish is an indicator species in the West Coast bioregion. Most boat-based recreational catches of West Australian Dhufish occurred in the West Coast, with some catches in the South Coast (kept only, Figure 54b and c). The majority of catches were released (68%; Table 5, Figure 54a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (68\%) and nearshore (27\%; Figure 54d). West Australian Dhufish were harvested throughout the year, with higher catches in summer (40%) compared with spring (23\%), autumn (23\%) and winter (14\%; Figure 54f). Catches were mostly taken by line fishing (99\%; Figure 54e). The estimated kept and released recreational catches of West Australian Dhufish were higher in 2015/16 compared with previous statewide surveys (Figure 54a, Table 5).

Figure 54. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers \times 1000) of West Australian Dhufish in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.12 Coral Trout (Plectropomus maculatus and P. leopardus)

Barcheek Coral Trout is an indicator in the North Coast bioregion. Reporting for this species includes catches for Common Coral Trout (Plectropomus leopardus). Most boat-based recreational catches of Barcheek Coral Trout occurred in the North Coast, followed by the West Coast and Gascoyne Coast (kept only, Figure 55b and c). Similar proportions of the boat-based recreational catch were kept and released (48% released; Table 5, Figure 55a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (51\%) and nearshore (42\%; Figure 55d). Coral Trout were harvested throughout the year, with higher catches in autumn (36\%) compared with winter (25\%), spring (23%) and summer (16%; Figure 55 f). Catches were mostly taken by line fishing (85\%), with some fishing from diving (15%; Figure 55e). The estimated kept and released recreational catches of Coral Trout were lower in 2015/16 compared with previous statewide surveys (Figure 55a, Table 5).

Figure 55. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Barcheek Coral Trout in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.13 Breaksea Cod (Epinephelides armatus)

Most boat-based recreational catches of Breaksea Cod occurred in the West Coast, followed by the South Coast and Gascoyne Coast (kept only, Figure 56b and c). The majority of catches were retained (41% released; Table 5, Figure 56a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (66\%) and nearshore (30\%; Figure 56d). Breaksea Cod were harvested throughout the year, with higher catches in summer (37\%) and autumn (30\%) compared with spring (24\%) and winter (8\%; Figure 56f). Catches were mostly taken by line fishing (99%; Figure 56 e). The estimated kept and released recreational catches of Breaksea Cod were similar in 2015/16 compared with previous statewide surveys (Figure 56a, Table 5).

Figure 56. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Breaksea Cod in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.14 Grass Emperor (Lethrinus laticaudis)

Most boat-based recreational catches of Grass Emperor occurred in the Gascoyne Coast, followed by the North Coast (kept only, Figure 57b and c). The majority of catches were released (62\%; Table 5, Figure 57a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (67\%) and inshore demersal (35\%; Figure 57d). Grass Emperor were harvested throughout the year, with higher catches in winter (42\%) compared with autumn (29\%), spring (16\%) and summer (13\%; Figure 57f). All catches were taken by line fishing (Figure 57e). The estimated kept and released recreational catches of Grass Emperor were lower in 2015/16 compared with previous statewide surveys (Figure 57a, Table 5).

Figure 57. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Grass Emperor in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.15 Redthroat Emperor (Lethrinus miniatus)

Redthroat Emperor is an indicator in the West Coast bioregion. Most boat-based recreational catches of Redthroat Emperor occurred in the Gascoyne Coast, followed by the West Coast and North Coast (kept only, Figure 58b and c). The majority of catches were released (66%; Table 5, Figure 58a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (73\%) and nearshore (19\%; Figure 58d). Redthroat Emperor were harvested throughout the year, with higher catches in autumn (34\%), winter (29\%) and spring (25\%) compared with summer (12\%; Figure 58f). Catches were mostly taken by line fishing (99\%; Figure 58e). The estimated kept recreational catch of Redthroat Emperor was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower (Figure 58a, Table 5).

Figure 58. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Redthroat Emperor in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.3.16 Stripey Snapper (Lutjanus carponotatus)

Most boat-based recreational catches of Stripey Snapper occurred in the North Coast, followed by the Gascoyne Coast (kept only, Figure 59b and c). The majority of catches were released (71\%; Table 5, Figure 59a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (61\%) and inshore demersal (35\%; Figure 59d). Stripey Snapper were harvested throughout the year, with higher catches in winter (45\%) followed by autumn (31\%), spring (17\%) and summer (7\%; Figure 59f). All catches were taken by line fishing (Figure 59e). The estimated kept recreational catch of Stripey Snapper was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower (Figure 59a, Table 5).

Figure 59. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Stripey Snapper in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4 Offshore Demersal

6.4.1 Eightbar Grouper (Hyporthodus octofasciatus)

Eightbar Grouper is an indicator species in the North Coast, Gascoyne Coast, West Coast bioregions. Most boat-based recreational catches of Eightbar Grouper occurred in the West Coast and Gascoyne Coast, with some catches in the South Coast (kept only, Figure 60b and c). The majority of catches were retained (11% released; Table 5, Figure 60a) with most releases attributed to "Too Small" and "Under Size" (Table 7). Eightbar Grouper were harvested throughout the year, with higher catches in autumn (52\%) compared with spring (27\%), winter (15%) and summer (6\%; Figure 60f). All catches were taken by line fishing (Figure 60e). The estimated kept recreational catch of Eightbar Grouper was higher in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was similar; however, the uncertainty for this species is high (Figure 60a, Table 5).

Figure 60. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Eightbar Grouper in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14)$; b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.2 Hapuku (Polyprion oxygeneios)

Hapuku is an indicator species in the West Coast and South Coast bioregions. Most boat-based recreational catches of Hapuku occurred in the West Coast, followed by the South Coast (kept only, Figure 61b and c). The majority of catches were retained (11% released; Table 5, Figure 61a) with all releases attributed to "Under Size" (Table 7). Catches were taken predominantly from offshore demersal (58\%; Figure 61d). Hapuku were harvested throughout the year, with higher catches in autumn (50\%) compared with summer (23\%), spring (20\%) and winter (7\%; Figure 61f). All catches were taken by line fishing (Figure 61e). The estimated kept recreational catch of Hapuku was higher in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was similar; however, the uncertainty for this species is high (Figure 61a, Table 5).

Figure 61. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Hapuku in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.4.3 Ruby Snapper (Etelis carbunculus)

Ruby Snapper is an indicator species in the North Coast and Gascoyne Coast bioregions. Most boat-based recreational catches of Ruby Snapper occurred in the Gascoyne Coast, with some catches in the North Coast and West Coast (kept only, Figure 62b and c). The majority of catches were retained (8% released; Table 5, Figure 62a) with most releases attributed to "Other" and "Under Size" (Table 7). Catches were taken predominantly from offshore demersal (54\%; Figure 62d). Ruby Snapper were harvested throughout the year, with higher catches in autumn (46\%) compared with winter (35\%), summer (11\%) and spring (8\%; Figure 62f). All catches were taken by line fishing (Figure 62e). The estimated kept and released recreational catches of Ruby Snapper were similar in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 62a, Table 5).

Figure 62. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Ruby Snapper in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5 Pelagic

6.5.1 Spanish Mackerel (Scomberomorus commerson)

Spanish Mackerel is an indicator species in the North Coast and Gascoyne Coast bioregions. Most boat-based recreational catches of Spanish Mackerel occurred in the Gascoyne Coast and North Coast, with some catches in the West Coast (kept only, Figure 63b and c). The majority of catches were retained (42% released; Table 5, Figure 63a) with most releases attributed to "Under Size" and "Too Many" (Table 7). Catches were taken from nearshore (47\%) and inshore demersal (40\%; Figure 63d). Spanish Mackerel were harvested throughout the year, with higher catches in autumn (36\%) and winter (34\%) compared with spring (19\%) and summer (10%; Figure 63f). Catches were mostly taken by line fishing (98%; Figure 63e). The estimated kept and released recreational catches of Spanish Mackerel were lower in 2015/16 compared with previous statewide surveys (Figure 63a, Table 5).

Figure 63. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Spanish Mackerel in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.2 Samsonfish (Seriola hippos)

Samsonfish is an indicator species in the West Coast bioregion. Most boat-based recreational catches of Samsonfish occurred in the West Coast, followed by the South Coast (kept only, Figure 64b and c). The majority of catches were released (84%; Table 5, Figure 64a) and attributed to "Other" and "Catch and Release" (Table 7). Catches were taken from inshore demersal (66\%; Figure 64d). Samsonfish were harvested throughout the year, with higher catches in spring (37\%) compared with summer (28\%), winter (20\%) and autumn (16\%; Figure $64 \mathrm{f})$. Catches were mostly taken by line fishing (99%; Figure 64e). The estimated kept and released recreational catches of Samsonfish were similar in 2015/16 compared with previous statewide surveys (Figure 64a, Table 5).

Figure 64. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Samsonfish in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.3 Grey Mackerel (Scomberomorus semifasciatus)

Grey Mackerel is an indicator species in the North Coast and Gascoyne Coast bioregions. Most boat-based recreational catches of Grey Mackerel occurred in the Gascoyne Coast, with some catches in the West Coast and North Coast (kept only, Figure 65b and c). The majority of catches were released (57\%; Table 5, Figure 65a) and attributed to "Under Size" and "Too Many" (Table 7). Grey Mackerel were mostly harvested in spring (52\%) and autumn (42\%; Figure 65f). All catches were taken by line fishing (Figure 65e). The estimated kept recreational catch of Grey Mackerel was lower in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 65a, Table 5).

Figure 65. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Grey Mackerel in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.4 Blue Mackerel (Scomber australasicus)

Most boat-based recreational catches of Blue Mackerel occurred in the Gascoyne Coast (kept only, Figure 66b and c). The majority of catches were released (91\%; Table 5, Figure 66a) and attributed to "Too Many" (Table 7). Blue Mackerel were mostly harvested in autumn (95\%; Figure 66f). All catches were taken by line fishing (Figure 66e). The estimated kept recreational catch of Blue Mackerel was lower in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was similar; however, the uncertainty for this species is high (Figure 66a, Table 5).

Figure 66. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers x 1000) of Blue Mackerel in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.5 Yellowtail Scad (Trachurus novaezelandiae)

Yellowtail Scad is an indicator species in the South Coast bioregion. Most boat-based recreational catches of Yellowtail Scad occurred in the West Coast and South Coast (kept only, Figure 67b and c). The majority of catches were released (91\%; Table 5, Figure 67a) and attributed to "Too Small" and "Too Many" (Table 7). Yellowtail Scad were mostly harvested in spring (64\%) and summer (30\%; Figure 67f). All catches were taken by line fishing (Figure 67e). The estimated kept recreational catch of Yellowtail Scad was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower; however, the uncertainty for this species is high (Figure 67a, Table 5).

Figure 67. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Yellowtail Scad in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.6 Billfish

Billfish include Black Marlin (Makaira indica), Blue Marlin (M. nigricans), Striped Marlin (Tetrapturus audax) and Sailfish (Istiophorus platypterus). Most boat-based recreational catches of Billfish occurred in the Gascoyne Coast, followed by the North Coast (kept only, Figure 68b and c). The majority of catches were released (80% or higher; Table 5, Figure 68a) and attributed to "Catch and Release" and "Other" (Table 7). Billfish were harvested throughout the year, with higher catches in autumn (34\%) and winter (34\%) compared with sprin $\mathrm{g}(19 \%$) and summer (12\%; Figure 68f). All catches were taken by line fishing (Figure 68e). The estimated kept and released recreational catches of Billfish were similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower; however, the uncertainty for this species group is high (Figure 68a, Table 5).

Figure 68. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Billfish in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.5.7 Southern Bluefin Tuna (Thunnus maccoyii)

Most boat-based recreational catches of Southern Bluefin Tuna occurred in the West Coast and South Coast, with some catches in the North Coast and Gascoyne Coast (kept only, Figure 69b and c). The majority of catches were retained (21% released; Table 5, Figure 69a) with most releases attributed to "Too Small" and "Under Size" (Table 7). Catches were taken predominantly from inshore demersal (58\%; Figure 69d). Southern Bluefin Tuna were harvested throughout the year, with higher catches in summer (39\%) and autumn (29\%) compared with spring (21%) and winter (11\%; Figure 69f). All catches were taken by line fishing (Figure 69e). The estimated kept recreational catch of Southern Bluefin Tuna was higher in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was similar (Figure 69a, Table 5).

Figure 69. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Southern Bluefin Tuna in Western Australia during 2015/16: a) compared with mean ($11 / 12$ and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6 Sharks

6.6.1 Whaler Sharks (Family Carcharhinidae)

Whaler Sharks are a statewide indicator species. Whaler Sharks (Family Carcharhinidae) include Bronze Whaler (Carcharhinus brachyurus), Dusky Whaler (Carcharhinus obscurus) and Other Whaler Sharks (Carcharhinidae and Hemigaleidae - undifferentiated). Most boat-based recreational catches occurred in the West Coast (kept only, Figure 70b and c). The majority of catches were released (71% or higher; Table 5, Figure 70a) and attributed to "Too Many" and "Other" (Table 7). Catches were mostly taken from inshore demersal (65\%; Figure 70d) throughout the year, with higher catches in spring (40\%) compared with autumn (25\%), summer (19\%) and winter (16\%; Figure 70 f). All catches were taken by line fishing (Figure 70e). The estimated kept recreational catch of Whaler Sharks was similar in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was lower (Figure 70a, Table 5).

Figure 70. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Whaler Sharks in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.2 Gummy Sharks (Mustelus antarcticus and M. stevensi)

Gummy Sharks includes Gummy Shark (Mustelus antarcticus), which occurs in southern waters to Geraldton, and Western Spotted Gummy Shark (M. stevensi), which occurs from Shark Bay to the Kimberley. M. antarticus is found nearshore to about 80 m , although sometimes on the continental slope to 350 m while M. stevensi is found at depths of $120-400 \mathrm{~m}$, possibly 735 m (Last and Stevens 2009). Most boat-based recreational catches of Gummy Sharks occurred in the West Coast, with some catches in the South Coast (kept only, Figure 71b and c). The majority of catches were retained (44% released; Table 5, Figure 71a) with most releases attributed to "Too Small" (Table 7). Catches were taken predominantly from inshore demersal (74\%; Figure 71d). Gummy Sharks were harvested throughout the year with higher catches in summer (34\%) and autumn (36%; Figure 71f). All catches were taken by line fishing (Figure 71e). The estimated kept and released recreational catches of Gummy Sharks were lower in 2015/16 compared with previous statewide surveys, although uncertainty for this species is high (Figure 71a, Table 5).

Figure 71. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Gummy Sharks in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.3 Port Jackson Shark (Heterodontus portusjacksoni)

Most boat-based recreational catches of Port Jackson Shark occurred in the West Coast (kept only, Figure 72b and c). The majority of catches were released (96%; Table 5, Figure 72a) and attributed to "Too Many" and "Other" (Table 7). Catches were taken from inshore demersal (52\%) and nearshore (47\%; Figure 72d). Port Jackson Shark were harvested throughout the year, with higher catches in spring (57\%) compared with autumn (17\%), summer (15%) and winter (11%; Figure 72f). Catches were mostly taken by line fishing (99%; Figure 72e). The estimated kept recreational catch of Port Jackson Shark was similar in 2015/16 compared with previous statewide surveys, althought the uncertainty for this species is high (Figure 72a, Table 5).

Figure 72. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Port Jackson Shark in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.6.4 Wobbegong (Family Orectolobidae)

Most boat-based recreational catches of Wobbegong occurred in the West Coast, with some catches in the South Coast (kept only, Figure 73b and c). The majority of catches were released (85\%; Table 5, Figure 73a) and attributed to "Too Many" and "Other" (Table 7). Catches were taken predominantly from nearshore (77\%) and inshore demersal (20\%; Figure 73d). Wobbegong were harvested throughout the year, with higher catches autumn (45\%) compared with summer (24%), winter (20%) and spring (11%; Figure 73). Catches were mostly taken by line fishing (74\%), with some catches from potting (25\%; Figure 73e). The estimated kept recreational catch of Wobbegong was similar in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 73a, Table 5).

Figure 73. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers \times 1000) of Wobbegong in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.7 Crustaceans

6.7.1 Western Rock Lobster (Panulirus cygnus)

The estimated catch from this survey does not account for catches from fishers that only have a Rock Lobster licence. Approximately 40% of Rock Lobster licence holders do not have a RFBL; therefore, these results underestimate the catch of Western Rock Lobster. Most boat-based recreational catches occurred in the West Coast (kept only, Figure 74b and c). The majority of catches were retained (35% released; Table 5, Figure 74a) with most releases attributed to "Under Size" and "Other" (Table 7). Catches were taken predominantly from nearshore (89\%; Figure 74d). Harvests occurred in summer (56\%), spring (25\%) and autumn (17\%; Figure 74f). Catches were mostly taken by potting (83\%), followed by diving (16%; Figure 74 e). The estimated kept recreational catch was higher in 2015/16 compared with previous statewide surveys, and the estimated released recreational catch was similar (Figure 74a, Table 5).

Figure 74. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Western Rock Lobster in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.7.2 Mud Crab (Scylla olivacea and S. serrata).

Mud Crabs include Brown Mud Crab (Scylla olivacea) and Green Mud Crab (S. serrata). Most boat-based recreational catches of Mud Crab occurred in the North Coast, with some catches in the West Coast and Gascoyne Coast (kept only, Figure 75b and c). There were different release rates for the two species (50% for Brown Mud Crab and 64% for Green Mud Crab; Table 5, Figure 75a) with most releases attributed to "Under Size" (Table 7). Catches were taken predominantly from nearshore (47\%) and estuary (43\%; Figure 75d). Mud Crab were harvested throughout the year, with higher catches in autumn (48\%) compared with summer (21\%), winter (16%) and spring (15%; Figure $75 f$). Most catches were taken by pots (92%; Figure 75 e). The estimated kept and released recreational catches of Mud Crab were lower in 2015/16 compared with previous statewide surveys (Figure 75a, Table 5). Although the proportion of catch in the West Coast was higher in 2015/16 compared with previous years, catches in the West Coast have been stable across all years, while catch in the North Coast was lower in 15/16.

Figure 75. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Mud Crab in Western Australia during 2015/16: a) compared with mean (11/12 and $13 / 14$); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.7.3 Blue Swimmer Crab (Portunus armatus)

Blue Swimmer Crab, previously known as Portunus pelagicus, but now classified as Portunus armatus, is harvested statewide. Most boat-based recreational catches of Blue Swimmer Crab occurred in the West Coast, with some catches in the North Coast, Gascoyne Coast and South Coast (kept only, Figure 76b and c). The majority of catches were released (71\%; Table 5, Figure 76a) and attributed to "Under Size" (Table 7). Catches were taken predominantly from estuary (67\%) and nearshore habitats (31%; Figure 76d). Blue Swimmer Crab were harvested throughout the year, with higher catches in summer (68\%) compared with autumn (16\%) and spring (13\%; Figure 76f). Most catches were taken by pots (including drop nets) (92\%; Figure 76e). The estimated kept recreational catch of Blue Swimmer Crab was lower in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was similar (Figure 76a, Table 5).

Figure 76. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers \times 1000) of Blue Swimmer Crab in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.8 Molluscs

6.8.1 Abalone (Haliotis spp.)

Abalone includes Roe's Abalone (Haliotis roei), Greenlip Abalone (H. laevigata) and Brownlip Abalone (H. conicopora). Most boat-based recreational catches of Abalone occurred in the West Coast, with some catches in the South Coast (kept only, Figure 77b and c). All boat-based recreational catches of Abalone were kept (Table 5, Figure 77a). Most catches were taken from nearshore (99\%; Figure 77d). Abalone were mostly harvested in summer (63\%) compared with spring (22%) and autumn (15%; Figure 77 f). Catches were mostly taken by diving (86%; Figure 77e). The estimated kept and released recreational catches of Abalone were lower in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 77a, Table 5). These estimates do not include catches from shore-based recreational fishing.

Figure 77. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Abalone in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.9 Cephalopods

6.9.1 Cuttlefish (Order Sepiidae)

Most boat-based recreational catches of Cuttlefish occurred in the West Coast, with some catches in the South Coast (kept only, Figure 78b and c). The majority of catches were retained (26% released; Table 5, Figure 63a) with most releases attributed to "Too Many" and "Other" (Table 7). Catches were taken predominantly from nearshore (65\%) and inshore demersal (33\%; Figure 78d). Cuttlefish were harvested throughout the year, with higher catches in autumn (33\%) and winter (34\%) compared with spring (20\%) and summer (14\%; Figure 78f). Catches were mostly taken by line fishing (94%; Figure 78e). The estimated kept recreational catch of Cuttlefish was similar in 2015/16 compared with previous statewide surveys, and the estimated released recreational catch was lower (Figure 78a, Table 5).

Figure 78. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Cuttlefish in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.9.2 Squid (Order Teuthoidea)

Most boat-based recreational catches of Squid occurred in the West Coast, with some catches in the North Coast, Gascoyne Coast and South Coast (kept only, Figure 79b and c). The majority of catches were retained (4% released; Table 5, Figure 79a) with most releases attributed to "Too Small" and "Too Many" (Table 7). Catches were taken predominantly from nearshore (87\%) and inshore demersal (11\%; Figure 79d). Squid were harvested throughout the year, with higher catches in autumn (34\%) followed by winter (29\%), spring (25\%) and summer (12\%; Figure 79f). Catches were mostly taken by line fishing (99%; Figure 79e). The estimated kept recreational catch of Squid was lower in 2015/16 compared with previous statewide surveys, although the estimated released recreational catch was similar (Figure 79a, Table 5).

Figure 79. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers $\times 1000$) of Squid in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

6.9.3 Octopus (Order Octopodidae)

Most boat-based recreational catches of Octopus occurred in the West Coast, with some catches in the Gascoyne Coast and South Coast (kept only, Figure 80b and c). The majority of catches were retained (16% released; Table 5, Figure 80a) with most releases attributed to "Too Many" and "Other" (Table 7).Catches were taken predominantly from nearshore (88\%; Figure 80d). Octopus were harvested throughout the year, with higher catches in summer (44\%) and autumn (32\%) compared with spring (14\%) and winter (9\%; Figure 80f). Catches were mostly taken by potting (61\%), followed by line fishing (29\%) and diving (10\%; Figure 80e). The estimated kept and released recreational catches of Octopus were lower in 2015/16 compared with previous statewide surveys, although the uncertainty for this species is high (Figure 80a, Table 5, Table 5).

Figure 80. Boat-based kept (grey bars) and released (white bars) recreational catch (numbers \times 1000) of Octopus in Western Australia during 2015/16: a) compared with mean (11/12 and 13/14); b) catch by bioregion; c) map of the proportion (\%) of kept catch by bioregion; d) catch by habitat; e) catch by method; and f) catch by season.

7 Estimates of Catch by Bioregion

This section presents estimates of boat-based recreational catch by bioregion for the 12-months from September 2015 to August 2016. Estimates are presented for annual catch (total, kept and released, by number) and proportions released (\% released) for all species in each bioregion: North Coast (Table 8), Gascoyne Coast (Table 9), West Coast (Table 10) and South Coast (Table 11).

7.1 North Coast

A total of 130 species/taxa were reported in the North Coast in 2015/16, which represented 6.1% of the statewide total catch (by numbers). The most common finfish species were Stripey Snapper (7\% of the bioregion total catch), Grass Emperor (6\%), Spangled Emperor (4\%), Giant Sea Catfish (3\%), Coral Trout (3\%), Red Emperor (3\%), Barramundi (3\%), Golden Snapper (3\%), Mangrove Jack (3\%), Blackspotted Rockcod (3\%), Blue Tuskfish (2\%), Spanish Mackerel (2\%), Blue Threadfin (2\%), Rankin Cod (2\%), Blackspot Tuskfish (2\%), Golden Trevally (2\%), Other Trevally (2\%), Crimson Snapper (2\%), Goldspotted Rockcod (2\%), King Threadfin (2\%) and Redthroat Emperor (2\%). The most common invertebrate species were Blue Swimmer Crab (8\%), Mud Crab (4\%) and Squid (2\%). These 25 species accounted for 74% of the total catch (by numbers) in the North Coast in 2015/16.

7.2 Gascoyne Coast

A total of 152 species/taxa were reported in the Gascoyne Coast in 2015/16, which represented 8.4% of the statewide total catch (by numbers). The most common finfish species were Pink Snapper (25\% of the bioregion total catch), Chinaman Rockcod (8\%), Grass Emperor (7\%), Spangled Emperor (6\%), Redthroat Emperor (4\%), Red Emperor (3\%), Stripey Snapper (2\%), Goldband Snapper (2\%), Baldchin Groper (2\%), Spanish Mackerel (2\%), Rankin Cod (2\%), School Mackerel (2\%), School Whiting (2\%) and Western Butterfish (2\%). The most common invertebrate species were Blue Swimmer Crab (5\%) and Squid (3\%). These 16 species accounted for 76% of the total catch (by numbers) in the Gascoyne Coast in 2015/16.

7.3 West Coast

A total of 155 species/taxa were reported in the West Coast in 2015/16, which represented 77.5\% of the statewide total catch (by numbers). The most common finfish species were School Whiting (11% of the bioregion total catch), Australian Herring (5\%), West Australian Dhufish (4\%), Silver Trevally (3\%), Pink Snapper (3\%), Western King Wrasse (2\%) and Southern Bluespotted Flathead (2\%). The most common invertebrate species were Blue Swimmer Crab (33\%), Western Rock Lobster (19\%) and Squid (3\%). These ten species accounted for 83% of the total catch (by numbers) in the West Coast in 2015/16.

7.4 South Coast

A total of 92 species/taxa were reported in the South Coast in 2015/16, which represented 8.0% of the statewide total catch (by numbers). The most common finfish species were Black Bream
(17\% of the bioregion total catch), Australian Herring (14\%), King George Whiting (10\%), School Whiting (8\%), Bight Redfish (8\%), Pink Snapper (6\%), Breaksea Cod (5\%), Silver Trevally (4\%), Blue Morwong (2\%), Brownspotted Wrasse (2\%), Swallowtail (2\%) and West Australian Dhufish (2\%). The most common invertebrate species were Blue Swimmer Crab (2\%) and Squid (2\%). These 14 species accounted for 83% of the total catch (by numbers) in the South Coast in 2015/16.

Table 8. Estimated annual catch (total, kept and released numbers) and proportion released in the North Coast bioregion during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 respondents recorded catches of the species).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Cephalopod	Squid	Order Teuthoidea - undifferentiated	3,021	822	89	54	3,110	829	3\%
Lobster	Painted Rock Lobster	Panulirus versicolor	649	219	197	110	846	273	23\%
Lobster	Ornate Rock Lobster	Panulirus ornatus	119	65	0	0	119	65	0\%
Crab	Blue Swimmer Crab	Portunus armatus	7,044	1,898	5,976	1,608	13,020	3,393	46\%
Crab	Green Mud Crab	Scylla serrata	869	236	525	174	1,394	367	38\%
Crab	Brown Mud Crab	Scylla olivacea	2,495	649	2,683	817	5,179	1,376	52\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	0	0	464	110	464	110	100\%
Sharks	Dusky Whaler	Carcharhinus obscurus	7	6	853	536	859	537	99\%
Sharks	Gummy Sharks	Mustelus antarcticus \& stevensi	0	0	19	19	19	19	100\%
Sharks	Hammerhead Shark	Sphyrnidae - undifferentiated	0	0	42	18	42	18	100\%
Sharks	Lemon Shark	Negaprion acutidens	0	0	84	53	84	53	100\%
Sharks	Sandbar Shark	Carcharhinus plumbeus	0	0	40	38	40	38	100\%
Sharks	Tiger Shark	Galeocerdo cuvier	0	0	32	26	32	26	100\%
Sharks	Whitetip Reef Shark	Triaenodon obesus	13	12	189	71	202	80	94\%
Sharks	Other Shark	Sharks - undifferentiated	0	0	605	204	605	204	100\%
Rays	Sawfishes	Pristidae - undifferentiated	0	0	90	41	90	41	100\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	0	0	25	18	25	18	100\%
Rays	Other Rays Skates	Order Rajiformes - undifferentiated	0	0	42	21	42	21	100\%
Billfish	Black Marlin	Makaira indica	18	17	246	159	264	160	93\%
Billfish	Sailfish	Istiophorus platypterus	17	11	134	52	151	54	89\%
Billfish	Striped Marlin	Tetrapturus audax	0	0	9	8	9	8	100\%
Bonito	Bonito	Sarda australis \& Cybiosarda elegans	0	0	35	23	35	23	100\%
Bream	Frypan Bream	Argyrops spinifer	9	8	0	0	9	8	0\%
Bream	Northwest Black Bream	Acanthopagrus palmaris	77	33	884	284	962	299	92\%
Bream	Pink Snapper	Chrysophrys auratus	120	67	105	53	225	96	47\%
Bream	Western Yellowfin Bream	Acanthopagrus morrisoni	34	26	834	459	868	470	96\%
Bream	Other Bream	Sparidae - undifferentiated	0	0	82	71	82	71	100\%
Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	0	0	218	110	218	110	100\%
Catfish	Giant Sea Catfish	Netuma thalassina	111	46	5,311	1,069	5,421	1,072	98\%
Catfish	Silver Cobbler	Neoarius midgleyi	0	0	941	513	941	513	100\%
Catfish	Other Catfish	Ariidae - undifferentiated	8	7	1,971	510	1,980	510	100\%

Reporting Group	Common Name
Cobia	Cobia
Cod	Barramundi Cod
Cod	Blackspotted Rockcod
Cod	Blacktip Rockcod
Cod	Chinaman Rockcod
Cod	Eightbar Grouper
Cod	Frostback Rockcod
Cod	Goldspotted Rockcod
Cod	Potato Rockcod
Cod	Queensland Grouper
Cod	Rankin Cod
Cod	Temperate Basses \& Rockcods
Cod	Tomato Rockcod
Cod	Yellowspotted Rockcod
Coral Trout	Coral Trout
Emperor	Bluespotted Emperor
Emperor	Grass Emperor
Emperor	Longnose Emperor
Emperor	Redthroat Emperor
Emperor	Spangled Emperor
Emperor	Yellowtail Emperor
Flathead	Northern Sand Flathead
Flathead	Yellowtail Flathead
Giant Perch	Barramundi
Grunter	Western Sooty Grunter
Grunter Bream	Painted Sweetlips
Grunter Bream	Barred Javelin
Grunter Bream	Blotched Javelin
Grunter Bream	Grunter Bream
Gurnard	Gurnard
Jewfish	Black Jewfish
King Snapper	Goldband Snapper
Leatherjacket	Leatherjacket
Lizardfish	Lizardfish Grinners
Longtom	Longtom

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Rachycentron canadum	311	73	148	64	458	119	32\%
Chromileptes altivelis	80	59	76	39	156	91	49\%
Epinephelus malabaricus	654	247	3,305	986	3,958	1,045	83\%
Epinephelus fasciatus	16	14	206	186	222	187	93\%
Epinephelus rivulatus	246	116	231	92	477	183	48\%
Hyporthodus octofasciatus	0	0	34	24	34	24	100\%
Epinephelus bilobatus	0	0	46	31	46	31	100\%
Epinephelus coioides	766	178	1,625	407	2,391	512	68\%
Epinephelus tukula	9	8	84	37	93	43	90\%
Epinephelus lanceolatus	0	0	38	27	38	27	100\%
Epinephelus multinotatus	1,382	303	1,436	371	2,818	573	51\%
Percichthyidae, Serranidae - undiff	137	63	1,243	566	1,380	575	90\%
Cephalopholis sonnerati	0	0	47	31	47	31	100\%
Epinephelus areolatus	49	23	601	374	650	375	92\%
Plectropomus maculatus \& leopardus	2,377	402	2,991	1,245	5,368	1,428	56\%
Lethrinus punctulatus	940	311	778	327	1,718	600	45\%
Lethrinus laticaudis	3,820	1,005	5,853	1,780	9,673	2,504	61\%
Lethrinus olivaceus	118	95	38	37	157	131	25\%
Lethrinus miniatus	248	85	2,117	946	2,366	1,004	90\%
Lethrinus nebulosus	1,822	448	5,026	1,474	6,849	1,652	73\%
Lethrinus atkinsoni	13	13	121	113	134	126	90\%
Platycephalus endrachtensis	118	101	43	29	161	105	27\%
Platycephalus westraliae	73	32	184	83	257	90	72\%
Lates calcarifer	1,425	294	3,412	1,462	4,837	1,651	71\%
Hephaestus jenkinsi	197	178	1,134	800	1,331	839	85\%
Diagramma labiosum	348	141	363	189	711	266	51\%
Pomadasys kaakan	276	95	729	292	1,006	360	73\%
Pomadasys maculatus	60	40	210	147	270	154	78\%
Haemulidae - undifferentiated	0	0	29	28	29	28	100\%
Neosebastidae - undifferentiated	0	0	9	8	9	8	100\%
Protonibea diacanthus	227	62	769	293	996	312	77\%
Pristipomoides multidens	118	75	92	69	210	115	44\%
Monacanthidae - undifferentiated	5	5	8	7	14	8	60\%
Bathysauridae, Synodontidae - undiff	253	168	918	715	1,171	801	78\%
Belonidae - undifferentiated	0	0	197	118	197	118	100\%

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Mackerel	Grey Mackerel	Scomberomorus semifasciatus	12	8	65	44	76	45	84\%
Mackerel	School Mackerel	Scomberomorus queenslandicus	439	133	287	120	726	192	39\%
Mackerel	Shark Mackerel	Grammatorcynus bicarinatus	112	42	483	296	595	303	81\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	1,851	258	1,839	410	3,690	566	50\%
Mackerel	Spotted Mackerel	Scomberomorus munroi	186	87	81	37	267	110	30\%
Mackerel	Wahoo	Acanthocybium solandri	44	34	22	14	66	48	33\%
Mackerel	Other Mackerel \& Tuna	Scombridae - undifferentiated	120	57	50	29	171	64	29\%
Mahi Mahi	Mahi Mahi	Coryphaena spp.	0	0	27	25	27	25	100\%
Mullet	Bluetail Mullet	Valamugil buchanani	191	166	0	0	191	166	0\%
Mullet	Sea Mullet	Mugil cephalus	330	220	43	29	373	226	12\%
Mullet	Other Mullet	Mugilidae - undifferentiated	500	344	309	193	809	533	38\%
Pearl Perch	Northern Pearl Perch	Glaucosoma buergeri	95	73	415	159	510	208	81\%
Pike	Great Barracuda	Sphyraena barracuda	8	7	608	229	616	229	99\%
Pike	Yellowtail Barracuda	Sphyraena obtusata	340	223	77	67	417	233	18\%
Queenfish	Queenfish	Scomberoides spp.	202	73	1,528	494	1,731	539	88\%
Small Baitfish	Herrings \& llishas	Clupeidae, Pristigasteridae - undiff	737	632	197	142	933	647	21\%
Tailor	Tailor	Pomatomus saltatrix	0	0	5	5	5	5	100\%
Threadfin	Blue Threadfin	Eleutheronema tetradactylum	2,051	424	1,228	334	3,278	631	37\%
Threadfin	King Threadfin	Polydactylus macrochir	1,501	525	876	284	2,376	785	37\%
Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	96	49	0	0	96	49	0\%
Trevally	Amberjack	Seriola dumerili	0	0	9	8	9	8	100\%
Trevally	Bludger Trevally	Carangoides gymnostethus	478	167	1,481	384	1,959	515	76\%
Trevally	Giant Trevally	Caranx ignobilis	500	245	1,331	405	1,831	482	73\%
Trevally	Golden Trevally	Gnathanodon speciosus	678	142	1,909	415	2,587	477	74\%
Trevally	Rainbow Runner	Elagatis bipinnulata	27	25	27	25	54	50	50\%
Trevally	Turrum	Carangoides fulvoguttatus	22	14	33	28	54	32	60\%
Trevally	Other Trevally	Carangidae - undifferentiated	899	732	1,666	891	2,565	1,603	65\%
Tripletail	Tripletail	Lobotes surinamensis	82	31	45	29	127	47	36\%
Tropical Snapper	Brownstripe Snapper	Lutjanus vitta	16	14	410	356	426	370	96\%
Tropical Snapper	Chinamanfish	Symphorus nematophorus	265	98	381	261	646	281	59\%
Tropical Snapper	Crimson Snapper	Lutjanus erythropterus	841	184	1,558	444	2,398	568	65\%
Tropical Snapper	Darktail Snapper	Lutjanus lemniscatus	58	40	84	54	142	73	59\%
Tropical Snapper	Golden Snapper	Lutjanus johnii	2,133	575	2,403	699	4,535	1,220	53\%
Tropical Snapper	Mangrove Jack	Lutjanus argentimaculatus	1,848	339	2,607	611	4,455	878	59\%
Tropical Snapper	Moses' Snapper	Lutjanus russellii	220	71	768	504	987	540	78\%

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Tropical Snapper	Red Emperor	Lutjanus sebae	1,737	407	3,170	1,066	4,906	1,418	65\%
Tropical Snapper	Ruby Snapper	Etelis carbunculus	230	148	44	30	273	177	16\%
Tropical Snapper	Saddletail Snapper	Lutjanus malabaricus	612	173	886	550	1,498	630	59\%
Tropical Snapper	Stripey Snapper	Lutjanus carponotatus	3,270	1,205	8,210	1,977	11,480	3,028	72\%
Tuna	Dogtooth Tuna	Gymnosarda unicolor	0	0	30	19	30	19	100\%
Tuna	Longtail Tuna	Thunnus tonggol	250	93	400	170	651	205	62\%
Tuna	Mackerel Tuna	Euthynnus affinis	304	101	370	141	674	189	55\%
Tuna	Southern Bluefin Tuna	Thunnus maccoyii	83	40	23	16	106	45	22\%
Tuna	Yellowfin Tuna	Thunnus albacares	8	7	5	5	14	9	40\%
Tuskfish Wrasse	Blackspot Tuskfish	Choerodon schoenleinii	1,158	279	1,530	439	2,687	599	57\%
Tuskfish Wrasse	Blue Tuskfish	Choerodon cyanodus	1,162	291	2,700	752	3,862	920	70\%
Tuskfish Wrasse	Bluebarred Parrotfish	Scarus ghobban spp. complex	0	0	34	19	34	19	100\%
Tuskfish Wrasse	Bluespotted Tuskfish	Choerodon cauteroma	6	6	50	44	57	45	89\%
Tuskfish Wrasse	Humphead Maori Wrasse	Cheilinus undulatus	37	36	18	18	55	53	33\%
Tuskfish Wrasse	Purple Tuskfish	Choerodon cephalotes	119	61	263	139	383	173	69\%
Tuskfish Wrasse	Other Parrotfish	Scaridae - undifferentiated	13	13	0	0	13	13	0\%
Tuskfish Wrasse	Other Wrasse	Labridae - undifferentiated	8	8	78	63	86	64	90\%
Whiting	Goldenline Whiting	Sillago analis	178	106	199	144	377	243	53\%
Finfish Other	Archerfishes	Toxotidae - undifferentiated	0	0	25	21	25	21	100\%
Finfish Other	Butterfish	Stromateidae - undifferentiated	0	0	128	124	128	124	100\%
Finfish Other	Other Eel	Order Anguilliformes - undifferentiated	0	0	90	72	90	72	100\%
Finfish Other	Moonfish Batfish	Ephippidae, Drepaneidae - undifferentiated	27	25	147	70	174	74	85\%
Finfish Other	Silver Toadfish	Lagocephalus sceleratus	0	0	55	29	55	29	100\%
Finfish Other	Other Toadfish	Tetraodontidae - undifferentiated	0	0	27	25	27	25	100\%

Table 9. Estimated annual catch (total, kept and released numbers) and proportion released in the Gascoyne Coast bioregion during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 respondents recorded catches of the species).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Cephalopod	Octopus	Octopodidae - undifferentiated	108	77	29	21	137	84	21\%
Cephalopod	Squid	Order Teuthoidea - undifferentiated	6,559	1,474	179	103	6,738	1,525	3\%
Lobster	Western Rock Lobster	Panulirus cygnus	1,719	569	728	363	2,448	805	30\%
Lobster	Painted Rock Lobster	Panulirus versicolor	146	85	0	0	146	85	0\%
Lobster	Ornate Rock Lobster	Panulirus ornatus	22	18	9	8	31	20	29\%
Crab	Blue Swimmer Crab	Portunus armatus	5,379	1,600	4,818	1,556	10,197	2,938	47\%
Crab	Green Mud Crab	Scylla serrata	11	9	0	0	11	9	0\%
Crab	Brown Mud Crab	Scylla olivacea	41	26	0	0	41	26	0\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	102	59	414	154	516	177	80\%
Sharks	Dusky Whaler	Carcharhinus obscurus	177	86	384	142	561	194	69\%
Sharks	Greynurse Shark	Carcharias taurus	0	0	8	8	8	8	100\%
Sharks	Gummy Sharks	Mustelus antarcticus \& stevensi	0	0	178	131	178	131	100\%
Sharks	Hammerhead Shark	Sphyrnidae - undifferentiated	0	0	16	13	16	13	100\%
Sharks	Lemon Shark	Negaprion acutidens	0	0	50	27	50	27	100\%
Sharks	Sandbar Shark	Carcharhinus plumbeus	0	0	18	18	18	18	100\%
Sharks	Tiger Shark	Galeocerdo cuvier	0	0	98	56	98	56	100\%
Sharks	Whitetip Reef Shark	Triaenodon obesus	30	22	307	224	337	226	91\%
Sharks	Wobbegong	Orectolobidae - undifferentiated	0	0	80	42	80	42	100\%
Sharks	Other Whaler	Carcharhinidae, Hemigaleidae - undiff	65	34	242	177	308	184	79\%
Sharks	Other Shark	Sharks - undifferentiated	169	94	1,009	369	1,178	401	86\%
Rays	Other Rays Skates	Order Rajiformes - undifferentiated	0	0	77	59	77	59	100\%
Billfish	Black Marlin	Makaira indica	39	37	462	198	501	201	92\%
Billfish	Blue Marlin	Makaira nigricans	0	0	102	42	102	42	100\%
Billfish	Sailfish	Istiophorus platypterus	61	40	180	76	241	110	75\%
Billfish	Striped Marlin	Tetrapturus audax	0	0	21	19	21	19	100\%
Bonito	Bonito	Sarda australis \& Cybiosarda elegans	19	18	81	60	100	63	81\%
Bonito	Oriental Bonito	Sarda orientalis	19	19	25	24	44	30	56\%
Bream	Frypan Bream	Argyrops spinifer	41	24	96	56	137	71	70\%
Bream	Pink Snapper	Chrysophrys auratus	12,448	1,931	41,491	7,128	53,940	8,414	77\%
Bream	Western Yellowfin Bream	Acanthopagrus morrisoni	232	149	644	300	876	336	74\%
Bream	Other Bream	Sparidae - undifferentiated	25	23	49	45	74	68	67\%
Catfish	Eeltail Catfishes	Plotosidae - undifferentiated	0	0	31	25	31	25	100\%

Reporting Group	Common Name
Catfish	Giant Sea Catfish
Catfish	Other Catfish
Cobia	Cobia
Cod	Blackspotted Rockcod
Cod	Breaksea Cod
Cod	Chinaman Rockcod
Cod	Eightbar Grouper
Cod	Frostback Rockcod
Cod	Goldspotted Rockcod
Cod	Potato Rockcod
Cod	Queensland Grouper
Cod	Rankin Cod
Cod	Temperate Basses \& Rockcods
Cod	Yellowspotted Rockcod
Coral Trout	Coral Trout
Coral Trout	Yellowedge Coronation Trout
Emperor	Bluespotted Emperor
Emperor	Grass Emperor
Emperor	Longnose Emperor
Emperor	Redspot Emperor
Emperor	Redthroat Emperor
Emperor	Robinsons' Seabream
Emperor	Spangled Emperor
Emperor	Yellowtail Emperor
Emperor	Other Emperor
Flathead	Northern Sand Flathead
Flathead	Yellowtail Flathead
Garfish	Three-by-two Garfish
Garfish	Other Garfish
Grunter	Western Striped Grunter
Grunter Bream	Painted Sweetlips
Grunter Bream	Barred Javelin
Grunter Bream	Grunter Bream
Gurnard	Gurnard
Jewfish	Mulloway

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Netuma thalassina	0	0	80	58	80	58	100\%
Ariidae - undifferentiated	0	0	36	28	36	28	100\%
Rachycentron canadum	1,237	268	509	218	1,746	394	29\%
Epinephelus malabaricus	589	134	559	210	1,148	280	49\%
Epinephelides armatus	343	177	490	221	833	336	59\%
Epinephelus rivulatus	5,127	2,031	11,274	4,556	16,401	6,228	69\%
Hyporthodus octofasciatus	286	126	22	18	308	135	7\%
Epinephelus bilobatus	11	9	49	38	60	39	82\%
Epinephelus coioides	1,802	600	674	196	2,476	670	27\%
Epinephelus tukula	37	36	0	0	37	36	0\%
Epinephelus lanceolatus	55	53	28	19	83	57	34\%
Epinephelus multinotatus	2,937	422	692	186	3,629	492	19\%
Percichthyidae, Serranidae - undiff	325	114	264	111	590	160	45\%
Epinephelus areolatus	411	143	1,232	624	1,643	649	75\%
Plectropomus maculatus \& leopardus	1,138	190	512	140	1,650	248	31\%
Variola louti	122	49	145	113	267	123	54\%
Lethrinus punctulatus	771	320	1,048	384	1,819	647	58\%
Lethrinus laticaudis	5,839	1,140	9,872	2,832	15,711	3,459	63\%
Lethrinus olivaceus	293	238	93	60	386	294	24\%
Lethrinus lentjan	12	12	3	2	15	12	18\%
Lethrinus miniatus	3,536	1,089	4,212	1,306	7,748	2,319	54\%
Gymnocranius grandoculis	664	186	208	184	871	286	24\%
Lethrinus nebulosus	6,158	986	7,512	1,326	13,671	2,042	55\%
Lethrinus atkinsoni	58	56	223	141	280	194	79\%
Lethrinidae - undifferentiated	0	0	15	15	15	15	100\%
Platycephalus endrachtensis	38	24	62	42	100	48	62\%
Platycephalus westraliae	117	57	12	8	129	57	9\%
Hemiramphus robustus	33	28	0	0	33	28	0\%
Hemiramphidae - undifferentiated	212	204	0	0	212	204	0\%
Pelates octolineatus	85	68	11	9	96	70	11\%
Diagramma labiosum	149	76	462	160	611	198	76\%
Pomadasys kaakan	0	0	13	13	13	13	100\%
Haemulidae - undifferentiated	0	0	25	24	25	24	100\%
Neosebastidae - undifferentiated	38	37	0	0	38	37	0\%
Argyrosomus japonicus	433	173	611	278	1,044	426	58\%

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
King Snapper	Goldband Snapper	Pristipomoides multidens	3,597	965	922	741	4,519	1,558	20\%
King Snapper	Rosy Snapper	Pristipomoides filamentosus	253	158	13	12	266	169	5\%
King Snapper	Sharptooth Snapper	Pristipomoides typus	282	241	66	63	348	249	19\%
Leatherjacket	Leatherjacket	Monacanthidae - undifferentiated	5	5	934	538	940	538	99\%
Lizardfish	Lizardfish Grinners	Bathysauridae, Synodontidae - undiff	196	132	254	129	450	184	56\%
Longtom	Longtom	Belonidae - undifferentiated	0	0	13	12	13	12	100\%
Mackerel	Blue Mackerel	Scomber australasicus	77	74	731	706	808	780	90\%
Mackerel	Grey Mackerel	Scomberomorus semifasciatus	67	65	29	28	96	93	30\%
Mackerel	School Mackerel	Scomberomorus queenslandicus	1,259	538	2,310	1,593	3,569	2,090	65\%
Mackerel	Shark Mackerel	Grammatorcynus bicarinatus	239	75	465	154	704	182	66\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	2,233	354	1,546	504	3,779	767	41\%
Mackerel	Spotted Mackerel	Scomberomorus munroi	151	87	222	104	374	155	59\%
Mackerel	Wahoo	Acanthocybium solandri	182	87	39	37	221	97	17\%
Mackerel	Other Mackerel \& Tuna	Scombridae - undifferentiated	95	49	95	89	191	116	50\%
Mahi Mahi	Mahi Mahi	Coryphaena spp.	278	101	26	25	304	110	8\%
Mullet	Bluetail Mullet	Valamugil buchanani	16	14	0	0	16	14	0\%
Mullet	Greenback Mullet	Liza subviridis	68	57	0	0	68	57	0\%
Mullet	Sea Mullet	Mugil cephalus	894	317	0	0	894	317	0\%
Mullet	Other Mullet	Mugilidae - undifferentiated	0	0	69	55	69	55	100\%
Pearl Perch	Northern Pearl Perch	Glaucosoma buergeri	586	194	125	84	711	211	18\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	19	19	58	56	77	74	75\%
Pike	Great Barracuda	Sphyraena barracuda	0	0	61	33	61	33	100\%
Pike	Yellowtail Barracuda	Sphyraena obtusata	159	75	148	82	308	112	48\%
Pike	Other Pike	Sphyraenidae - undifferentiated	8	7	0	0	8	7	0\%
Queenfish	Queenfish	Scomberoides spp.	0	0	124	83	124	83	100\%
Sergeant Baker	Sergeant Baker	Latropiscis purpurissatus	128	102	15	15	144	103	11\%
Small Baitfish	Herrings \& llishas	Clupeidae, Pristigasteridae - undiff	46	45	82	62	128	76	64\%
Tailor	Tailor	Pomatomus saltatrix	422	357	205	119	627	466	33\%
Threadfin	Blue Threadfin	Eleutheronema tetradactylum	11	9	0	0	11	9	0\%
Threadfin Bream	Rosy Threadfin Bream	Nemipterus furcosus	0	0	7	7	7	7	100\%
Threadfin Bream	Western Butterfish	Pentapodus vitta	1,318	788	2,005	1,176	3,322	1,415	60\%
Trevalla	Blue-Eye Trevalla	Hyperoglyphe antarctica	0	0	4	4	4	4	100\%
Trevally	Amberjack	Seriola dumerili	47	24	39	37	86	44	45\%
Trevally	Bludger Trevally	Carangoides gymnostethus	124	81	495	408	619	416	80\%
Trevally	Common Dart	Trachinotus botla	0	0	38	37	38	37	100\%

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Trevally	Giant Trevally	Caranx ignobilis	13	12	511	165	524	165	98\%
Trevally	Golden Trevally	Gnathanodon speciosus	502	117	916	274	1,418	341	65\%
Trevally	Rainbow Runner	Elagatis bipinnulata	0	0	64	53	64	53	100\%
Trevally	Samsonfish	Seriola hippos	10	9	19	15	29	18	66\%
Trevally	Silver Trevally	Pseudocaranx spp. complex	289	103	892	304	1,181	378	76\%
Trevally	Turrum	Carangoides fulvoguttatus	55	53	84	68	139	86	60\%
Trevally	Yellowtail Kingfish	Seriola lalandi	19	19	0	0	19	19	0\%
Trevally	Yellowtail Scad	Trachurus novaezelandiae	0	0	193	163	193	163	100\%
Trevally	Other Trevally	Carangidae - undifferentiated	0	0	29	28	29	28	100\%
Tropical Snapper	Brownstripe Snapper	Lutjanus vitta	11	9	0	0	11	9	0\%
Tropical Snapper	Chinamanfish	Symphorus nematophorus	36	20	191	99	227	108	84\%
Tropical Snapper	Crimson Snapper	Lutjanus erythropterus	187	83	116	71	303	118	38\%
Tropical Snapper	Darktail Snapper	Lutjanus lemniscatus	11	9	14	12	25	21	57\%
Tropical Snapper	Flame Snapper	Etelis coruscans	0	0	19	19	19	19	100\%
Tropical Snapper	Mangrove Jack	Lutjanus argentimaculatus	470	275	128	62	598	288	21\%
Tropical Snapper	Moses' Snapper	Lutjanus russellii	124	56	195	93	319	110	61\%
Tropical Snapper	Red Emperor	Lutjanus sebae	3,886	803	2,537	721	6,422	1,385	39\%
Tropical Snapper	Ruby Snapper	Etelis carbunculus	800	251	49	30	849	271	6\%
Tropical Snapper	Saddletail Snapper	Lutjanus malabaricus	168	116	0	0	168	116	0\%
Tropical Snapper	Stripey Snapper	Lutjanus carponotatus	1,689	535	3,518	1,156	5,207	1,365	68\%
Tropical Snapper	Other Snapper	Lutjanidae - undifferentiated	208	98	357	117	565	171	63\%
Tuna	Longtail Tuna	Thunnus tonggol	195	94	63	31	258	100	24\%
Tuna	Mackerel Tuna	Euthynnus affinis	123	50	290	113	414	129	70\%
Tuna	Skipjack Tuna	Katsuwonus pelamis	93	60	19	19	112	65	17\%
Tuna	Southern Bluefin Tuna	Thunnus maccoyii	77	41	41	36	118	63	35\%
Tuna	Yellowfin Tuna	Thunnus albacares	230	67	82	41	312	83	26\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	2,096	367	2,381	1,027	4,478	1,185	53\%
Tuskfish Wrasse	Blackspot Tuskfish	Choerodon schoenleinii	427	141	1,056	440	1,482	486	71\%
Tuskfish Wrasse	Blue Tuskfish	Choerodon cyanodus	400	135	116	64	516	158	22\%
Tuskfish Wrasse	Bluebarred Parrotfish	Scarus ghobban spp. complex	10	9	195	114	204	114	95\%
Tuskfish Wrasse	Bluespotted Tuskfish	Choerodon cauteroma	0	0	33	28	33	28	100\%
Tuskfish Wrasse	Brownspotted Wrasse	Notolabrus parilus	69	44	214	154	282	195	76\%
Tuskfish Wrasse	Goldspot Pigfish	Bodianus perditio	42	21	0	0	42	21	0\%
Tuskfish Wrasse	Purple Tuskfish	Choerodon cephalotes	63	41	676	590	739	593	91\%
Tuskfish Wrasse	Western King Wrasse	Coris auricularis	0	0	170	96	170	96	100\%

Reporting Group
Tuskfish Wrasse
Tuskfish Wrasse
Tuskfish Wrasse
Whiting
Whiting
Whiting
Wreckfish
Finfish Other
Finfish Other
Finfish Other
Finfish Other

Common Name
Other Parrotfish
Other Tuskfish
Other Wrasse School Whiting Western Trumpeter Whiting Other Whiting
Bass Groper
Other Eel
Silver Toadfish
Weeping Toadfish
Other Toadfish

Scientific Name
Scaridae - undifferentiated
Choerodon spp.
Labridae - undifferentiated
Sillago schomburgkii, bassensis \& vittata
Sillago burrus
Sillaginidae - undifferentiated
Polyprion americanus
Order Anguilliformes - undifferentiated
Lagocephalus sceleratus
Torquigener pleurogramma
Tetraodontidae - undifferentiated

Kept	se	Released	se	Total	se	\% Rel
96	93	13	12	109	94	12%
31	25	0	0	31	25	0%
30	29	30	29	59	58	50%
2,808	1,274	620	453	3,428	1,378	18%
0	0	148	88	148	88	100%
0	0	7	6	7	6	100%
13	9	7	6	20	14	34%
0	0	19	19	19	19	100%
0	0	668	257	668	257	100%
0	0	195	108	195	108	100%
0	0	941	332	941	332	100%

Table 10. Estimated annual catch (total, kept and released numbers) and proportion released in the West Coast bioregion during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 respondents recorded catches of the species).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Abalone	Roe's Abalone	Haliotis roei	3,362	1,459	12	12	3,374	1,459	0\%
Abalone	Greenlip Abalone	Haliotis laevigata	847	592	0	0	847	592	0\%
Cephalopod	Cuttlefish	Sepia spp.	1,803	327	676	197	2,480	391	27\%
Cephalopod	Octopus	Octopodidae - undifferentiated	1,026	251	192	63	1,217	263	16\%
Cephalopod	Squid	Order Teuthoidea - undifferentiated	48,555	5,653	2,227	815	50,782	5,900	4\%
Lobster	Western Rock Lobster	Panulirus cygnus	248,618	20,195	136,392	15,972	385,010	33,318	35\%
Lobster	Southern Rock Lobster	Jasus edwardsii	539	325	38	37	577	335	7\%
Crab	Blue Swimmer Crab	Portunus armatus	181,709	14,924	468,608	39,479	650,317	51,402	72\%
Crab	Green Mud Crab	Scylla serrata	1,353	714	3,497	1,768	4,849	2,283	72\%
Crab	Brown Mud Crab	Scylla olivacea	108	88	0	0	108	88	0\%
Sharks	Blacktip Reef Shark	Carcharhinus melanopterus	105	49	333	165	438	176	76\%
Sharks	Bronze Whaler	Carcharhinus brachyurus	309	84	843	229	1,151	248	73\%
Sharks	Greynurse Shark	Carcharias taurus	0	0	19	19	19	19	100\%
Sharks	Gummy Sharks	Mustelus antarcticus \& stevensi	435	105	177	70	612	132	29\%
Sharks	Hammerhead Shark	Sphyrnidae - undifferentiated	40	32	71	34	111	47	64\%
Sharks	Lemon Shark	Negaprion acutidens	0	0	13	12	13	12	100\%
Sharks	Port Jackson Shark	Heterodontus portusjacksoni	37	36	886	200	923	203	96\%
Sharks	Sandbar Shark	Carcharhinus plumbeus	0	0	49	34	49	34	100\%
Sharks	Tiger Shark	Galeocerdo cuvier	0	0	70	43	70	43	100\%
Sharks	Whiskery Shark	Furgaleus macki	168	61	199	100	367	143	54\%
Sharks	Wobbegong	Orectolobidae - undifferentiated	87	35	462	156	548	160	84\%
Sharks	Other Whaler	Carcharhinidae, Hemigaleidae - undiff	0	0	58	55	58	55	100\%
Sharks	Other Shark	Sharks - undifferentiated	220	120	599	178	819	215	73\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	0	0	231	71	231	71	100\%
Rays	Other Rays Skates	Order Rajiformes - undifferentiated	38	37	2,024	354	2,063	356	98\%
Bonito	Bonito	Sarda australis \& Cybiosarda elegans	31	17	71	53	101	60	70\%
Bonito	Oriental Bonito	Sarda orientalis	51	39	77	74	128	84	60\%
Bream	Black Bream	Acanthopagrus butcheri	4,824	1,598	21,754	5,102	26,578	5,763	82\%
Bream	Frypan Bream	Argyrops spinifer	0	0	39	37	39	37	100\%
Bream	Pink Snapper	Chrysophrys auratus	13,201	1,151	37,539	4,224	50,741	4,948	74\%
Bream	Tarwhine	Rhabdosargus sarba	1,273	470	5,043	1,263	6,316	1,457	80\%
Bream	Other Bream	Sparidae - undifferentiated	0	0	45	31	45	31	100\%

Reporting Group	Common Name
Catfish	Estuary Cobbler
Catfish	Giant Sea Catfish
Catfish	Other Catfish
Cobia	Cobia
Cod	Blackspotted Rockcod
Cod	Breaksea Cod
Cod	Chinaman Rockcod
Cod	Eightbar Grouper
Cod	Goldspotted Rockcod
Cod	Harlequin Fish
Cod	Rankin Cod
Cod	Temperate Basses \& Rockcods
Coral Trout	Coral Trout
Coral Trout	Yellowedge Coronation Trout
Emperor	Redthroat Emperor
Emperor	Robinsons' Seabream
Emperor	Spangled Emperor
Emperor	Yellowtail Emperor
Emperor	Other Emperor
Flathead	Southern Bluespotted Flathead
Flathead	Yellowtail Flathead
Flounder	Smalltooth Flounder
Flounder	Other Flatfish
Garfish	Southern Garfish
Garfish	Three-by-two Garfish
Giant Perch	Sand Bass
Goatfish	Bluespotted Goatfish
Grunter	Sea Trumpeter
Grunter	Western Striped Grunter
Grunter	Striped Grunter
Grunter Bream	Painted Sweetlips
Gurnard	Bighead Gurnard Perch
Gurnard	Gurnard
Jewfish	Mulloway
Leatherjacket	Horseshoe Leatherjacket

Scientific Name
Cnidoglanis macrocephalus
Netuma thalassina
Ariidae - undifferentiated
Rachycentron canadum
Epinephelus malabaricus
Epinephelides armatus
Epinephelus rivulatus
Hyporthodus octofasciatus
Epinephelus coioides
Othos dentex
Epinephelus multinotatus
Percichthyidae, Serranidae - undiff
Plectropomus maculatus \& leopardus
Variola louti
Lethrinus miniatus
Gymnocranius grandoculis
Lethrinus nebulosus
Lethrinus atkinsoni
Lethrinidae - undifferentiated
Platycephalus speculator
Platycephalus westraliae
Pseudorhombus jenynsii
Bothidae, Psettodidae \& Pleuronectidae
Hyporhamphus melanochir
Hemiramphus robustus
Psammoperca waigiensis
Upeneichthys vlamingii
Pelsartia humeralis
Pelates octolineatus
Terapontidae - undifferentiated
Diagramma labiosum
Neosebastes pandus
Neosebastidae - undifferentiated
Argyrosomus japonicus
Meuschenia hippocrepis
Her
Eer

Kept	se	Released	se	Total	se	\% Rel
49	34	73	56	122	66	60\%
19	19	67	56	86	59	78\%
193	185	0	0	193	185	0\%
96	46	59	41	156	61	38\%
294	86	1,067	310	1,361	325	78\%
10,077	888	8,462	1,259	18,539	1,865	46\%
719	251	1,689	473	2,408	557	70\%
322	185	19	19	342	186	6\%
129	57	586	185	715	203	82\%
1,325	205	411	112	1,737	237	24\%
160	75	223	98	384	147	58\%
204	80	882	334	1,086	358	81\%
1,313	305	998	312	2,311	534	43\%
19	19	100	70	119	81	84\%
1,628	384	4,113	1,574	5,741	1,871	72\%
38	37	32	22	71	53	45\%
329	87	693	250	1,022	287	68\%
58	56	87	59	144	82	60\%
515	175	1,289	513	1,804	617	71\%
3,524	1,062	26,997	8,202	30,521	8,645	88\%
1,269	460	6,482	2,199	7,752	2,355	84\%
270	86	154	72	424	113	36\%
116	52	44	29	160	60	27\%
1,994	992	221	125	2,215	1,008	10\%
0	0	58	56	58	56	100\%
0	0	77	52	77	52	100\%
454	201	1,460	469	1,913	570	76\%
700	433	7,748	3,358	8,449	3,393	92\%
549	386	5,655	1,720	6,204	1,831	91\%
0	0	376	162	376	162	100\%
236	73	192	129	428	152	45\%
381	171	2,177	598	2,559	632	85\%
197	83	3,429	769	3,627	780	95\%
264	113	339	143	602	204	56\%
160	66	467	182	627	214	74\%

Reporting Group	Common Name
Leatherjacket	Sixspine Leatherjacket
Leatherjacket	Leatherjacket
Mackerel	Blue Mackerel
Mackerel	Grey Mackerel
Mackerel	School Mackerel
Mackerel	Shark Mackerel
Mackerel	Spanish Mackerel
Mackerel	Spotted Mackerel
Mackerel	Other Mackerel \& Tuna
Mahi Mahi	Mahi Mahi
Morwong	Blue Morwong
Morwong	Dusky Morwong
Mullet	Sea Mullet
Mullet	Yelloweye Mullet
Mullet	Other Mullet
Pearl Perch	West Australian Dhufish
Pike	Great Barracuda
Pike	Snook
Pike	Common Dart
Pike	Yellowtail Barracuda
Redfish	Other Pike
Redfish	Bight Redfish
Redfish	Swallowtail
Salmon Herring	Yelloweye Redfish
Salmon Herring	Australian Herring
Sergeant Baker	Western Australian Salmon
Small Baitfish	Sergeant Baker
Sweep	Herrings \& llishas
Sweep	Sanded Sweep
Tailor	Sea Sweep
Trevally	Treadfin Bream
Trevalla	Cevally

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Meuschenia freycineti	38	37	125	53	164	70	76\%
Monacanthidae - undifferentiated	420	145	802	194	1,222	252	66\%
Scomber australasicus	0	0	58	42	58	42	100\%
Scomberomorus semifasciatus	19	19	38	37	58	56	67\%
Scomberomorus queenslandicus	154	127	0	0	154	127	0\%
Grammatorcynus bicarinatus	119	48	50	30	170	56	30\%
Scomberomorus commerson	704	243	130	70	833	295	16\%
Scomberomorus munroi	13	12	0	0	13	12	0\%
Scombridae - undifferentiated	147	86	32	22	180	89	18\%
Coryphaena spp.	185	99	19	19	204	111	9\%
Nemadactylus valenciennesi	2,014	375	576	220	2,589	448	22\%
Dactylophora nigricans	49	34	0	0	49	34	0\%
Mugil cephalus	2,690	1,425	37	36	2,726	1,426	1\%
Aldrichetta forsteri	7,292	6,056	0	0	7,292	6,056	0\%
Mugilidae - undifferentiated	2,301	2,133	0	0	2,301	2,133	0\%
Glaucosoma hebraicum	22,628	1,617	49,020	4,114	71,648	5,499	68\%
Sphyraena barracuda	0	0	38	37	38	37	100\%
Sphyraena novaehollandiae	1,265	533	1,271	633	2,536	919	50\%
Sphyraena obtusata	257	102	346	164	604	200	57\%
Sphyraenidae - undifferentiated	300	105	0	0	300	105	0\%
Centroberyx gerrardi	1,371	249	1,204	345	2,574	482	47\%
Centroberyx lineatus	200	87	123	63	323	133	38\%
Centroberyx australis	0	0	10	9	10	9	100\%
Arripis georgianus	83,651	12,109	20,102	4,819	103,753	14,673	19\%
Arripis truttaceus	3,620	660	15,612	3,707	19,232	4,069	81\%
Latropiscis purpurissatus	2,199	652	3,764	580	5,963	1,012	63\%
Clupeidae, Pristigasteridae - undiff	0	0	25	17	25	17	100\%
Scorpis georgiana	649	257	1,173	277	1,822	391	64\%
Scorpis aequipinnis	887	228	783	334	1,670	407	47\%
Pomatomus saltatrix	7,682	1,583	5,421	1,216	13,102	2,450	41\%
Pentapodus vitta	5,342	1,589	19,449	5,675	24,792	6,436	78\%
Hyperoglyphe antarctica	135	92	0	0	135	92	0\%
Seriola dumerili	55	53	469	263	524	275	89\%
Trachinotus botla	39	26	58	42	96	62	60\%
Caranx ignobilis	58	42	0	0	58	42	0\%

Reporting Group	Common Name
Trevally	Golden Trevally
Trevally	Samsonfish
Trevally	Silver Trevally
Trevally	Turrum
Trevally	Yellowtail Kingfish
Trevally	Yellowtail Scad
Trevally	Other Trevally
Tripletail	Tripletail
Tropical Snapper	Crimson Snapper
Tropical Snapper	Darktail Snapper
Tropical Snapper	Mangrove Jack
Tropical Snapper	Red Emperor
Tropical Snapper	Ruby Snapper
Tropical Snapper	Stripey Snapper
Tropical Snapper	Other Snapper
Tuna	Longtail Tuna
Tuna	Mackerel Tuna
Tuna	Skipjack Tuna
Tuna	Southern Bluefin Tuna
Tuna	Yellowfin Tuna
Tuskfish Wrasse	Baldchin Groper
Tuskfish Wrasse	Bluebarred Parrotfish
Tuskfish Wrasse	Brownspotted Wrasse
Tuskfish Wrasse	Foxfish
Tuskfish Wrasse	Southern Maori Wrasse
Tuskfish Wrasse	Western Blue Groper
Tuskfish Wrasse	Western King Wrasse
Tuskfish Wrasse	Other Parrotfish
Tuskfish Wrasse	Other Wrasse
Western Blue Devil	Western Blue Devil
Whiting	King George Whiting
Whiting	School Whiting
Whiting	Western Trumpeter Whiting
Whiting	Other Whiting
Wreckfish	Bass Groper

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Gnathanodon speciosus	26	25	0	0	26	25	0\%
Seriola hippos	1,491	239	8,768	1,531	10,259	1,616	85\%
Pseudocaranx spp. complex	27,717	3,735	23,498	6,475	51,215	9,127	46\%
Carangoides fulvoguttatus	0	0	13	12	13	12	100\%
Seriola lalandi	670	228	690	231	1,360	399	51\%
Trachurus novaezelandiae	584	327	308	195	892	515	35\%
Carangidae - undifferentiated	96	49	196	178	292	185	67\%
Lobotes surinamensis	19	18	0	0	19	18	0\%
Lutjanus erythropterus	37	22	69	67	107	79	65\%
Lutjanus lemniscatus	25	24	0	0	25	24	0\%
Lutjanus argentimaculatus	18	18	19	18	38	26	51\%
Lutjanus sebae	209	90	392	182	600	206	65\%
Etelis carbunculus	37	36	0	0	37	36	0\%
Lutjanus carponotatus	6	6	335	155	342	155	98\%
Lutjanidae - undifferentiated	19	19	0	0	19	19	0\%
Thunnus tonggol	38	37	19	19	58	42	33\%
Euthynnus affinis	156	82	198	149	354	188	56\%
Katsuwonus pelamis	475	270	173	107	648	295	27\%
Thunnus maccoyii	1,232	290	261	128	1,493	372	17\%
Thunnus albacares	204	75	627	502	831	560	75\%
Choerodon rubescens	14,516	1,485	9,786	1,502	24,302	2,610	40\%
Scarus ghobban spp. complex	666	318	1,647	493	2,313	609	71\%
Notolabrus parilus	4,002	1,168	10,943	1,452	14,944	1,952	73\%
Bodianus frenchii	1,168	240	1,033	285	2,201	479	47\%
Ophthalmolepis lineolatus	1,058	392	3,986	892	5,044	1,056	79\%
Achoerodus gouldii	366	171	29	18	395	174	7\%
Coris auricularis	6,127	1,295	27,700	3,342	33,827	3,775	82\%
Scaridae - undifferentiated	58	42	1,676	635	1,734	638	97\%
Labridae - undifferentiated	169	92	2,168	706	2,336	716	93\%
Paraplesiops sinclairi	38	26	332	113	370	119	90\%
Sillaginodes punctata	22,686	3,191	4,255	1,038	26,942	3,593	16\%
Sillago schomburgkii, bassensis \& vittata	159,293	24,505	50,590	18,318	209,883	39,039	24\%
Sillago burrus	500	250	3,407	1,021	3,907	1,060	87\%
Sillaginidae - undifferentiated	74	72	134	105	208	142	64\%
Polyprion americanus	13	12	0	0	13	12	0\%

Reporting Group	Common Name
Wreckfish	Hapuku
Finfish Other	Butterfish
Finfish Other	Dory
Finfish Other	Conger Eel
Finfish Other	Other Eel
Finfish Other	Moonfish Batfish
Finfish Other	Silver Toadfish
Finfish Other	Weeping Toadfish
Finfish Other	Other Toadfish
Finfish Other	Other Boxfish
Finfish Other	Other Boarfish

Scientific Name
Polyprion oxygeneios
Stromateidae - undifferentiated
Zeidae - undifferentiated
Congridae, Colocongridae - undiff
Order Anguilliformes - undifferentiated
Ephippidae, Drepaneidae - undifferentiated
Lagocephalus sceleratus
Torquigener pleurogramma
Tetraodontidae - undifferentiated
Ostraciidae - undifferentiated
Pentacerotidae - undifferentiated

Kept	se	Released	se	Total	se	\% Rel
$\mathbf{1 8 8}$	$\mathbf{9 0}$	0	0	$\mathbf{1 8 8}$	$\mathbf{9 0}$	0%
0	0	462	$\mathbf{2 5 1}$	$\mathbf{4 6 2}$	$\mathbf{2 5 1}$	100%
19	$\mathbf{1 8}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{3 2}$	$\mathbf{2 2}$	40%
0	0	96	$\mathbf{7 7}$	$\mathbf{9 6}$	$\mathbf{7 7}$	100%
0	0	82	$\mathbf{4 4}$	$\mathbf{8 2}$	$\mathbf{4 4}$	100%
13	$\mathbf{1 2}$	0	0	$\mathbf{1 3}$	$\mathbf{1 2}$	0%
0	0	2,218	527	2,218	527	100%
0	0	1,566	459	1,566	459	100%
39	$\mathbf{3 7}$	9,632	3,087	9,671	3,088	100%
0	0	38	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 7}$	100%
39	$\mathbf{2 6}$	0	0	$\mathbf{3 9}$	$\mathbf{2 6}$	0%

Table 11. Estimated annual catch (total, kept and released numbers) and proportion released in the South Coast bioregion during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); values in italics indicate <30 respondents recorded catches of the species).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Abalone	Roe's Abalone	Haliotis roei	712	421	0	0	712	421	0\%
Abalone	Greenlip Abalone	Haliotis laevigata	57	37	0	0	57	37	0\%
Cephalopod	Cuttlefish	Sepia spp.	160	84	27	23	188	87	15\%
Cephalopod	Octopus	Octopodidae - undifferentiated	25	23	0	0	25	23	0\%
Cephalopod	Squid	Order Teuthoidea - undifferentiated	4,038	915	357	224	4,395	980	8\%
Lobster	Southern Rock Lobster	Jasus edwardsii	69	57	5	5	75	62	7\%
Crab	Blue Swimmer Crab	Portunus armatus	2,918	1,156	1,817	777	4,735	1,894	38\%
Sharks	Bronze Whaler	Carcharhinus brachyurus	45	21	39	37	84	43	46\%
Sharks	Dusky Whaler	Carcharhinus obscurus	47	38	0	0	47	38	0\%
Sharks	Gummy Sharks	Mustelus antarcticus \& stevensi	87	75	39	37	125	83	31\%
Sharks	Hammerhead Shark	Sphyrnidae - undifferentiated	12	8	32	22	45	24	72\%
Sharks	Port Jackson Shark	Heterodontus portusjacksoni	0	0	124	55	124	55	100\%
Sharks	Whiskery Shark	Furgaleus macki	12	11	0	0	12	11	0\%
Sharks	Wobbegong	Orectolobidae - undifferentiated	12	11	19	18	32	22	61\%
Sharks	Other Shark	Sharks - undifferentiated	0	0	137	97	137	97	100\%
Rays	Western Shovelnose Ray	Aptychotrema vincentiana	0	0	32	22	32	22	100\%
Rays	Other Rays Skates	Order Rajiformes - undifferentiated	0	0	59	40	59	40	100\%
Bonito	Bonito	Sarda australis \& Cybiosarda elegans	301	101	225	124	526	197	43\%
Bonito	Oriental Bonito	Sarda orientalis	147	78	23	16	171	83	14\%
Bream	Black Bream	Acanthopagrus butcheri	11,154	4,795	23,311	6,045	34,466	10,289	68\%
Bream	Pink Snapper	Chrysophrys auratus	2,260	413	10,317	2,670	12,577	2,825	82\%
Bream	Tarwhine	Rhabdosargus sarba	351	131	2,106	1,399	2,456	1,412	86\%
Catfish	Estuary Cobbler	Cnidoglanis macrocephalus	632	373	0	0	632	373	0\%
Cod	Breaksea Cod	Epinephelides armatus	6,544	1,157	2,818	537	9,361	1,583	30\%
Cod	Eightbar Grouper	Hyporthodus octofasciatus	8	8	0	0	8	8	0\%
Cod	Harlequin Fish	Othos dentex	921	188	99	38	1,020	209	10\%
Cod	Temperate Basses \& Rockcods	Percichthyidae, Serranidae - undiff	25	23	616	256	641	257	96\%
Emperor	Other Emperor	Lethrinidae - undifferentiated	78	43	0	0	78	43	0\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	1,195	339	945	280	2,140	470	44\%
Flounder	Smalltooth Flounder	Pseudorhombus jenynsii	72	32	76	41	148	52	51\%
Garfish	Southern Garfish	Hyporhamphus melanochir	273	158	8	8	281	162	3\%
Garfish	Other Garfish	Hemiramphidae - undifferentiated	39	37	158	108	197	141	80\%

Reporting Group	Common Name
Goatfish	Bluespotted Goatfish
Grunter	Sea Trumpeter
Grunter	Western Striped Grunter
Grunter	Striped Grunter
Gurnard	Bighead Gurnard Perch
Gurnard	Gurnard
Jewfish	Mulloway
Leatherjacket	Horseshoe Leatherjacket
Leatherjacket	Sixspine Leatherjacket
Leatherjacket	Leatherjacket
Lizardfish	Lizardfish Grinners
Mackerel	Blue Mackerel
Mackerel	Other Mackerel \& Tuna
Morwong	Blue Morwong
Mullet	Sea Mullet
Pearl Perch	West Australian Dhufish
Pike	Snook
Pike	Yellowtail Barracuda
Pike	Other Pike
Redfish	Bight Redfish
Redfish	Swallowtail
Salmon Herring	Australian Herring
Salmon Herring	Western Australian Salmon
Sergeant Baker	Sergeant Baker
Small Baitfish	Herrings \& llishas
Sweep	Banded Sweep
Sweep	Sea Sweep
Tailor	Tailor
Trevalla	Blue-Eye Trevalla
Trevally	Samsonfish
Trevally	Silver Trevally
Trevally	Yellowtail Kingfish
Trevally	Yellowtail Scad
Trevally	Other Trevally
Tropical Snapper	Other Snapper

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Upeneichthys vlamingii	25	16	228	91	253	93	90\%
Pelsartia humeralis	0	0	574	251	574	251	100\%
Pelates octolineatus	0	0	969	575	969	575	100\%
Terapontidae - undifferentiated	0	0	210	171	210	171	100\%
Neosebastes pandus	19	19	288	175	307	176	94\%
Neosebastidae - undifferentiated	84	45	276	102	361	120	77\%
Argyrosomus japonicus	12	8	215	161	227	162	95\%
Meuschenia hippocrepis	255	121	402	177	657	238	61\%
Meuschenia freycineti	28	20	60	29	88	43	69\%
Monacanthidae - undifferentiated	107	57	1,014	322	1,122	330	90\%
Bathysauridae, Synodontidae - undiff	0	0	8	7	8	7	100\%
Scomber australasicus	0	0	21	13	21	13	100\%
Scombridae - undifferentiated	137	56	80	63	217	88	37\%
Nemadactylus valenciennesi	3,294	671	331	97	3,625	694	9\%
Mugil cephalus	55	53	165	143	220	159	75\%
Glaucosoma hebraicum	1,171	236	2,086	499	3,257	695	64\%
Sphyraena novaehollandiae	555	211	109	76	664	228	16\%
Sphyraena obtusata	17	12	12	11	30	17	42\%
Sphyraenidae - undifferentiated	27	16	38	37	66	40	59\%
Centroberyx gerrardi	10,221	1,511	5,430	1,616	15,651	2,761	35\%
Centroberyx lineatus	2,202	687	1,151	353	3,353	1,000	34\%
Arripis georgianus	20,817	3,263	8,274	1,782	29,091	4,270	28\%
Arripis truttaceus	948	318	1,674	663	2,622	889	64\%
Latropiscis purpurissatus	456	172	1,585	405	2,041	498	78\%
Clupeidae, Pristigasteridae - undiff	11	10	0	0	11	10	0\%
Scorpis georgiana	154	76	79	36	233	94	34\%
Scorpis aequipinnis	1,182	273	305	83	1,487	306	21\%
Pomatomus saltatrix	111	72	37	34	148	104	25\%
Hyperoglyphe antarctica	29	19	0	0	29	19	0\%
Seriola hippos	462	95	1,746	1,079	2,207	1,124	79\%
Pseudocaranx spp. complex	4,770	911	3,720	825	8,491	1,642	44\%
Seriola lalandi	478	127	248	133	725	214	34\%
Trachurus novaezelandiae	592	519	321	235	913	747	35\%
Carangidae - undifferentiated	468	182	74	39	542	193	14\%
Lutjanidae - undifferentiated	37	34	0	0	37	34	0\%

Reporting Group	Common Name	Sc
Tuna	Skipjack Tuna	K
Tuna	Southern Bluefin Tuna	Th
Tuskfish Wrasse	Brownspotted Wrasse	No
Tuskfish Wrasse	Foxfish	Bo
Tuskfish Wrasse	Southern Maori Wrasse	Op
Tuskfish Wrasse	Western Blue Groper	Acha
Tuskfish Wrasse	Western King Wrasse	Coris
Tuskfish Wrasse	Other Parrotfish	Scar
Tuskfish Wrasse	Other Tuskfish	Cher
Tuskfish Wrasse	Other Wrasse	La
Western Blue Devil	Western Blue Devil	Para
Whiting	King George Whiting	Si
Whiting	School Whiting	Si
Wreckfish	Bass Groper	Poly
Wreckfish	Hapuku	Poly
Finfish Other	Butterfish	Str
Finfish Other	Dory	Zeid
Finfish Other	Other Eel	O
Finfish Other	Weeping Toadfish	Torq
Finfish Other	Other Toadfish	Tet
Finfish Other	Other Boxfish	Other

Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Katsuwonus pelamis	62	41	0	0	62	41	0\%
Thunnus maccoyii	618	173	199	86	817	222	24\%
Notolabrus parilus	361	141	3,112	767	3,473	826	90\%
Bodianus frenchii	609	173	270	188	879	329	31\%
Ophthalmolepis lineolatus	51	31	1,009	432	1,060	433	95\%
Achoerodus gouldii	224	71	24	13	249	76	10\%
Coris auricularis	190	98	2,047	505	2,237	545	91\%
Scaridae - undifferentiated	611	541	63	43	674	543	9\%
Choerodon spp.	136	56	5	5	142	56	4\%
Labridae - undifferentiated	518	473	502	291	1,020	555	49\%
Paraplesiops sinclairi	63	53	337	179	400	187	84\%
Sillaginodes punctata	13,134	3,401	7,487	2,247	20,622	5,256	36\%
Sillago schomburgkii, bassensis \& vittata	11,888	3,605	4,853	2,018	16,741	4,580	29\%
Polyprion americanus	0	0	11	10	11	10	100\%
Polyprion oxygeneios	121	68	37	34	158	86	23\%
Stromateidae - undifferentiated	0	0	21	19	21	19	100\%
Zeidae - undifferentiated	13	12	0	0	13	12	0\%
Order Anguilliformes - undifferentiated	0	0	5	5	5	5	100\%
Torquigener pleurogramma	0	0	37	34	37	34	100\%
Tetraodontidae - undifferentiated	0	0	56	27	56	27	100\%
Ostraciidae - undifferentiated	8	8	0	0	8	8	0\%
Pentacerotidae - undifferentiated	13	12	0	0	13	12	0\%

8 Estimates of Catch by Zones within Bioregions

This section presents estimates of boat-based recreational catch for the 12-months from September 2015 to August 2016. Estimates are presented for annual catch (total, kept and released, by number) and proportions released (\% released) for zones in each bioregion: Kimberley (Table 12) and Pilbara (Table 13) zones in the North Coast; Ningaloo (Table 14) and Carnarvon/Shark Bay (Table 15) zones in the Gascoyne Coast; Mid West (Table 16), Metro (Table 17) and South West (Table 18) zones in the West Coast; and the Albany (Table 19) and Esperance (Table 20) zones in the South Coast.

8.1 Kimberley

A total of 105 species/taxa were reported in the Kimberley zone in 2015/16, which represented 2.7% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 12. The most common finfish species were Stripey Snapper (8% of the zone total catch), Golden Snapper (6\%), Giant Sea Catfish (6\%), Barramundi (6\%), Grass Emperor (6\%), Blue Threadfin (4\%), King Threadfin (3\%), Blue Tuskfish (3\%), Golden Trevally (3\%), Other Catfish (3\%), Spanish Mackerel (3\%), Mangrove Jack (2\%), Spangled Emperor (2\%), Crimson Snapper (2\%), Queenfish (2\%), Giant Trevally (2\%), Goldspotted Rockcod (2\%), Bludger Trevally (2\%), Blackspot Tuskfish (2\%) and Western Sooty Grunter (2\%). The most common invertebrate species were Mud Crab (8\%) and Blue Swimmer Crab (3\%). These 22 species accounted for 77% of the total catch (by numbers) in the Kimberley zone in 2015/16.

8.2 Pilbara

A total of 116 species/taxa were reported in the Pilbara zone in 2015/16, which represented 3.4% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 13. The most common finfish species were Grass Emperor (7\% of the zone total catch), Stripey Snapper (7\%), Spangled Emperor (6\%), Coral Trout (6\%), Red Emperor (5\%), Blackspotted Rockcod (3\%), Mangrove Jack (3\%), Rankin Cod (3\%), Redthroat Emperor (3\%), Blue Tuskfish (2\%), Spanish Mackerel (2\%), Other Trevally (2\%), Blackspot Tuskfish (2\%) and Giant Sea Catfish (2\%). The most common invertebrate species were Blue Swimmer Crab (13\%) and Squid (3\%). These 16 species accounted for 68\% of the total catch (by numbers) in the Pilbara zone in 2015/16.

8.3 Ningaloo

A total of 120 species/taxa were reported in the Ningaloo zone in 2015/16, which represented 2.3% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 14. The most common finfish species were Chinaman Rockcod (23% of the zone total catch), Spangled Emperor (11\%), Redthroat Emperor (8\%), Goldband Snapper (4\%), Grass Emperor (3\%), Prawn (3\%), Spanish Mackerel (3\%), Red Emperor (2\%) and Stripey Snapper (2\%). The most common invertebrate species
were Squid (7\%) and Blue Swimmer Crab (2\%). These 11 species accounted for 67% of the total catch (by numbers) in the Ningaloo zone in 2015/16.

8.4 Carnarvon/Shark Bay

A total of 131 species/taxa were reported in the Carnarvon/Shark Bay zone in 2015/16, which represented 6.1% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 15. The most common finfish species were Pink Snapper (34\% of the zone total catch), Grass Emperor (9\%), Spangled Emperor (5\%), Red Emperor (3\%), Baldchin Groper (3\%), Stripey Snapper (3\%), School Whiting (2\%), Redthroat Emperor (2\%), Chinaman Rockcod (2\%), School Mackerel (2\%), Western Butterfish (2\%) and Rankin Cod (2\%). The most common invertebrate species were Blue Swimmer Crab (6\%) and Squid (2\%). These 14 species accounted for 76% of the total catch (by numbers) in the Carnarvon/Shark Bay zone in 2015/16.

8.5 Mid West

A total of 99 species/taxa were reported in the Mid West zone (including the Kalbarri zone) in 2015/16, which represented 7.0% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 16. The most common finfish species were West Australian Dhufish (9% of the zone total catch), Baldchin Groper (8\%), Pink Snapper (4\%), Redthroat Emperor (3\%), Western King Wrasse (2\%), Breaksea Cod (2\%) and Australian Herring (2\%). The most common invertebrate species was Western Rock Lobster (52\%). These eight species accounted for 82% of the total catch (by numbers) in the Mid West zone in 2015/16.

8.6 Metropolitan

A total of 140 species/taxa were reported in the Metropolitan zone in 2015/16, which represented 55.1% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 17. The most common finfish species were School Whiting (11% of the zone total catch), Australian Herring (5\%), Silver Trevally (2\%), West Australian Dhufish (2\%), Pink Snapper (2\%), Western King Wrasse (2\%) and Western Butterfish (2\%). The most common invertebrate species were Blue Swimmer Crab (41\%), Western Rock Lobster (18\%) and Squid (3\%). These ten species accounted for 86% of the total catch (by numbers) in the Metropolitan zone in 2015/16.

8.7 South West

A total of 107 species/taxa were reported in the South West zone in 2015/16, which represented 15.4% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 18. The most common finfish species were School Whiting (14% of the zone total catch), Australian Herring (9\%), Western Rock Lobster (8\%), West Australian Dhufish (7\%), Silver Trevally (5\%), Pink Snapper (4\%), Black Bream (3\%), Southern Bluespotted Flathead (3\%), King George Whiting (3\%), Western King

Wrasse (2\%) and Sea Trumpeter (2\%) The most common invertebrate species were Blue Swimmer Crab (19\%) and Squid (4\%). These 13 species accounted for 84% of the total catch (by numbers) in the South West zone in 2015/16.

8.8 Albany

A total of 84 species/taxa were reported in the Albany zone in 2015/16, which represented 6.4% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 19. The most common finfish species were Black Bream (19% of the zone total catch), King George Whiting (12\%), Australian Herring (11\%), Pink Snapper (8\%), School Whiting (7\%), Bight Redfish (5\%), Breaksea Cod (4\%), Silver Trevally (4\%), West Australian Dhufish (2\%), Blue Morwong (2\%), Swallowtail (2\%), Brownspotted Wrasse (2\%), Western Australian Salmon (2\%) and Tarwhine (2\%). The most common invertebrate species were Squid (2\%) and Blue Swimmer Crab (2\%). These 16 species accounted for 86% of the total catch (by numbers) in the Albany zone in 2015/16.

8.9 Esperance

A total of 56 species/taxa were reported in the Esperance zone in 2015/16, which represented 1.6% of the statewide total catch (by numbers). Estimates for species where the sample size and relative standard error was acceptable are given in Table 20. The most common finfish species were Australian Herring (25% of the zone total catch), Bight Redfish (18\%), School Whiting (14\%), Black Bream (7\%), Breaksea Cod (5\%), Silver Trevally (4\%), King George Whiting (2\%), Western King Wrasse (2\%), Brownspotted Wrasse (2\%) and Blue Morwong (2\%). The most common invertebrate species was Blue Swimmer Crab (3\%). These 11 species accounted for 83% of the total catch (by numbers) in the Esperance zone in 2015/16.

Figure 81. Map of reporting areas in Western Australia, including four bioregions (solid lines) and ten zones within bioregions (dotted lines).

Table 12. Estimated annual catch (total, kept and released numbers) and proportion released in the Kimberley zone of the North Coast $\mathbf{2 0 1 5 / 1 6}$ by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Catfish	Giant Sea Catfish	Netuma thalassina	49	32	4,011	942	4,060	944	99\%
Catfish	Other Catfish	Ariidae - undifferentiated	8	7	1,805	499	1,814	499	100\%
Giant Perch	Barramundi	Lates calcarifer	1,067	222	2,978	1,441	4,045	1,599	74\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	842	187	888	346	1,729	459	51\%
Threadfin	Blue Threadfin	Eleutheronema tetradactylum	1,805	408	1,000	310	2,805	591	36\%
Threadfin	King Threadfin	Polydactylus macrochir	1,469	524	716	263	2,185	775	33\%
Trevally	Golden Trevally	Gnathanodon speciosus	412	120	1,420	388	1,832	445	78\%
Tropical Snapper	Golden Snapper	Lutjanus johnii	1,998	571	2,283	695	4,282	1,215	53\%
Tropical Snapper	Mangrove Jack	Lutjanus argentimaculatus	634	170	969	267	1,603	370	60\%
Tropical Snapper	Stripey Snapper	Lutjanus carponotatus	2,208	1,170	3,516	1,514	5,724	2,668	61\%

Table 13. Estimated annual catch (total, kept and released numbers) and proportion released in the Pilbara zone of the North Coast during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Cod	Rankin Cod	Epinephelus multinotatus	1,275	293	1,219	332	2,494	544	49\%
Coral Trout	Coral Trout	Plectropomus maculatus \& leopardus	2,166	390	2,678	1,241	4,843	1,420	55\%
Emperor	Grass Emperor	Lethrinus laticaudis	1,862	476	3,903	1,468	5,765	1,682	68\%
Emperor	Spangled Emperor	Lethrinus nebulosus	1,412	418	3,987	1,418	5,399	1,559	74\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	1,010	178	951	218	1,961	331	49\%
Tropical Snapper	Mangrove Jack	Lutjanus argentimaculatus	1,214	292	1,638	550	2,852	796	57\%
Tropical Snapper	Red Emperor	Lutjanus sebae	1,671	406	3,044	1,064	4,715	1,416	65\%
Tropical Snapper	Stripey Snapper	Lutjanus carponotatus	1,062	282	4,694	1,268	5,755	1,423	82\%
Tuskfish Wrasse	Blue Tuskfish	Choerodon cyanodus	455	138	1,559	574	2,014	599	77\%

Table 14. Estimated annual catch (total, kept and released numbers) and proportion released in the Ningaloo zone of the Gascoyne Coast during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

| Reporting Group | Common Name | Scientific Name | Kept | se | Released | se | \% Rel | | |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Cod | Chinaman Rockcod | Epinephelus rivulatus | $\mathbf{4 , 1 0 7}$ | $\mathbf{1 , 9 8 4}$ | $\mathbf{9 , 1 5 4}$ | $\mathbf{4 , 4 5 7}$ | $\mathbf{1 3 , 2 6 1}$ | $\mathbf{6 , 0 9 7}$ | 69% |
| Coral Trout | Coral Trout | Plectropomus maculatus \& leopardus | 441 | 95 | 379 | 127 | 820 | 170 | 46% |
| Emperor | Spangled Emperor | Lethrinus nebulosus | 2,887 | 686 | 3,451 | 954 | 6,338 | 1,487 | 54% |
| Mackerel | Spanish Mackerel | Scomberomorus commerson | 931 | 197 | 544 | 167 | 1,475 | 317 | 37% |

Table 15. Estimated annual catch (total, kept and released numbers) and proportion released in the Carnarvon/Shark Bay zone of the Gascoyne Coast during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Bream	Pink Snapper	Chrysophrys auratus	12,250	1,925	41,389	7,122	53,639	8,405	77\%
Cobia	Cobia	Rachycentron canadum	1,106	262	485	216	1,591	389	30\%
Cod	Goldspotted Rockcod	Epinephelus coioides	1,574	589	374	142	1,949	646	19\%
Cod	Rankin Cod	Epinephelus multinotatus	2,364	394	538	157	2,902	446	19\%
Coral Trout	Coral Trout	Plectropomus maculatus \& leopardus	698	162	133	59	830	178	16\%
Emperor	Grass Emperor	Lethrinus laticaudis	5,173	1,078	8,860	2,796	14,032	3,378	63\%
Emperor	Redthroat Emperor	Lethrinus miniatus	1,674	477	1,603	460	3,277	821	49\%
Emperor	Spangled Emperor	Lethrinus nebulosus	3,271	706	4,062	920	7,332	1,398	55\%
Mackerel	Spanish Mackerel	Scomberomorus commerson	1,302	294	1,002	475	2,304	698	43\%
Tropical Snapper	Red Emperor	Lutjanus sebae	3,132	759	1,955	594	5,087	1,261	38\%
Tropical Snapper	Stripey Snapper	Lutjanus carponotatus	1,267	502	3,062	1,144	4,329	1,334	71\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	2,076	367	2,291	1,023	4,368	1,180	52\%

Table 16. Estimated annual catch (total, kept and released numbers) and proportion released in the Mid West zone of the West Coast during $2015 / 16$ by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Lobster	Western Rock Lobster	Panulirus cygnus	51,695	8,995	41,133	9,974	92,829	18,180	44\%
Bream	Pink Snapper	Chrysophrys auratus	3,468	513	4,393	870	7,860	1,248	56\%
Cod	Breaksea Cod	Epinephelides armatus	1,536	227	1,324	359	2,860	467	46\%
Coral Trout	Coral Trout	Plectropomus maculatus \& leopardus	1,313	305	998	312	2,311	534	43\%
Emperor	Redthroat Emperor	Lethrinus miniatus	1,479	377	3,859	1,562	5,338	1,853	72\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	7,454	882	9,228	1,580	16,681	2,318	55\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	8,921	1,261	5,565	933	14,486	1,982	38\%

Table 17. Estimated annual catch (total, kept and released numbers) and proportion released in the Metropolitan zone of the West Coast during $2015 / 16$ by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Cephalopod	Cuttlefish	Sepia spp.	1,205	273	493	184	1,698	338	29\%
Cephalopod	Squid	Order Teuthoidea - undifferentiated	34,576	4,691	986	297	35,562	4,787	3\%
Lobster	Western Rock Lobster	Panulirus cygnus	173,030	17,228	87,297	12,205	260,327	26,940	34\%
Crab	Blue Swimmer Crab	Portunus armatus	161,302	14,325	413,135	37,714	574,437	49,061	72\%
Rays	Other Rays Skates	Order Rajiformes - undifferentiated	38	37	1,434	313	1,472	315	97\%
Bream	Black Bream	Acanthopagrus butcheri	1,856	1,053	10,578	3,074	12,434	3,634	85\%
Bream	Pink Snapper	Chrysophrys auratus	5,504	697	20,043	3,027	25,547	3,332	78\%
Bream	Tarwhine	Rhabdosargus sarba	629	228	3,494	1,102	4,123	1,139	85\%
Cod	Breaksea Cod	Epinephelides armatus	5,732	701	6,000	1,008	11,733	1,510	51\%
Cod	Harlequin Fish	Othos dentex	577	124	342	95	918	162	37\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	2,448	966	14,980	7,167	17,427	7,634	86\%
Flathead	Yellowtail Flathead	Platycephalus westraliae	516	221	3,365	1,229	3,881	1,391	87\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	7,897	792	19,350	2,074	27,247	2,750	71\%
Salmon Herring	Australian Herring	Arripis georgianus	50,405	9,324	14,889	4,646	65,294	11,853	23\%
Salmon Herring	Western Australian Salmon	Arripis truttaceus	3,079	647	11,334	3,353	14,413	3,733	79\%
Sergeant Baker	Sergeant Baker	Latropiscis purpurissatus	1,248	396	1,836	393	3,084	675	60\%
Tailor	Tailor	Pomatomus saltatrix	4,090	989	3,065	668	7,155	1,472	43\%
Threadfin Bream	Western Butterfish	Pentapodus vitta	4,302	1,512	17,140	5,545	21,442	6,274	80\%
Trevally	Samsonfish	Seriola hippos	717	174	6,428	1,442	7,145	1,504	90\%
Trevally	Silver Trevally	Pseudocaranx spp. complex	15,908	2,529	15,516	6,156	31,423	8,079	49\%
Tuskfish Wrasse	Baldchin Groper	Choerodon rubescens	5,233	738	4,117	1,169	9,351	1,658	44\%
Tuskfish Wrasse	Brownspotted Wrasse	Notolabrus parilus	1,880	480	7,390	1,214	9,270	1,427	80\%
Tuskfish Wrasse	Foxfish	Bodianus frenchii	817	215	839	276	1,656	461	51\%
Tuskfish Wrasse	Western King Wrasse	Coris auricularis	4,246	1,054	18,299	2,396	22,544	2,846	81\%
Whiting	King George Whiting	Sillaginodes punctata	11,809	1,993	2,810	846	14,619	2,311	19\%
Whiting	School Whiting	Sillago schomburgkii, bassensis \& vittata	106,682	19,597	45,445	18,247	152,128	35,839	30\%
Finfish Other	Other Toadfish	Tetraodontidae - undifferentiated	0	0	6,325	2,120	6,325	2,120	100\%

Table 18. Estimated annual catch (total, kept and released numbers) and proportion released in the South West zone of the West Coast during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Cephalopod	Squid	Order Teuthoidea - undifferentiated	13,703	3,118	1,242	758	14,944	3,415	8\%
Lobster	Western Rock Lobster	Panulirus cygnus	23,892	5,054	7,962	2,319	31,855	6,629	25\%
Crab	Blue Swimmer Crab	Portunus armatus	20,108	3,586	55,310	10,529	75,418	13,434	73\%
Bream	Pink Snapper	Chrysophrys auratus	4,230	702	13,103	2,773	17,333	3,353	76\%
Cod	Breaksea Cod	Epinephelides armatus	2,809	469	1,138	277	3,946	671	29\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	963	431	12,017	3,898	12,980	3,966	93\%
Gurnard	Gurnard	Neosebastidae - undifferentiated	90	63	2,833	739	2,924	744	97\%
Morwong	Blue Morwong	Nemadactylus valenciennesi	1,178	260	63	39	1,241	267	5\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	7,277	1,027	20,443	3,060	27,719	3,958	74\%
Redfish	Bight Redfish	Centroberyx gerrardi	844	213	448	155	1,292	291	35\%
Salmon Herring	Australian Herring	Arripis georgianus	30,771	7,619	4,971	1,259	35,741	8,547	14\%
Trevally	Samsonfish	Seriola hippos	640	159	1,498	416	2,137	492	70\%
Trevally	Silver Trevally	Pseudocaranx spp. complex	10,724	2,701	7,579	1,818	18,303	4,068	41\%
Tuskfish Wrasse	Western King Wrasse	Coris auricularis	1,460	727	6,697	2,103	8,157	2,245	82\%
Whiting	King George Whiting	Sillaginodes punctata	10,826	2,470	1,381	596	12,208	2,727	11\%
Whiting	School Whiting	Sillago schomburgkii, bassensis \& vittata	50,725	14,421	4,719	1,323	55,444	15,121	9\%

Table 19. Estimated annual catch (total, kept and released numbers) and proportion released in the Albany zone of the South Coast during $2015 / 16$ by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

Reporting Group	Common Name	Scientific Name	Kept	se	Released	se	Total	se	\% Rel
Cephalopod	Squid	Order Teuthoidea - undifferentiated	3,534	902	345	223	3,879	967	9\%
Bream	Black Bream	Acanthopagrus butcheri	10,504	4,773	21,040	5,888	31,544	10,130	67\%
Bream	Pink Snapper	Chrysophrys auratus	2,083	401	10,179	2,654	12,262	2,793	83\%
Cod	Breaksea Cod	Epinephelides armatus	4,908	1,075	2,338	516	7,246	1,491	32\%
Flathead	Southern Bluespotted Flathead	Platycephalus speculator	1,146	337	717	235	1,863	441	38\%
Morwong	Blue Morwong	Nemadactylus valenciennesi	2,690	654	176	59	2,866	670	6\%
Pearl Perch	West Australian Dhufish	Glaucosoma hebraicum	1,164	236	2,086	499	3,249	694	64\%
Redfish	Bight Redfish	Centroberyx gerrardi	5,727	1,150	2,488	1,288	8,216	2,011	30\%
Salmon Herring	Australian Herring	Arripis georgianus	12,526	2,199	6,182	1,676	18,708	3,283	33\%
Trevally	Silver Trevally	Pseudocaranx spp. complex	3,931	867	3,030	774	6,961	1,558	44\%
Whiting	King George Whiting	Sillaginodes punctata	12,701	3,388	6,871	2,174	19,572	5,187	35\%
Whiting	School Whiting	Sillago schomburgkii, bassensis \& vittata	7,160	2,030	3,853	1,942	11,013	2,975	35\%

Table 20. Estimated annual catch (total, kept and released numbers) and proportion released in the Esperance zone of the South Coast during 2015/16 by RFBL holders aged five years or older (se is standard error; values in bold indicate relative standard error $>40 \%$ (i.e. se $>40 \%$ of estimate); only species where >30 respondents recorded catches of the species are reported).

| Reporting Group | Common Name | Scientific Name | Kept | se | Released | se | Total | se | \% Rel |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Cod | Breaksea Cod | Epinephelides armatus | 1,636 | 419 | 480 | 148 | 2,115 | 522 | 23% |
| Redfish | Bight Redfish | Centroberyx gerrardi | 4,494 | 907 | 2,942 | 742 | 7,436 | 1,515 | 40% |
| Salmon Herring | Australian Herring | Arripis georgianus | 8,291 | 2,261 | 2,092 | 591 | 10,383 | 2,566 | 20% |

9 Harvest Weights

This section presents estimates of harvest (kept catch, by weight) for the 12-months from September 2015 to August 2016 for the species assemblages (or suites) within each bioregion and habitat aligned with fisheries management in Western Australia. Estimates are provided for the: top 10 nearshore and estuarine scalefish species (or species groupings) in each bioregion (Table 21); dominant 15 scalefish species for the West Coast Demersal Scalefish Resource (Table 22); top 10 demersal scalefish species in the North Coast, Gascoyne Coast and South Coast (Table 23); top 10 pelagic scalefish species in the North Coast (Table 24); and crab resources in each Bioregion (Table 25).

Estimates of boat-based recreational catch (by number) are converted to estimates of harvest (by weight) according to average weights for key species, obtained from Boat Ramp Surveys (Appendix 1) or Tour Operator Returns (Charter Logbooks). Estimated average weights are influenced by sample design, management, and biological/environmental factors, therefore, sources of information and assumptions associated with estimated average weights can introduce bias for some species, and estimated average weights may be refined and adjusted over time. Consequently, estimated average weights and harvest estimates for the 2011/12 and 2013/14 statewide surveys have been updated (Appendix 3). The revised recreational harvest estimates were used to determine recreational harvest ranges for comparisons with harvest ranges from the 2015/16 statewide survey (Table 26).

Estimates of harvest from boat-based recreational fishing do not include catches from charterboat recreational fishing. Estimates of harvest for nearshore and estuarine species will be underestimated, particularly those species with high proportions of shore-based recreational fishing effort. An overview of the information required for stock status reporting of major recreational fisheries, based on estimates of harvest and 95% confidence intervals during 2015/16, is provided in Table 26.

9.1 Nearshore and Estuarine Resources

The top 10 nearshore and estuarine species (or species groupings) in 2015/16 represented: 83\% of the total catch (kept by numbers) in the North Coast, 91% in the Gascoyne Coast, 93% in the West Coast, and 95% in the South Coast (Table 26). Estimated recreational harvest ranges (as 95% confidence intervals, CI) for the top 10 nearshore and estuarine species in 2015/16 compared with estimates from previous statewide surveys indicated the estimated harvest range:

- in the North Coast were steady at 27 t (95% CI $20-35$ tonnes) in 2015/16 compared with 21 t (95\% CI 15-27) in 2013/14 and 28 t (95% CI 20-36) in 2011/12
- in the Gascoyne Coast were lower at 9 t (95% CI 6-13) in 2015/16, but not significantly different with 16 t (95% CI 9-22) in 2013/14 and 12 t (95\% CI 8-16) in 2011/12
- in the West Coast were steady at 68 t (95\% CI 58-77) in 2015/16 compared with 77 t (95\% CI 68-87) in 2013/14, but lower than 114 t (95\% CI 101-126) in 2011/12 (as determined by confidence intervals not overlapping)

Table 21. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the top 10 nearshore and estuarine scalefish species during 2015/16 by RFBL holders aged five years or older (values in bold indicate relative standard error $>40 \%$; values in italics indicate <30 diarists recorded catches of the species).

Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)	Source	Estimated harvest (tonnes)	Standard Error
North	King Threadfin	1,501	4.996	C	7.499	2.628
North	Barramundi	1,425	4.057	C	5.781	1.193
North	Blue Threadfin	2,051	2.744	C	5.628	1.163
North	Golden Trevally	678	4.983	C	3.378	0.708
North	Other Trevally	899	2.250	C	2.023	1.647
North	Giant Trevally	500	3.751	C	1.876	0.919
North	Bludger Trevally	478	2.250	C	1.075	0.376
North	Yellowtail Barracuda	340	0.417	S	0.142	0.093
North	Mullet	1,021	0.051	C	0.052	0.023
North	Small Baitfish	737	0	N/A	0	0
TOTAL		9,630			27.454	3.727
Gascoyne	Chinaman Rockcod	5,127	0.716	C	3.671	1.454
Gascoyne	Golden Trevally	502	4.983	C	2.501	0.583
Gascoyne	Mulloway	433	3.986	C	1.726	0.690
Gascoyne	Tailor	422	0.671	S	0.283	0.240
Gascoyne	School Whiting	2,808	0.095	S	0.267	0.121
Gascoyne	Garfish	244	0.980	S	0.239	0.202
Gascoyne	Western Butterfish	1,318	0.180	S	0.237	0.142
Gascoyne	Silver Trevally	289	0.517	S	0.149	0.053
Gascoyne	Western Yellowfin Bream	232	0.528	C	0.122	0.079
Gascoyne	Sea Mullet	894	0.051	C	0.046	0.016
TOTAL		12,269			9.241	1.753
West	Silver Trevally	27,717	0.561	B	15.549	2.095
West	School Whiting	159,293	0.095	S	15.133	2.328
West	King George Whiting	22,686	0.513	B	11.638	1.637
West	Australian Herring	83,651	0.131	B	10.958	1.586
West	Tailor	7,682	0.671	S	5.155	1.062
West	Yelloweye Mullet	7,292	0.444	C	3.238	2.689
West	Western King Wrasse	6,127	0.312	S	1.912	0.404
West	Brownspotted Wrasse	4,002	0.436	S	1.745	0.510
West	Black Bream	4,824	0.298	S	1.438	0.476
West	Western Butterfish	5,342	0.179	B	0.956	0.284
TOTAL		328,616			67.722	4.909
South	Black Bream	11,154	0.298	S	3.324	1.430
South	Western Australian Salmon	948	3.344	S	3.170	1.063
South	Australian Herring	20,817	0.138	B	2.873	0.450
South	King George Whiting	13,134	0.200	B	2.627	0.680
South	Silver Trevally	4,770	0.517	S	2.466	0.471
South	School Whiting	11,888	0.095	S	1.129	0.343
South	Southn Bluespotted Flathead	1,195	0.575	S	0.687	0.195
South	Snook	599	0.610	S	0.365	0.130
South	Yellowtail Scad	592	0.071	S	0.042	0.037
South	Estuary Cobbler	632	0	N/A	0	0
TOTAL		65,729			16.683	2.058

Average weights where: ${ }^{\mathrm{B}}$ is the bioregion estimate from Appendix $1^{*},{ }^{\mathrm{s}}$ is the statewide estimate from Appendix 1^{*}, ${ }^{\mathrm{C}}$ unpublished Tour Operator Returns

- in the South Coast were steady at 17 t (95% CI 13-21) in 2015/16 compared with 25 t (95% CI 20-31) in 2013/14, but lower than 44 t (95\% CI 37-52) in 2011/12
Estimated recreational harvests were steady in 2015/16 compared with previous statewide surveys for:
- Barramundi, Bludger Trevally, Blue Threadfin, Golden Trevally, Mullet, Small Baitfish and Yellowtail Barracuda in the North Coast
- Chinaman Rockcod, Garfish, Golden Trevally, Mulloway, School Whiting, Sea Mullet, Silver Trevally, Tailor, Western Butterfish and Western Yellowfin Bream in the Gascoyne Coast
- Black Bream, King George Whiting, School Whiting, Tailor, Western Butterfish and Western King Wrasse in the West Coast
- Australian Herring, Black Bream, School Whiting, Snook, Southern Bluespotted Flathead and Western Australian Salmon, in the South Coast

Decreases in the estimated recreational harvest of individual species in the top 10 nearshore and estuarine species occurred for:

- Australian Herring in the West Coast was steady at 11 t (95\% CI 8-14) in 2015/16 compared with 12 t (95\% CI 10-15) in 2013/14, but lower than 26 t (95\% CI 21-31) in 2011/12
- Silver Trevally in the West Coast was steady at 16 t (95% CI 11-20) in 2015/16 compared with 16 t (95% CI 12-19) in 2013/14, but lower than 26 t (95% CI 21-30) in 2011/12
- King George Whiting in the South Coast was steady at 3 t (95\% CI 1-4) in 2015/16 was lower than 9 t (95\% CI 5-13) in 2013/14 and 12 t (95\% CI 8-17) in 2011/12
- Silver Trevally in the South Coast was steady at 2 t (95% CI 2-3) in 2015/16 compared with 3 t (95\% CI 2-4) in 2013/14, but lower than 8 t (95% CI 4-7) in 2011/12

9.2 Demersal Resources

The Integrated Fisheries Management Plan for the West Coast Demersal Scalefish utilised estimates of recreational catch by weight from surveys conducted in 2005/06 (Department of Fisheries 2010). The estimated harvest weights for the West Coast Demersal Scalefish Fishery (Table 22) includes: the top commercial and recreational species, demersal species where boatbased catches predominate, and species groupings for comparisons with the commercial catches. The 'Emperor' grouping includes 5 species: Bluespotted Emperor (Lethrinus punctulatus), Grass Emperor (L. laticaudis), Longnose Emperor (L. olivaceus), Redspot Emperor (L. lentjan), Redthroat Emperor (L. miniatus), Robinson's Seabream (Gymnocranius grandoculis), Spangled Emperor (L. nebulosus) and Yellowtail Emperor (L. atkinsoni). The 'Bight Redfish' grouping includes Bight Redfish (Centroberyx gerrardi), Swallowtail (C. lineatus) and Yelloweye Redfish (C. australis).

The top 10 demersal species (or species groupings, 15 in the West Coast) in 2015/16 represented: 77% of the total catch (kept by numbers) in the North Coast, 82% in the Gascoyne Coast, 93% in the West Coast, and 96% in the South Coast (Table 26). Estimated recreational harvest ranges for the top top demersal species in 2015/16 compared with estimates from previous statewide surveys indicated the estimated harvest range:

- in the North Coast decreased from 41 t (95% CI 34-47 tonnes) in 2015/16 compared with 58 t (95\% CI 48-69) in 2013/14 and 83 t (95\% CI 73-92) in 2011/12
- the Gascoyne Coast were steady at 103 t (95% CI $87-118$) in 2015/16 compared with 101 t (95% CI 88-115) in 2013/14, but lower than 143 t (95\% CI 127-159) in 2011/12
- in the West Coast were higher at 211 t (95% CI 193-230) in 2015/16 compared with 155 t (95% CI 140-169) in 2013/14 and 160 t (95% CI 146-174) in 2011/12
- in the South Coast were steady at 45 t (95% CI 38-51) in 2015/16 compared with 34 t (95% CI $30-38$) in 2013/14 and 55 t (95\% CI 47-63) in 2011/12

Estimated recreational harvests were steady in 2015/16 compared with previous statewide surveys for:

- Blackspot Tuskfish, Golden Snapper, Mangrove Jack, Rankin Cod, Red Emperor and Stripey Snapper and in the North Coast
- Baldchin Groper, Goldband Snapper, Goldspotted Rockcod, Pink Snapper, Rankin Cod, Red Emperor and Stripey Snapper in the Gascoyne Coast
- Baldchin Groper, Bight Redfish, Blue Morwong, Breaksea Cod, Emperor, Foxfish, Pink Snapper, Sea Sweep and Sergeant Baker in the West Coast
- Bight Redfish, Blue Morwong, Breaksea Cod, Foxfish, Harlequin Fish, Pink Snapper, Sea Sweep, West Australian Dhufish and Swallowtail in the South Coast

Decreases in the the estimated recreational harvest of individual species in the top 10 demersal species (or groupings) occurred for:

- Coral Trout in the North Coast was steady at 6 t (95\% CI 4-8) in 2015/16 compared with 7 t (95\% CI 5-9) in 2013/14, but lower than 12 t (95\% CI 9-15) in 2011/12
- Grass Emperor in the North Coast was steady at 6 t (95\% CI 3-9) in 2015/16 compared with 12 t (95% CI 6-18) in 2013/14, but lower than 15 t (95\% CI 9-20) in 2011/12
- Spangled Emperor in the North Coast was lower at 4 t (95\% CI 2-5) in 2015/16 compared with 6 t (95\% CI 3-9) in 2013/14 and 15 t (95\% CI 11-18) in 2011/12
- Spangled Emperor in the Gascoyne Coast was lower at 12 t (95\% CI 8-16) in 2015/16 compared with 17 t (95\% CI 12-22) in 2013/14 and 36 t (95% CI 27-45) in 2011/12
- Grass Emperor in the Gascoyne Coast was lower at 5 t (95\% CI 3-7) in 2015/16 compared with 10 t (95\% CI 5-14) in 2013/14 and 16 t (95\% CI 12-20) in 2011/12
- Redthroat Emperor in the Gascoyne Coast was lower at 3 t (95\% CI 1-5) in 2015/16 compared with 3 t (95% CI 2-4) in 2013/14 and 8 t (95% CI 6-11) in 2011/12

The estimated recreational harvests for the indicator species in the West Coast were:

- West Australian Dhufish was higher at 113 t (95\% CI 97-129) in 2015/16 compared with 82 t (95\% CI 69-94) and 75 t (95\% CI 64-87) in 2011/12
- Baldchin Groper was higher at 35 t (95% CI 28-42) in 2015/16 compared with 21 t (95% CI 17-25) in 2013/14 and 30 t (95\% CI 24-36) in 2011/12
- Pink Snapper was steady at $36 \mathrm{t}(95 \%$ CI $30-42$) in 2015/16 compared with 30 t ($95 \% \mathrm{CI}$ 25-36) in 2013/14 and 32 t (95% CI 27-38) in 2011/12

Table 22. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the dominant 15 species in the West Coast Demersal Scalefish Fishery during 2015/16 by RFBL holders aged five years or older (values in bold indicate relative standard error $>40 \%$; values in italics indicate <30 diarists recorded catches of the species).

Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)	Source	Estimated harvest (tonnes)	Standard Error
West	West Australian Dhufish	22,628	5.003	B	113.208	8.095
West	Pink Snapper	13,201	2.711	B	35.788	3.120
West	Baldchin Groper	14,516	2.425	B	35.201	3.601
West	Breaksea Cod	10,077	0.972	S	9.795	0.863
West	Blue Morwong	2,014	2.816	S	5.671	1.056
West	Emperor	2,568	1.449	C	3.721	0.632
West	Sergeant Baker	2,199	1.093	C	2.404	0.713
West	Bight Redfish	1,571	1.223	S	1.921	0.323
West	Eightbar Grouper	$\mathbf{3 2 2}$	3.694	C	1.189	0.683
West	Sea Sweep	887	1.331	S	1.181	0.303
West	Foxfish	$\mathbf{1 , 1 6 8}$	0.836	S	0.976	0.201
West	Ruby Snapper	$\mathbf{3 7}$	8.042	C	0.298	0.290
West	Bass Groper	$\mathbf{1 3}$	0	$\mathrm{~N} / \mathrm{A}$	0	0
West	Blue-Eye Trevalla	$\mathbf{1 3 5}$	0	$\mathrm{~N} / \mathrm{A}$	0	0
West	Hapuku	$\mathbf{1 8 8}$	0	$\mathrm{~N} / \mathrm{A}$	0	0
TOTAL		$\mathbf{7 1 , 5 2 4}$			$\mathbf{2 1 1 . 3 5 3}$	$\mathbf{9 . 5 8 1}$

Average weights where: ${ }^{\mathrm{B}}$ is the bioregion estimate from Appendix 1^{*}, ${ }^{\mathrm{s}}$ is the statewide estimate from Appendix 1^{*}, ${ }^{\mathrm{C}}$ unpublished Tour Operator Returns, n / a is not available

Table 23. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the top 10 demersal scalefish species during 2015/16 by RFBL holders aged five years or older (excluding West Coast, refer to Table 22) (values in bold indicate relative standard error $>40 \%$; values in italics indicate <30 diarists recorded catches of the species).

Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)	Source	Estimated harvest (tonnes)	Standard Error
North	Coral Trout	2,377	2.615	C	6.216	1.051
North	Grass Emperor	3,820	1.582	B	6.043	1.590
North	Red Emperor	1,737	3.357	S	5.831	1.366
North	Rankin Cod	1,382	3.419	S	4.725	1.036
North	Blue Tuskfish	1,162	3.255	C	3.782	0.950
North	Spangled Emperor	1,822	1.994	S	3.633	0.893
North	Blackspot Tuskfish	1,158	2.818	S	3.263	0.789
North	Golden Snapper	2,133	1.393	C	2.971	0.802
North	Stripey Snapper	3,270	0.870	C	2.845	1.049
North	Mangrove Jack	1,848	0.772	S	1.427	0.262
TOTAL		$\mathbf{2 0 , 7 0 9}$			40.736	3.273
Gascoyne	Pink Snapper	12,448	2.591	S	32.253	5.003
Gascoyne	Goldband Snapper	3,597	4.137	C	14.881	3.992
Gascoyne	Red Emperor	3,886	3.357	S	13.045	2.699
Gascoyne	Spangled Emperor	6,158	2.007	B	12.359	1.979
Gascoyne	Rankin Cod	2,937	3.419	S	10.042	1.443
Gascoyne	Goldspotted Rockcod	1,802	2.929	S	5.278	1.757
Gascoyne	Grass Emperor	5,839	0.855	B	4.992	0.975
Gascoyne	Baldchin Groper	2,096	2.364	S	4.955	0.870
Gascoyne	Redthroat Emperor	3,536	0.922	B	3.260	1.004
Gascoyne	Stripey Snapper	1,689	0.870	C	1.469	0.465
TOTAL		$\mathbf{4 3 , 9 8 8}$			$\mathbf{1 0 2 . 5 3 4}$	$\mathbf{7 . 7 6 4}$
South	Bight Redfish	1,221	1.223	S	12.500	1.849
South	Blue Morwong	3,294	2.816	S	9.276	1.892
South	Breaksea Cod	6,544	0.972	S	6.361	1.125
South	Pink Snapper	2,260	2.591	S	5.856	1.070
South	West Australian Dhufish	1,171	4.861	S	5.692	1.147
South	Sea Sweep	1,182	1.331	S	1.573	0.363
South	Harlequin Fish	921	1.424	S	1.312	0.268
South	Swallowtail	2,202	0.381	S	0.839	0.262
South	Other Parrotfish	$\mathbf{6 1 1}$	1.202	C	0.734	0.651
South	Foxfish	609	0.836	S	0.509	0.145
TOTAL		$\mathbf{2 9 , 0 1 5}$			44.652	$\mathbf{3 . 3 8 3}$

Average weights where: ${ }^{\text {B }}$ is the bioregion estimate from Appendix $1^{*}{ }^{\mathrm{s}}$ is the statewide estimate from Appendix 1^{*}, ${ }^{\text {C }}$ unpublished Tour Operator Returns

9.3 Pelagic Resources

The top 10 pelagic scalefish species (or species groupings) in 2015/16 represented 99% of the total resource catch (kept by numbers) (Table 26).

Estimated recreational harvest ranges for the top ten pelagic species (or groupings) compared with estimates from previous statewide surveys indicated estimated harvest range in the North Coast was steady at 26 t (95% CI 21-31 tonnes) in 2015/16 compared with 32 t (95% CI 23-41) in 2013/14, but lower than 51 t (95% CI 40-61) in 2011/12 (Table 26).

The estimated recreational harvest of Spanish Mackerel was steady at 17 t (95% CI 12-22) in 2015/16 (Table 24) compared with 24 t in 2015/16 (95\% CI 16-32), but lower than 37 t in 2011/12 (95\% CI 27-47). Estimated recreational harvests were steady in 2015/16 compared with 2013/14 and 2011/12 for Cobia, Northern Bluefin Tuna, Mackerel Tuna, School Mackerel, Southern Bluefin Tuna and Spotted Mackerel.

Table 24. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the top 10 North Coast pelagic scalefish species during 2015/16 by RFBL holders aged five years or older (values in bold indicate relative standard error $>40 \%$; values in italics indicate <30 diarists recorded catches of the species).

Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)	Source	Estimated harvest (tonnes)	Standard Error
North	Spanish Mackerel	1,851	9.291	C	17.198	2.397
North	Cobia	311	6.940	C	2.158	0.507
North	Northern Bluefin Tuna	250	5.711	C	1.428	0.531
North	Mackerel Tuna	304	4.367	C	1.328	0.441
North	Other Mackerel \& Tuna	$\mathbf{1 4 0}$	9.291	C	1.301	0.539
North	Shark Mackerel	112	8.598	C	0.963	0.361
North	School Mackerel	439	1.988	C	0.873	0.264
North	Spotted Mackerel	$\mathbf{1 8 6}$	2.197	C	0.409	0.191
North	Southern Bluefin Tuna	$\mathbf{8 3}$	4.859	C	0.403	0.199
North	Wahoo	$\mathbf{4 4}$	0	$\mathrm{~N} / \mathrm{A}$	0	0
TOTAL		$\mathbf{3 , 7 2 0}$			$\mathbf{2 6 . 0 6 1}$	$\mathbf{2 . 6 5 5}$

Average weights where: ${ }^{B}$ is the bioregion estimate from Appendix $1^{*},{ }^{s}$ is the statewide estimate from Appendix 1^{*}, ${ }^{\mathrm{C}}$ unpublished Tour Operator Returns

9.4 Crab Resources

Estimated recreational harvest ranges of crab resources in each bioregion are compared with estimates from previous statewide surveys (Table 26):

- Mud Crab in the North Coast (3,364, kept by number; Table 25) represents 70% of the estimated statewide catch (Table 5), catches for the Gascoyne Coast (Table 8) and West Coast (Table 9) had low sample size (<30) and high rse ($>40 \%$)
- Mud Crab in the North Coast were lower at 2 t (95% CI 2-3) in 2015/16 compared with 8 $\mathrm{t}(95 \%$ CI $5-10)$ in 2013/14 and 8 t (95\% CI 6-10) in 2011/12
- Blue Swimmer Crab in the North Coast were lower at 2 t (95\% CI 1-3) in 2015/16 compared with 4 t (95\% CI 2-6) in 2013/14 and 3 t (95\% CI 2-5) in 2011/12
- Blue Swimmer Crab in the Gascoyne Coast were steady at $1 \mathrm{t}(95 \%$ CI 1-2) in 2015/16 compared with 2 t (95\% CI 1-4) in 2013/14 and 4 t (95\% CI 1-8) in 2011/12
- Blue Swimmer Crab in the West Coast were steady at 43 t (95\% CI 36-50) in 2015/16 compared with 59 t (95\% CI 50-68) in 2013/14, but lower than 86 t (95\% CI 75-97) in 2011/12
- Blue Swimmer Crab in the South Coast were steady at 1 t (95\% CI 0-1) in 2015/16 compared with 2 t (95% CI 1-3) in 2013/14, but lower than 3 t (95% CI 1-4) in 2011/12

Table 25. Estimated annual catch (kept numbers), average weight and estimated harvest weight for the crab resources during 2015/16 by RFBL holders aged five years or older (values in bold indicate relative standard error $>40 \%$; values in italics indicate <30 diarists recorded catches of the species).

Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)	Source	Estimated harvest (tonnes)	Standard Error
North	Brown Mud Crab	2,495	0.612	C	1.527	0.397
North	Green Mud Crab	869	1.106	C	0.961	0.261
TOTAL		3,364			$\mathbf{2 . 4 8 8}$	$\mathbf{0 . 4 7 5}$
North	Blue Swimmer Crab	7,044	0.240	S	1.691	0.456
Gascoyne	Blue Swimmer Crab	5,379	0.240	S	1.291	0.384
West	Blue Swimmer Crab	181,709	0.236	B	42.883	3.522
South	Blue Swimmer Crab	2,918	0.240	S	0.700	0.277

Average weights where: ${ }^{\text {B }}$ is the bioregion estimate from Appendix 1^{*}, ${ }^{\mathrm{S}}$ is the statewide estimate from Appendix 1^{*}, ${ }^{\mathrm{C}}$ unpublished Tour Operator Returns

9.5 Summary

Estimates of harvest from boat-based recreational fishing presented in this chapter will be used alongside information provided in Commercial Logbooks and Tour Operator Returns to assess the status of fisheries resources. Estimates of harvest (Table 26) are important when a significant portion of the total catch is attributable to the recreational sector, and therefore, estimates for these species are included in stock assessments and required for resource allocation.

Table 26. Information required for stock status reporting of major recreational fisheries based on estimates of boat-based recreational catch during 2011/12, 2013/14 and 2015/16 by RFBL holders aged five years or older (excluding charter-boat recreational fishing).

Resource	Year	Number of species/ taxa	Proportion of total catch (kept by number)	Estimated harvest (kept by number)	Standard Error	Estimated harvest (tonnes)	Standard Error	Estimated harvest (tonnes, 95\% $\mathrm{Cl})$
North Coast Bioregion								
North Coast Nearshore and Estuarine	1112	10	79	13,008	1,713	28.012	4.025	20-36
	1314	10	76	11,928	1,506	21.189	2.980	15-27
	1516	10	83	9,630	1,353	27.454	3.727	20-35
North Coast Demersal Scalefish	1112	10	80	45,953	3,227	82.586	4.878	73-92
	1314	10	76	30,491	2,840	58.480	5.274	48-69
	1516	10	77	20,709	1,922	40.736	3.273	34-47
North Coast Pelagic (Mackerel)	1112	10	97	6,938	678	50.747	5.440	40-61
	1314	10	98	5,156	921	31.881	4.482	23-41
	1516	10	99	3,720	352	26.061	2.655	21-31
North Coast Mud Crab	1112	2	100	9,508	1,250	7.905	1.128	6-10
	1314	2	100	8,948	1,351	7.606	1.144	5-10
	1516	2	100	3,364	691	2.488	0.475	2-3
North Coast Blue Swimmer Crab	1112	1	100	14,802	3,973	3.390	0.910	2-5
	1314	1	100	15,938	3,980	4.048	1.011	2-6
	1516	1	100	7,044	1,899	1.691	0.456	1-3
Gascoyne Coast Bioregion								
Gascoyne Coast Nearshore and Estuarine	1112	10	81	14,100	2,885	12.264	2.097	8-16
	1314	10	88	16,268	2,977	15.553	3.253	9-22
	1516	10	91	12,269	2,591	9.241	1.753	6-13
Gascoyne Coast Demersal Scalefish	1112	10	83	71,301	4,068	143.419	8.154	127-159
	1314	10	77	51,657	3,986	101.315	6.867	88-115
	1516	10	82	43,988	3,118	102.534	7.764	87-118
Gascoyne Coast Blue Swimmer Crab	1112	1	100	19,050	7,846	4.362	1.797	1-8
	1314	1	100	8,764	3,126	2.226	0.794	1-4
	1516	1	100	5,379	1,602	1.291	0.385	1-2

Resource	Year	Number of species/ taxa	Proportion of total catch (by number)	$\begin{array}{r} \text { Estimated } \\ \text { harvest } \\ \text { (by number) } \end{array}$	Standard Error	$\begin{array}{r} \text { Estimated } \\ \text { harvest } \\ \text { (tonnes) } \end{array}$	Standard Error	$\begin{array}{r} \text { Estimated } \\ \text { harvest } \\ (\mathrm{t}, 95 \% \mathrm{CI}) \end{array}$
West Coast Bioregion								
West Coast Nearshore and Estuarine	1112	10	91	603,220	33,315	113.744	6.459	101-126
	1314	10	95	449,449	33,834	77.316	4.757	68-87
	1516	10	93	328,616	28,613	67.722	4.909	58-77
West Coast Demersal Scalefish	1112	15	90	61,795	2,418	159.818	7.257	146-174
	1314	15	87	59,625	2,414	154.562	7.323	140-169
	1516	15	93	71,524	2,815	211.353	9.581	193-230
West Coast Blue Swimmer Crab	1112	1	100	380,816	24,843	85.684	5.590	75-97
	1314	1	100	254,373	19,742	58.760	4.560	50-68
	1516	1	100	181,709	14,925	42.883	3.522	36-50
South Coast Bioregion								
South Coast Nearshore and Estuarine	1112	10	95	152,040	14,927	44.094	3.829	37-52
	1314	10	95	119,008	13,944	25.340	2.646	20-31
	1516	10	95	65,729	7,729	16.683	2.058	13-21
South Coast Demersal Scalefish	1112	10	97	35,423	2,527	55.089	4.189	47-63
	1314	10	98	24,174	1,505	34.293	2.081	30-38
	1516	10	96	29,015	2,282	44.652	3.383	38-51
South Coast Blue Swimmer Crab	1112	1	100	12,164	3,145	2.786	0.720	1-4
	1314	1	100	8,640	2,015	2.195	0.512	1-3
	1516	1	100	2,918	1,156	0.700	0.277	0-1

10 Summary and Future Research

10.1 Overview

Participation, effort and catch from boat-based recreational fishing have been estimated from statewide surveys in 2011/12, 2013/14 and 2015/16. Although recreational fishing in Western Australia is conducted from boats and the shore across a range of marine and freshwater habitats, boat-based recreational fishing was estimated to account for 43% of recreational fishing effort and 46% of the recreational harvest in 2000/01, with both boat- and shore-based recreational fishing occurring almost entirely in marine waters (Henry and Lyle 2003).

Approximately 138,000 recreational fishers purchased a Recreational Fishing from Boat Licence (RFBL) in 2015/16 with half of these fishers residing in the Perth metropolitan area. Trends in participation (by recall for the previous 12-months) by residence, age, gender, avidity and bioregion fished varied but overall were consistent across the Screening and Benchmark Surveys from 2011 to 2016. The spatial coverage of the resident population influences the distribution of boat-based recreational fishing effort. Consequently, boat-based recreational fishing effort in 2015/16 was highest in the West Coast (74\%) with the remainder in the North Coast (8\%), Gascoyne Coast (12\%) and South Coast (6\%).

At a statewide level, most boat-based recreational fishing effort occurred in coastal nearshore (60\%), inshore demersal (25\%) and estuary habitats (11\%), and the remainder in pelagic (2\%), offshore demersal (1\%) and freshwater (1\%). Shore-based recreational fishing was not included in this report; therefore, recreational fishing effort would be under-estimated for nearshore, estuary and freshwater habitats. However, patterns in boat-based recreational fishing effort in this report were consistent with previous statewide surveys, including the National Recreational Fishing Survey in 2000/01, where most boat-based recreational fishing effort occurred in coastal waters (from the shoreline to 5 km) (66%), followed by estuarine (19\%), then offshore ($>5 \mathrm{~km}$ from the coast) (11\%) (Henry and Lyle 2003).

Recreational fishers use a variety of fishing methods. At a statewide level, most boat-based recreational fishing effort was line fishing (62\%), followed by potting (32\%), diving (4\%) and nets (1\%). In 2000/01, line fishing accounted for 77% of recreational fishing effort, followed by potting methods (16\%) (Henry and Lyle 2003). Distinct seasonal patterns of boat-based recreational fishing effort occur in autumn and winter, which are the most active seasons in the North Coast and Gascoyne Coast, and summer and autumn, the most active seasons in the West Coast and South Coast.

Estimates of effort from boat-based recreational fishing in Western Australia were generally consistent across the three statewide surveys, as were trends in effort by habitat, method and month. While statewide effort declined in 2015/16, there was an increase in proportion of fishing effort in the West Coast which was consistent with results from the annual Community Survey (Department of Fisheries 2016), where the proportion of days fished in 2015/16 (74\%) was higher than 2013/14 (62\%).

Estimates of effort from boat-based recreational fishing by bioregion were broadly consistent across the three statewide surveys. Effort by habitat, method and month for each bioregion
were also generally consistent across the three statewide surveys. Notable exceptions for lower effort in 2015/16 occurred: in the North Coast (for line fishing, in inshore and nearshore habitats, from April to August); in the Gascoyne Coast (for line fishing, in inshore habitat, from April to August); and in the South Coast (for line fishing in inshore and nearshore habitats, throughout the year). Estimated boat-based recreational fishing effort in the West Coast was higher in 15/16 for potting, in nearshore habitat, and during November and December.

At a statewide level, estimates of catch from boat-based recreational fishing were generally consistent across the three statewide surveys. At a bioregion level, comparisons can be made for both the species contributing to the top 10 species in each resource and the estimated harvest for each resource. The estimated recreational harvest ranges for the top 10 nearshore and estuarine species were steady in 2015/16 in the North Coast (95\% CI 20-35 tonnes compared with 15-27 in 2013/14 and 20-36 in 2011/12) and Gascoyne Coast (95\% CI 6-13 compared with $9-22$ in 2013/14 and $8-16$ in 2011/12). The estimated recreational harvest range for the top 10 nearshore and estuarine species in the West Coast was steady in 2015/16 (95% CI 58-77) compared with 2013/14 (68-87), but lower than 2011/12 (101-126). The estimated recreational harvest range for the top 10 nearshore and estuarine species in the South Coast was steady in 2015/16 (95\% CI 13-21) compared with 2013/14 (20-31), but lower than 2011/12 (37-52).

The estimated recreational harvest range for the top 10 demersal species (or groupings) in the North Coast was lower in 2015/16 (95\% CI 34-47 tonnes compared with 48-69 in 2013/14 and $73-92$ in 2011/12). This decrease was consistent with lower estimates of effort by boatbased recreational fishers in the North Coast in 2015/16. Estimated recreational harvests were steady for Blackspot Tuskfish, Coral Trout, Golden Snapper, Grass Emperor, Mangrove Jack, Rankin Cod, Red Emperor and Stripey Snapper. The estimated recreational harvest range for Spangled Emperor was steady in 2015/16 (95\% CI 2-5 tonnes) compared with 2013/14 (39), but lower than 2011/12 (11-18).

The estimated recreational harvest range for the top 10 demersal species (or groupings) in the Gascoyne Coast was steady in 2015/16 (95\% CI 87-118 tonnes compared with 88-115 in 2013/14, but lower than 127-159 in 2011/12). The estimated recreational harvest range for: Spangled Emperor was steady in 2015/16 (8-16) compared with 2013/14 (12-22), but lower than 2011/12 (27-45); Grass Emperor was steady in 2015/16 (3-7) compared with 2013/14 (5-14), but lower than 2011/12 (12-20); and Redthroat Emperor was steady in 2015/16 (1-5) compared with 2013/14 (2-4), but lower than 2011/12 (6-11). Estimated recreational harvests were steady for Baldchin Groper, Goldband Snapper, Goldspotted Rockcod, Pink Snapper, Rankin Cod, Red Emperor and Stripey Snapper in the Gascoyne Coast.

The estimated recreational harvest range for the top 15 demersal species (or groupings) in the West Coast was higher in 2015/16 (95\% CI 193-230 tonnes compared with 140-169 in 2013/14 and 146-174 in 2011/12). The estimated recreational harvest range of West Australian Dhufish was higher in 2015/16 (97-129 compared with 69-94 in 2013/14 and 6487 in 2011/12). The estimated recreational harvest range of Baldchin Groper was higher in 2015/16 (28-42) compared with 2013/14 (17-25), but similar to the harvest range in 2011/12
(24-36). The estimated recreational harvest range of Pink Snapper was steady in 2015/16 (30-42 compared with $25-36$ in 2013/14 and 27-38 in 2011/12). Estimated recreational harvests were also steady for Baldchin Groper, Bight Redfish, Blue Morwong, Breaksea Cod, Emperor, Foxfish, Pink Snapper, Sea Sweep and Sergeant Baker in the West Coast.

The estimated recreational harvest range for the top 10 demersal species (or groupings) in the South Coast was steady in 2015/16 (95\% CI 38-51 tonnes compared with 30-38 in 2013/14 and 47-63 in 2011/12). Estimated recreational harvests were steady for Bight Redfish, Blue Morwong, Breaksea Cod, Foxfish, Harlequin Fish, Pink Snapper, Sea Sweep, West Australian Dhufish and Swallowtail in the South Coast.

The estimated recreational harvest of Mud Crab in the North Coast represented 70\% of the statewide total catch (kept by numbers) in 2015/16. The estimated recreational harvest range of Mud Crab in the North Coast were lower in 2015/16 (95\% CI 2-3 tonnes compared with $5-10$ in 2013/14 and 6-10 in 2011/12). The estimated recreational harvest of blue swimmer crab in the West Coast represented 92% of the statewide total catch (kept by numbers) in $2015 / 16$. The estimated recreational harvest range for blue swimmer crab in the West Coast was steady in 2015/16 (95\% CI 36-50 tonnes) compared with 2013/14 (50-68), but lower than 2011/12 (75-97).
Changes in the magnitude of estimates over time only provide an indication of the number kept and/or released from recreational fishing between surveys and does not necessarily provide an indication of the drivers of any change. Effort and catches reported from recreational fishers varies in accordance with the nature of the fishery (from both biological and human dimensions), spatial and temporal scales of the resource and fishing activity, and how these collectively respond to management actions. For example, access to the resource can vary over time through fish availability, legal size and bag limits, fisher mobility or fishing technology. Comparing estimates of catch from recreational fishing has similar constraints to those required for evaluating changes in commercial catch where differences can result from changes in both fish abundance and catchability. Catchability can vary with changes in fish behaviour and movement patterns, which vary by species, age and environmental factors, or changes in fishing practices, such as changes in targeted effort, time spent fishing and distance travelled to fishing location. Comparing estimates of catch from recreational fishing also requires consideration of release rates and the potential for change in fisher behaviour (e.g. species or targeting substitution).

Most importantly, evaluating time series of estimates of catch from recreational fishing requires consideration of the uncertainty associated with estimates. For the statewide surveys, the desired outcome was to achieve estimates for indicator species at statewide and bioregion levels with a precision suitable for stock assessments and developing management policies. It should not be expected that similar precision will be achieved for less common species, or any species at small spatial scales, although the survey design and sample size have allowed this to occur for some species. For example, the sample size and relative standard error achieved for indicator species in the Mid West, Metropolitan and South West zones have provided representative and precise estimates for spatial assessment of the West Coast Demersal Scalefish Resource.

While this report compares estimates from three statewide surveys of boat-based recreational fishing, additional catches from charter-boat recreational fishing (reported in Tour Operator Returns) and shore-based fishing (where available) are used to determine the total catch from the recreational sector. Specific performance indicators, reference levels and catch tolerances will be reported separately, and these will be used to provide trends in total catch to assist in developing, monitoring and refining management arrangements.

10.2 Fine-scale Estimates

It was anticipated that highest precision would be achieved for key species at annual and statewide levels, however, estimates with lower precision may be available at finer scale temporal (monthly) and spatial (zone within bioregions) levels.

The precision achieved for any estimate is generally dependent on the sample size and the level of variability in the data. Consequently, low accuracy and precision can occur for species caught rarely or infrequently from recreational fishing, or when disaggregating data to smaller spatial and temporal scales. The ability to improve precision in these situations depends on the ability to increase the sample size. Therefore, there is a recognised trade-off between survey costs and precision, which often requires balancing the need for desired precision with the available funding before commencing surveys. The desired outcome for the statewide surveys of recreational fishing is to achieve precise estimates for indicator species at statewide and bioregion levels. It is acknowledged that precise estimates for less common species, or species at small spatial scales, might not always be achieved for the given sample size.

10.3 Validation of Estimates from On-Site Surveys

Estimates of effort and catch from boat-based recreational fishing from the three statewide surveys are being compared with previous recreational fishing surveys to determine if there have been changes in the catch composition and harvest, and whether current management arrangements are appropriate. The results of these analyses will be published separately.

Additional components of the statewide surveys, the Boat Ramp and Remote Camera Surveys have provided biological data to assist in converting catch (by number) to harvest (by weight) and comparison of estimates of boat-based recreational fishing effort from the Phone-Diary Survey (fishers only) against launch and retrieval counts from the Remote Cameras (fishers and non-fishers). Additional information on the proportion of boat launches with fishers and non-fishers will allow direct comparison of boat-based recreational fishing effort and potentially an ongoing measure of fishing activity between statewide surveys.

10.4 Improving Accuracy and Precision of Estimates

Recreational fishers are numerous, diverse and diffuse. They use numerous access points and platforms for fishing, including boats launched from harbours, marinas, beaches and private docks. Their divergent nature ranges from avid to infrequent fishers and different survey methods will encounter avid and infrequent fishers in different relative proportions. This means there is no single survey method that can be used to accurately and precisely estimate effort and catch from all recreational fisheries. Consequently, all surveys of recreational
fishing have customised designs, which reflect the specific objectives of the survey, the spatial and temporal scope to be covered, the nature of the recreational fishery, and the constraints on resources available to conduct the survey.

A Research Partnership between the Department and Edith Cowan University has provided opportunities for postgraduate research to explore integration of spatial and temporal data obtained from recreational fishing surveys. To date, appropriate statistical and modelling methods have been explored to integrate the uncertainty associated with estimates of catch at different spatial and temporal scales (Aidoo et al. 2015; 2016). This research will assist in determining whether data from the statewide surveys can provide information at the resolution required for management of recreational fisheries at small spatial and temporal scales.

The Recreational Fishing from Boat Licence (RFBL) was implemented in 2010 and uptake of licences has increased each year. Understanding any biases that may occur due to changes in annual patterns of RFBL usage is critical when considering survey design and analysis, including behavioural adjustments of fishers. It is likely that some survey components will need to be modified to address any bias, and in some cases, it may be necessary to apply emerging techniques in survey design to further improve the accuracy and precision of estimates. This could include adjustment of weighting factors to account for avidity bias and non-intending fishing, subsequently estimates (and their uncertainty) may be revised on this basis.

As patterns in recreational fishing can change, the survey design needs to be flexible enough to accommodate these changes. A critical element of the Research Partnership is utilising expertise across several related disciplines (experimental design, data mining, spatial and temporal statistics, survey sampling) to allow further development and implementation of changes to the surveys if warranted. The Research Partnership with Edith Cowan University will also have a focus on developing human capital in fields directly relevant to statewide surveys.

The Department will continue to work proactively to ascertain whether additional information could be collected to better understand the human dimensions of recreational fishing and improve the accuracy and precision associated with estimates of effort and catch from recreational fishing to continue to provide the best available information for sustainable management of fishery resources.

11 Acknowledgements

This report would not be possible without contributions from all the recreational fishers who voluntarily participated in the recreational fishing surveys. The authors would also like to thank staff from the Department of Primary Industries and Regional Development, Edith Cowan University and RecFishWest that provided support and assistance for this project: Brett Harrison, Agata Zabolotny and Dale Smith from Geospatial Services for preparing licence extracts and maps; Stuart Blight and Cameron Desfosses for facilitating the remote camera surveys; Alissa Tate and field staff for conducting the on-site interviews and reading the remote camera data; Veronique Vanderklift and Mark Goninon for assistance with average weights from Tour Operator Returns; Vangie Gerginis for entering the on-site interview data and adminstration assistance throughout the phone surveys; Joshua Brown, Brett Crissafulli, Paul Lewis, Stephen Newman and Corey Wakefield for providing species identification training for interviewers; and Vicki Graham, Theresa Wilkes, Amber Sky and staff from the Survey Research Centre (Edith Cowan University) for data collection and entry of the phone surveys. Laurie West (Kewagama Research) and Jeremy Lyle provided advice in ensuring a consistent approach to statewide Phone Surveys of recreational fishing. We also thank Nick Caputi, David Fairclough, Danielle Johnston, Rod Lenanton, Paul Lewis, Mervi Kangas, Brett Molony, Stephen Newman, Mark Pagano, Lachlain Strain and Clinton Syers for reviewing the report and providing valuable comments.

12 References

Aidoo EN, Mueller U, Goovaerts P, Hyndes GA (2015). Evaluation of geostatistical estimators and their applicability to characterise the spatial patterns of recreational fishing catch rates. Fisheries Research 168, 20-32.
Aidoo EN, Mueller U, Hyndes GA, Ryan KL (2016). The effects of measurement uncertainty on spatial characterisation of recreational fishing catch rates. Fisheries Research 181, 1-13.

Allen GR (2009). Field Guide to the Marine Fishes of Tropical Australia and South-East Asia, Fourth Edition. Western Australia Museum, Perth, Western Australia. 287 pp.
Blight SJ, Smallwood CB (2015). Technical manual for camera surveys of boat- and shorebased recreational fishing in Western Australia. Fisheries Occasional Publication No. 121. Department of Fisheries, Western Australia. 30 pp.

Brown J, Dowling C, Hesp A, Smith K, Molony B (2013). Status of nearshore finfish stocks in southwestern Western Australia. Part 3: Whiting (Sillaginidae). Fisheries Research Report No. 248. Department of Fisheries, Western Australia. 128 pp.

Cochran WG (1977). Sampling Techniques. Third Edition. Wiley, New York. 428 pp.
Department of Fisheries (2010). Integrated Fisheries Management Report: West Coast Demersal Scalefish Resource. Fisheries Management Paper No. 247. Department of Fisheries, Western Australia. 65 pp.

Department of Fisheries (2011). Recreational Fishing in Western Australia - Fishing Location Guide, May 2013. Fisheries Occasional Publication No. 92. Department of Fisheries, Western Australia. 20 pp.
Department of Fisheries (2012). A Resource-based Management Approach for Recreational Fishing in Western Australia 2012-2017: Statewide management proposals for finfish, crustaceans, molluscs and other invertebrates. Fisheries Management Paper No. 252. Department of Fisheries, Western Australia. 54 pp.
Department of Fisheries (2016). Annual Report to Parliament 2015/16. Department of Fisheries, Western Australia. 225 pp.

Department of Fisheries (2017). Recreational Fishing in Western Australia - Fish Identification Guide, May 2017. Fisheries Occasional Publication No. 103, fifth edition. Department of Fisheries, Western Australia. 33 pp.

Fairclough DV, Molony BW, Crisafulli BM, Keay IS, Hesp SA, Marriott RJ (2014). Status of demersal finfish stocks on the west coast of Australia. Fisheries Research Report No. 253. Department of Fisheries, Western Australia. 96 pp.

Fletcher WJ, Santoro K (eds) (2017). Status Reports of the Fisheries and Aquatic Resources of Western Australia 2015/16: The State of the Fisheries. Department of Fisheries, Western Australia, 359 pp.
Giri K, Hall K (2015). South Australian Recreational Fishing Survey 2013/14. Fisheries Victoria Internal Report Series No. 62. Department of Economic Development, Jobs, Transport and Resources, Victoria. 65 pp.
Hartill BW, Cryer M, Lyle JM, Rees EB, Ryan KL, Steffe AS, Taylor SM, West L, Wise BS (2012). Scale- and Context-Dependent Selection of Recreational Harvest Estimation

Methods: The Australasian Experience. North American Journal of Fisheries Management 32(1), 109-123
Henry GW, Lyle JM (2003). The National Recreational and Indigenous Fishing Survey. Final Report for FRDC Project No. 99/158. Australian Government Department of Agriculture, Fisheries and Forestry, Canberra. 188 pp.
Hutchins B, Swainston R (1999). Sea Fishes of Southern Australia: complete field guide for anglers and divers, Second Edition. Gary Allen Pty Ltd. 180 pp.
Jones DS, Morgan GJ (2002). A Field Guide to Crustaceans of Australian Waters. Reed, New Holland. 224 pp.
Jones K. (2009). South Australian Recreational Fishing Survey. South Australian Fisheries Management Series Paper No 54. PIRSA Fisheries, Adelaide. 84 pp.
Lhor S (2010). Sampling: design and analysis, Second Edition. Brooks/Cole, Cengage Learning. 596 pp.

Lindner RK, McLeod PB (1991). An economic impact of recreational fishing in Western Australia. Fisheries Management Paper No. 38. Department of Fisheries, Western Australia. 48 pp.

Lumley T (2004). Analysis of complex survey samples. Journal of Statistical Software 9, 119

Lumley T (2010). Complex Surveys: a guide to analysis using R. John Wiley and Sons Inc., New Jersey. 276 pp.
Lyle JM, Coleman APM, West L, Campbell D, Henry GW (2002). An innovative methodology for the collection of detailed and reliable data in large-scale Australian recreational fishing surveys. In: Recreational Fisheries: Ecological, Economic and Social Evaluation. Pitcher TJ, Hollingworth CE (Editors), pp. 207-226. (Fish and Aquatic Resources Series No. 8, Blackwell Science, Oxford, UK).
Lyle JM, Stark KE, Tracey SR (2014). 2012-13 survey of recreational fishing in Tasmania. The Institute for Marine and Antarctic Studies, University of Tasmania, 124 pp.

Lyle JM, Tracey SR (2016). Tasmanian recreational rock lobster and abalone fisheries: 201516 fishing season. Institute for Marine and Antarctic Studies, University of Tasmania. 37 pp.

Lyle JM, Tracey SR, Stark KE, Wotherspoon S (2009). 2007-08 survey of recreational fishing in Tasmania, TAFI Technical Report, Tasmanian Aquaculture and Fisheries Institute, Hobart. 107 pp.
Lyle JM, Wotherspoon S, Stark KE (2010). Developing an analytical module for large-scale recreational fishery data based on phone-diary survey methodology. Final report to Fisheries Research and Development Corporation Project No. 2007/064. Tasmanian Aquaculture and Fisheries Institute, Hobart. 105 pp.
Marriott R, Jackson G, Lenanton R, Telfer C, Lai E, Stephenson P, Bruce C, Adams D, Norriss J (2012). Biology and stock status of inshore demersal scalefish indicator species in the Gascoyne Coast Bioregion. Fisheries Research Report No. 228, Department of Fisheries, Western Australia. 216pp.

Pollock KH, Jones CM, Brown TL (1994). Angler survey methods and their applications in fisheries management. (American Fisheries Society Special Publication 25), American Fisheries Society, Bethesda. 371 pp.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/.
Rees AJ, Yearsley GK, Gowlett-Holmes K, Pogonoski J (2012). Codes for Australian Aquatic Biota (on-line version). CSIRO Marine and Atmospheric Research, World Wide Web electronic publication, 1999 onwards.
Rome B.M., Newman S.J. (2010). North Coast Fish Identification Guide. Fisheries Occasional Publication No. 80. Department of Fisheries, Western Australia. 79 pp.
Ryan KL, Hall NG, Lai EK, Smallwood CB, Taylor SM, Wise BS (2015). Statewide survey of boat-based recreational fishing in Western Australia 2013/14. Fisheries Research Report No. 268, Department of Fisheries, Western Australia. 208pp.
Ryan KL, Morison AK, Conron S (2009). Evaluating methods of obtaining total catch estimates for individual Victorian bay and inlet recreational fisheries. Final report to Fisheries Research and Development Corporation Project No. 2003/047. Department of Primary Industries, Queenscliff. 124 pp.

Ryan KL, Trinnie FI, Jones R, Hart AM, Wise BS (2016). Recreational fisheries data requirements for monitoring catch shares. Fisheries Management and Ecology 23, 218233.

Ryan KL, Wise BS, Hall NG, Pollock KH, Sulin EH, Gaughan DJ (2013). An integrated system to survey boat-based recreational fishing in Western Australia 2011/12. Fisheries Research Report No. 249, Department of Fisheries, Western Australia. 168pp.
Särndal CE, Swensson B, Wretman J (2003). Model Assisted Survey Sampling. Springer Series in Statistics, New York. 265 pp.
Smallwood CB, Tate A, Ryan KL (2017). Weight-length summaries for Western Australian fish species derived from surveys of recreational fishers at boat ramps. Fisheries Research Report No. 278, Department of Fisheries, Western Australia. 151 pp.
Smallwood CB, Sumner NR (2007). A 12-month survey of recreational estuarine fishing in the South Coast bioregion of Western Australia during 2002/03. Fisheries Research Report No. 159. Department of Fisheries, Western Australia, 56 pp.

Smith K, Brown J (2014). Biological synopsis of Australian herring (Arripis georgianus). Fisheries Research Report No. 251. Department of Fisheries, Western Australia. 40 pp.
Smith K, Lewis P, Brown J, Dowling C, Howard A, Lenanton R, Molony B (2013). Status of nearshore finfish stocks in south-western Western Australia Part 2: Tailor. Fisheries Research Report No. 247. Department of Fisheries, Western Australia. 112 pp.
Steffe AS, Taylor SM, Blight SJ, Ryan KL, Desfosses C, Tate AC, Smallwood CB, Lai EK, Trinnie FI, Wise BS (2017). Framework for Integration of Data from Remotely Operated Cameras into Recreational Fishery Assessments in Western Australia. Fisheries Research Report No. 286, Department of Primary Industries and Regional Development, Western Australia. 36 pp.

Sumner NR, Williamson PC (1999). A 12-month survey of coastal recreational boat fishing between Augusta and Kalbarri on the west coast of Western Australia during 1996-97. Fisheries Research Report No. 117. Department of Fisheries, Western Australia. 58 pp.

Sumner NR, Williamson PC, Blight SJ, Gaughan DJ (2008). A 12-month survey of recreational boat-based fishing between Augusta and Kalbarri on the west coast of

Western Australia during 2005-06. Fisheries Research Report No. 177. Department of Fisheries, Western Australia. 44 pp.

Sumner NR, Williamson PC, Malseed BE (2002). A 12-month survey of recreational fishing in the Gascoyne bioregion of Western Australia during 1998-99. Fisheries Research Report No. 139. Department of Fisheries, Western Australia. 60 pp.
Survey Development Working Group (2000). Development of the National Recreational and Indigenous Fishing Survey, FRDC Project No. 98/169. NSW Fisheries Final Report Series No. 23 (Volume 1). 36 pp.

Taylor S, Webley J, McInnes K (2012). 2010 Statewide Recreational Fishing Survey. Department of Agriculture, Fisheries and Forestry, Queensland. 82 pp.
Webley JAC, McInnes K, Teixeira D, Lawson A, Quinn R (2015). Statewide Recreational Fishing Survey 2013-14. Department of Agriculture and Fisheries, Queensland Government. 127 pp.

West LD, Lyle JM, Matthews SR, Stark KE, Steffe AS (2012). Survey of recreational fishing in the Northern Territory, 2009/10. Northern Territory Fisheries. Department of Resources, Northern Territory. 128 pp.
West LD, Stark KE, Murphy JJ, Lyle JM, Ochwada-Doyle FA (2015). Survey of Recreational Fishing in New South Wales and the ACT, 2013/14. Fisheries Final Report Series No. 149. Department of Primary Industries, New South Wales. 150 pp.
Williamson PC, Sumner NR, Malseed BE (2006). A 12-month survey of recreational fishing in the Pilbara region of Western Australia during 1999-2000. Fisheries Research Report No. 153. Department of Fisheries, Western Australia. 61 pp.
Wise BS, Fletcher WJ (2013). Determination and development of cost effective techniques to monitor recreational catch and effort in Western Australian demersal finfish fisheries. Final Report for FRDC Project 2005/034 and WAMSI Subproject 4.4.3. Fisheries Research Report No. 245. Department of Fisheries, Western Australia.

13 Appendices

Appendix 1: Statewide and bioregion estimates of average weight of key species from Boat Ramp Surveys.

Av wt is the average weight (measured in grams); n is the number of weight measurements recorded; se is standard error; values in bold indicate <10 recorded weights for the species.
Note: Statewide sample size will not equal the sum of bioregion sample sizes because estimates for North Coast and Gascoyne Coast were calculated from surveys in 2011/12 and 2013/14; and estimates for West Coast and South Coast were calculated from surveys in 2015/16.
Statewide estimates were determined by aggregating data from Boat Ramp Surveys in 2011/12, 2013/14 and 2015/16.

Common Name	Scientific Name	Statewide			North Coast			Gascoyne Coast			West Coast			South Coast		
		n	AvWt	se												
Roe's Abalone	Haliotis roei	103	74	2							49	65	2	13	92	7
Western Rock Lobster	Panulirus cygnus	1577	636	10				17	1399	84	1284	632	11			
Blue Swimmer Crab	Portunus armatus	1363	240	2	2	228	49	22	280	12	637	236	2	15	289	25
Green Mud Crab	Scylla serrata	12	866	69	10	850	81	2	944	125						
Orange Mud Crab	Scylla olivacea	60	606	16	60	606	16									
Gummy Shark	Mustelus antarcticus	12	4179	557	1	2005					2	3639	110			
Leaping Bonito	Cybiosarda elegans	17	854	42				1	369		16	884	31			
Oriental Bonito	Sarda orientalis	163	2080	48				3	3896	695	1	1244		88	2260	37
Black Bream	Acanthopagrus butcheri	51	298	13							2	489	25	10	287	17
Frypan Bream	Argyrops spinifer	30	683	34	3	453	115	27	708	32						
Pink Snapper	Chrysophrys auratus	458	2591	74				35	2328	119	106	2711	160	31	3883	331
Tarwhine	Rhabdosargus sarba	44	399	23							17	386	43	9	330	36
Western Yellowfin Bream	Acanthopagrus morrisoni	29	523	29	25	523	25	4	521	154						
Cobia	Rachycentron canadum	54	7827	438	7	5362	634	36	7907	558	5	11166	781			
Blackspotted Rockcod	Epinephelus malabaricus	48	1948	199	40	1620	171	7	3987	455	1	759				
Breaksea Cod	Epinephelides armatus	864	972	15							228	945	26	179	1069	38
Chinaman Rockcod	Epinephelus rivulatus	475	438	7	1	300		459	437	6	5	472	75			
Eightbar Grouper	Hyporthodus octofasciatus	16	7332	1848				11	9733	2362	1	950				
Frostback Rockcod	Epinephelus bilobatus	14	1806	264				14	1806	264						
Goldspotted Rockcod	Epinephelus coioides	92	2929	343	57	2416	329	27	2760	631	4	6590	2918			
Greasy Rockcod	Epinephelus tauvina	15	1416	121				15	1416	121						
Harlequin Fish	Othos dentex	130	1424	51							33	1361	77	42	1704	96

Common Name	Scientific Name	Statewide			North Coast			Gascoyne Coast			West Coast			South Coast		
		n	AvWt	se												
Rankin Cod	Epinephelus multinotatus	129	3419	183	37	2936	204	92	3614	241						
Tomato Rockcod	Cephalopholis sonnerati	33	1277	112	2	1030	235	31	1293	118						
Yellowspotted Rockcod	Epinephelus areolatus	67	747	42	6	1094	279	61	712	35						
Temperate Basses \& Rockcods	Percichthyidae, Serranidae undiff	22	3903	1072	20	4214	1158	2	793	350						
Barcheek Coral Trout	Plectropomus maculatus	129	2347	108	81	1914	87	45	3105	227						
Common Coral Trout	Plectropomus leopardus	29	2058	162				2	3169	849	19	2124	208			
Yellowedge Coronation Trout	Variola louti	23	1890	236				23	1890	236						
Western Rock Blackfish	Girella tephraeops	13	1583	166							2	1363	62	3	1210	383
Bluespotted Emperor	Lethrinus punctulatus	13	507	43	11	489	49	2	608	1						
Grass Emperor	Lethrinus laticaudis	421	1224	27	213	1582	34	207	855	23						
Redspot Emperor	Lethrinus lentjan	23	690	106				23	690	106						
Redthroat Emperor	Lethrinus miniatus	198	919	32	2	688	98	126	922	37	17	1007	84			
Robinson's Seabream	Gymnocranius grandoculis	85	1638	87				85	1638	87						
Spangled Emperor	Lethrinus nebulosus	385	1994	44	17	1546	172	355	2007	45	10	2172	446			
Spotcheek Emperor	Lethrinus rubrioperculatus	27	515	21				27	515	21						
Yellowtail Emperor	Lethrinus atkinsoni	79	537	20	5	726	18	74	525	20						
Southern Bluespotted Flathead	Platycephalus speculator	183	575	25							40	651	48	34	471	54
Yellowtail Flathead	Platycephalus westraliae	12	461	120	1	760		5	352	57	3	831	414			
Flatheads	Platycephalidae - undifferentiated	13	761	132	1	180								8	941	178
Smalltooth Flounder	Pseudorhombus jenynsii	18	426	38							5	508	80	5	426	62
Southern Garfish	Hyporhamphus melanochir	138	98	2							24	95	6	1	91	
Three-By-Two Garfish	Hemiramphus robustus	16	169	17												
Blacksaddle Goatfish	Parupeneus spilurus	14	862	65							3	997	43			
Bluespotted Goatfish	Upeneichthys vlamingii	29	351	58							10	625	117			
Western Striped Grunter	Pelates octolineatus	82	118	4							17	124	10	27	114	8
Goldspotted Sweetlips	Plectorhinchus flavomaculatus	36	1533	85							18	1482	129			
Painted Sweetlips	Diagramma labiosum	63	2251	142	18	2044	208	38	2068	164	2	2824	1256			
Bighead Gurnard Perch	Neosebastes pandus	22	761	29							13	762	42			
Sandy Sprat	Hyperlophus vittatus	25	45	2												
Black Jewfish	Protonibea diacanthus	16	8080	1067	14	8445	1191	2	5526	214						
Mulloway	Argyrosomus hololepidotus	13	7561	1219				1	9600		6	7073	1245			
Bluelined Leatherjacket	Meuschenia galii	12	396	32							2	400	3	1	375	
Horseshoe Leatherjacket	Meuschenia hippocrepis	21	812	72							8	764	152	1	972	
Sixspine Leatherjacket	Meuschenia freycineti	26	629	101							3	770	479	7	551	194

Common Name	Scientific Name	Statewide			North Coast			Gascoyne Coast			West Coast			South Coast		
		n	AvWt	se												
Triggerfishes \& Leatherjackets	Balistidae, Monacanthidae - undiff	18	500	81				1	473		1	326		9	349	21
Blue Mackerel	Scomber australasicus	60	154	12							6	347	26	46	119	5
Mackerel Tuna	Euthynnus affinis	38	3156	282	5	5533	1156	27	3015	243	1	3607				
School Mackerel	Scomberomorus queenslandicus	83	1949	128	33	1759	193	44	1938	179	3	2650	478			
Spanish Mackerel	Scomberomorus commerson	218	8406	242	41	8064	691	150	8480	283	7	9275	1121			
Blue Morwong	Nemadactylus valenciennesi	294	2816	83							20	2485	244	135	2919	121
Northern Pearl Perch	Glaucosoma buergeri	34	1623	99	1	515		33	1656	96						
West Australian Dhufish	Glaucosoma hebraicum	794	4861	101							349	5003	155	7	3410	884
Saddleback Pigfish	Bodianus bilunulatus	14	893	83				13	919	85	1	550				
Snook	Sphyraena novaehollandiae	82	610	46							13	565	91	32	620	85
Striped Barracuda	Sphyraena pinguis	29	446	56												
Bight Redfish	Centroberyx gerrardi	481	1223	30							19	1141	96	306	1249	42
Swallowtail	Centroberyx lineatus	179	381	9							5	420	28	97	396	16
Australian Herring	Arripis georgianus	2838	130	1							554	131	1	694	138	2
Western Australian Salmon	Arripis truttaceus	269	3344	105							113	4503	56	79	2136	186
Sergeant Baker	Latropiscis purpurissatus	60	736	43							8	625	32	11	649	112
Goldband Snapper	Pristipomoides multidens	198	1974	68	2	2420	320	196	1969	69						
Rosy Snapper	Pristipomoides filamentosus	13	1372	156				13	1372	156						
Sharptooth Snapper	Pristipomoides typus	91	1448	64				91	1448	64						
Chinamanfish	Symphorus nematophorus	38	4455	413	27	3993	442	11	5588	868						
Crimson Snapper	Lutjanus erythropterus	13	2025	192	13	2025	192									
Darktail Snapper	Lutjanus lemniscatus	23	718	92	3	338	82	19	784	104						
Golden Snapper	Lutjanus johnii	16	761	38	15	776	38	1	540							
Mangrove Jack	Lutjanus argentimaculatus	73	772	38	67	719	29	5	1279	263	1	1820				
Moses' Snapper	Lutjanus russellii	48	795	58	11	709	24	37	821	74						
Red Emperor	Lutjanus sebae	178	3357	154	40	2534	193	136	3557	183	1	2929				
Ruby Snapper	Etelis carbunculus	73	6162	451				73	6162	451						
Saddletail Snapper	Lutjanus malabaricus	80	1540	149	56	1505	173	24	1623	295						
Stripey Snapper	Lutjanus carponotatus	132	592	15	63	581	18	69	602	24						
Fusiliers \& Tropical Snappers	Caesionidae, Lutjanidae - undiff	18	1475	86	14	1515	107	4	1334	86						
Western Red Scorpionfish	Scorpaena sumptuosa	11	638	54										2	859	41
Eastern Striped Grunter	Pelates sexlineatus	56	93	5												
Banded Sweep	Scorpis georgiana	33	783	61							18	606	64	2	698	32
Moonlighter	Tilodon sexfasciatus	15	899	56							2	981	73	1	1227	
Sea Sweep	Scorpis aequipinnis	143	1331	33							20	1410	67	48	1399	71

Common Name	Scientific Name	Statewide			North Coast			Gascoyne Coast			West Coast			South Coast		
		n	AvWt	se												
Tailor	Pomatomus saltatrix	106	671	36				10	835	71	24	707	88			
Blue Threadfin	Eleutheronema tetradactylum	21	1403	272	20	1454	281	1	382							
Western Butterfish	Pentapodus vitta	199	180	5				3	130	11	96	179	6			
Amberjack	Seriola dumerili	11	6273	1659				3	11843	5195	3	3752	611			
Bludger Trevally	Carangoides gymnostethus	22	1703	85	2	1190	610	20	1754	73						
Giant Trevally	Caranx ignobilis	14	1700	386	9	1196	125	4	1754	650						
Golden Trevally	Gnathanodon speciosus	97	2246	203	69	1793	214	28	3363	399						
Samsonfish	Seriola hippos	98	6588	475							35	6570	824	7	9341	1028
Silver Trevally	Pseudocaranx spp. complex	1302	517	10							358	561	11	223	483	28
Turrum	Carangoides fulvoguttatus	83	2097	181	22	2777	391	61	1851	194						
Yellowtail Kingfish	Seriola lalandi	44	3155	317							16	3275	317	9	3844	894
Yellowtail Scad	Trachurus novaezelandiae	116	71	2							15	82	3	42	69	2
Trevallies	Carangidae - undifferentiated	22	2283	417	21	2357	430							1	725	
Longtail Tuna	Thunnus tonggol	61	4965	237	3	5270	341	55	5046	251	2	2063	303			
Skipjack Tuna	Katsuwonus pelamis	59	3426	123				38	2986	93	1	4132		2	4157	237
Southern Bluefin Tuna	Thunnus maccoyii	102	5045	238							17	2271	257	74	5585	264
Yellowfin Tuna	Thunnus albacares	29	7010	594	1	6865		15	8004	699						
Baldchin Groper	Choerodon rubescens	649	2364	40				13	2702	346	301	2425	63			
Blackspot Tuskfish	Choerodon schoenleinii	83	2818	183	35	2641	236	48	2948	265						
Brownspotted Wrasse	Notolabrus parilus	342	436	10							135	403	13	50	461	32
Foxfish	Bodianus frenchii	119	836	23							43	785	36	29	973	48
Southern Maori Wrasse	Ophthalmolepis lineolatus	83	256	8							33	260	13	15	260	15
Tuskfishes	Choerodon spp.	20	3662	549	19	3824	553	1	595							
Western Blue Groper	Achoerodus gouldii	32	6639	762							10	9693	1868	8	6689	1081
Western King Wrasse	Coris auricularis	395	312	7							236	298	8	20	381	25
Wrasses	Labridae - undifferentiated	12	430	95				3	778	277						
King George Whiting	Sillaginodes punctata	2677	238	3							125	513	28	1060	200	3
Southern School Whiting	Sillago bassensis	3057	95	1							786	84	1	303	115	2
Western School Whiting	Sillago vittata	311	98	2							76	101	5	12	83	4
Yellowfin Whiting	Sillago schomburgkii	20	167	20				6	192	6						
Whitings	Sillaginidae - undifferentiated	20	124	13	1	320								15	108	6
Western Wirrah	Acanthistius serratus	12	845	79							5	742	65			
Southern Blue Devil	Paraplesiops meleagris	18	455	24										10	473	34

Appendix 2: Summary of launches and retrievals by power boat at 11 boat ramps from Remote Camera Survey in 2015/16.

The following pages provide summaries of total launches and retrievals of power boats during 2015/16, by year, month and hours (within month). Major periods of data loss during the 12 -months are indicated by an asterix and error bars are 1 standard error where imputation was required for missing data.

Results are presented for the 11 boat ramps monitored in the Camera Survey:

- Dampier (Lat 20.656, Long 116.707)
- Monkey Mia (Lat 25.793, Long 113.720)
- Denham (Lat 25.928, Long 113.533)
- Mindarie (Lat 31.692, Long 115.702)
- Ocean Reef (Lat 31.762, Long 115.728)
- Hillarys (Lat 31.822, Long 115.739)
- Leeuwin (Lat 32.030, Long 115.762)
- Woodman Point Public Ramp (Lat 32.139, Long 115.762)
- Woodman Point Private Ramp (Lat 32.139, Long 115.762)
- Point Peron (Lat 32.271, Long 115.698)
- Emu Point (Lat 34.995, Long 117.945)

Figure 82: Total launches (white bar) and retrievals (black bar) by power boats from Dampier (Lat 20.656, Long 116.707) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for September 2015 were unavailable.

Figure 83. Total launches (white bar) and retrievals (black bar) by power boats from Monkey Mia (Lat 25.793, Long 113.720) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for September 2015, November 2015, December 2015 and January 2016 were unavailable.

Figure 84. Total launches (white bar) and retrievals (black bar) by power boats from Denham (Lat 25.928, Long 113.533) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for July to August 2016 were unavailable.

Figure 85. Total launches (white bar) and retrievals (black bar) by power boats from Mindarie (Lat 31.692, Long 115.702) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for September 2015, April 2016 and July 2016 were unavailable.

Figure 86. Total launches (white bar) and retrievals (black bar) by power boats from Ocean Reef (Lat 31.762, Long 115.728) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 87. Total launches (white bar) and retrievals (black bar) by power boats from Hillarys (Lat 31.822, Long 115.739) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 88. Total launches (white bar) and retrievals (black bar) by power boats from Leeuwin (Lat 32.030, Long 115.762) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for August 2016 were unavailable.

Figure 89. Total launches (white bar) and retrievals (black bar) by power boats from Woodman Point Public Ramp (Lat 32.139, Long 115.762) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for July 2016 were unavailable.

Figure 90. Total launches (white bar) and retrievals (black bar) by power boats from Woodman Point Private Ramp (Lat 32.139, Long 115.762) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 91. Total launches (white bar) and retrievals (black bar) by power boats from Point Peron (Lat 32.271, Long 115.698) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Figure 92. Total launches (white bar) and retrievals (black bar) by power boats from Emu Point (Lat 34.995, Long 117.945) during 2015/16 (top centre); total launches (white bars) and retrievals (black bars) by month (top right); and hourly launches (dotted line) and retrievals (solid line) by month. Error bars are 1 standard error where data imputation required for missing data.

Data for November 2015, December 2015 and January 2016 were unavailable.

Appendix 3: Harvest ranges from 2011/12 and 2013/14 statewide surveys.

values in bold indicate relative standard error $>40 \%$; values in italics indicate <30 diarists recorded catches of the species; Sources for average weights: B is the bioregion estimate from boat ramp surveys, S is the statewide estimate from boat ramp surveys, C unpublished data from Tour Operator Returns

Year Bioregion Species \begin{tabular}{rlrl}
Estimated

catch (kept

by number)

\quad

Average

weight (kg)t

\quad

Source

Estimated

harvest

(tonnes)
\end{tabular}

Nearshore and Estuarine Resources (all Bioregions)

1112	North	Barramundi	2,082	4.087	C	8.509	2.710
1112	North	Golden Trevally	1,611	5.156	C	8.306	1.598
1112	North	Blue Threadfin	2,428	2.559	C	6.213	2.239
1112	North	Giant Trevally	680	4.410	C	2.999	1.050
1112	North	Bludger Trevally	546	2.348	C	1.282	0.392
1112	North	Chinaman Rockcod	451	0.718	C	0.324	0.142
1112	North	Whiting	1,342	0.107	C	0.144	0.079
1112	North	Garfish	1,140	0.104	S	0.119	0.054
1112	North	Mullet	2,150	0.054	C	0.116	0.044
1112	North	Northwest Black Bream	578	0	N/A	0	0
1112	TOTAL		13,008			28.012	4.025
1112	Gascoyne	Chinaman Rockcod	6,281	0.718	C	4.510	1.765
1112	Gascoyne	Golden Trevally	792	5.156	C	4.084	0.887
1112	Gascoyne	Giant Trevally	511	4.410	C	2.254	0.600
1112	Gascoyne	Tailor	906	0.652	S	0.591	0.290
1112	Gascoyne	Western Butterfish	1,733	0.191	S	0.331	0.165
1112	Gascoyne	Silver Trevally	473	0.518	S	0.245	0.126
1112	Gascoyne	Garfish	1,003	0.104	S	0.104	0.091
1112	Gascoyne	School Whiting	924	0.097	S	0.090	0.035
1112	Gascoyne	Sea Mullet	1,020	0.054	C	0.055	0.025
1112	Gascoyne	Small Baitfish	457	0	N/A	0	0
1112	TOTAL		14,100			12.264	2.097
1112	West	Australian Herring	187,231	0.140	B	26.212	2.683
1112	West	Silver Trevally	55,127	0.468	B	25.799	2.664
1112	West	School Whiting	235,912	0.097	S	22.883	2.308
1112	West	King George Whiting	48,601	0.312	B	15.164	2.351
1112	West	Tailor	21,439	0.652	S	13.978	3.867
1112	West	Western King Wrasse	9,202	0.350	S	3.221	0.739
1112	West	Black Bream	10,021	0.312	S	3.127	0.878
1112	West	Garfish	22,320	0.104	S	2.321	0.448
1112	West	Other Whiting	5,991	0.107	C	0.641	0.205
1112	West	Sea Mullet	7,376	0.054	C	0.398	0.226
1112	TOTAL		603,220			113.744	6.459
1112	South	King George Whiting	61,435	0.196	B	12.041	2.299
1112	South	Western Australian Salmon	2,462	3.135	S	7.718	1.696
1112	South	Black Bream	22,916	0.312	S	7.150	1.926
1112	South	Silver Trevally	10,092	0.518	S	5.228	0.696
1112	South	Australian Herring	28,899	0.129	B	3.728	0.686
1112	South	Snook	3,505	0.862	S	3.021	1.159
1112	South	Leatherjacket	1,555	1.424	C	2.214	0.537
1112	South	School Whiting	16,265	0.097	S	1.578	0.333
1112	South	Southn Bluespotted Flathead	2,039	0.548	S	1.117	0.254
1112	South	Garfish	2,872	0.104	S	0.299	0.173

Year	Bioregion	Species	Estimated catch (kept by number)	Average weight $(\mathrm{kg}) \mathrm{t}$	Source	Estimated harvest (tonnes)
1112	TOTAL		152,040		44.094	3.829

Nearshore and Estuarine Resources (all Bioregions)

1314	North	Barramundi	1,648	4.067	C	6.702	1.708
1314	North	Blue Threadfin	2,097	2.658	C	5.574	1.204
1314	North	Golden Trevally	1,014	5.073	C	5.144	2.029
1314	North	Black Jewfish	557	3.056	C	1.702	0.455
1314	North	Bludger Trevally	542	2.347	C	1.272	0.354
1314	North	Yellowtail Barracuda	1,230	0.417	S	0.513	0.223
1314	North	Garfish	2,213	0.095	S	0.210	0.094
1314	North	Mullet	1,406	0.051	C	0.072	0.023
1314	North	Northwest Black Bream	638	0	N/A	0	0
1314	North	Small Baitfish	583	0	N/A	0	0
1314	TOTAL		11,928			21.189	2.980
1314	Gascoyne	Mulloway	1,289	4.535	C	5.846	2.857
1314	Gascoyne	Golden Trevally	785	5.073	C	3.982	0.898
1314	Gascoyne	Chinaman Rockcod	5,493	0.719	C	3.949	1.201
1314	Gascoyne	Western Butterfish	2,104	0.232	S	0.488	0.311
1314	Gascoyne	Tailor	709	0.666	S	0.472	0.204
1314	Gascoyne	Northern Sand Flathead	325	0.778	C	0.253	0.087
1314	Gascoyne	School Whiting	2,160	0.094	S	0.203	0.107
1314	Gascoyne	Western Yellowfin Bream	355	0.488	C	0.173	0.060
1314	Gascoyne	Sea Mullet	2,321	0.051	C	0.118	0.075
1314	Gascoyne	Garfish	727	0.095	S	0.069	0.049
1314	TOTAL		16,268			15.553	3.253
1314	West	School Whiting	247,728	0.094	S	23.286	2.860
1314	West	Silver Trevally	29,326	0.539	B	15.807	1.861
1314	West	King George Whiting	27,832	0.475	B	13.220	2.335
1314	West	Australian Herring	102,066	0.122	B	12.452	1.386
1314	West	Tailor	7,485	0.666	S	4.985	0.967
1314	West	Western King Wrasse	8,460	0.320	S	2.707	0.690
1314	West	Yellowtail Barracuda	4,790	0.417	S	1.997	1.402
1314	West	Black Bream	4,882	0.254	S	1.240	0.281
1314	West	Western Butterfish	4,091	0.237	B	0.970	0.262
1314	West	Sea Mullet	12,789	0.051	C	0.652	0.296
1314	TOTAL		449,449			77.316	4.757
1314	South	King George Whiting	47,234	0.187	B	8.833	2.120
1314	South	Western Australian Salmon	1,591	2.652	S	4.219	0.931
1314	South	Australian Herring	30,118	0.118	B	3.554	0.532
1314	South	Silver Trevally	5,627	0.495	S	2.785	0.596
1314	South	School Whiting	21,062	0.094	S	1.980	0.576
1314	South	Black Bream	7,114	0.254	S	1.807	0.528
1314	South	Snook	2,703	0.449	S	1.214	0.593
1314	South	Southern Bluespotted Flathead	1,420	0.588	S	0.835	0.193
1314	South	Garfish	1,191	0.095	S	0.113	0.043
1314	South	Oriental Bonito	948	0	N/A	0	0
1314	TOTAL		119,008			25.340	2.646

Year	Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)t	Source	Estimated harvest (tonnes)	Standard Error
Demersal Resources (all Bioregions)							
1112	North	Grass Emperor	11,099	1.340	B	14.873	2.750
1112	North	Spangled Emperor	7,047	2.084	S	14.686	1.880
1112	North	Coral Trout	4,723	2.556	C	12.072	1.628
1112	North	Red Emperor	2,749	3.441	S	9.459	1.359
1112	North	Rankin Cod	2,630	2.994	S	7.874	1.159
1112	North	Stripey Snapper	8,529	0.899	C	7.668	1.578
1112	North	Blackspot Tuskfish	2,227	2.684	S	5.977	1.264
1112	North	Blackspotted Rockcod	1,403	4.098	C	5.749	1.406
1112	North	Mangrove Jack	4,090	0.822	B	3.362	0.852
1112	North	Bluespotted Emperor	1,456	0.595	C	0.866	0.255
1112	TOTAL		45,953			82.586	4.878
1112	Gascoyne	Spangled Emperor	17,195	2.093	B	35.989	4.829
1112	Gascoyne	Pink Snapper	11,433	2.476	S	28.308	3.724
1112	Gascoyne	Grass Emperor	16,695	0.961	B	16.044	2.251
1112	Gascoyne	Red Emperor	4,407	3.441	S	15.164	2.564
1112	Gascoyne	Rankin Cod	4,627	2.994	S	13.853	2.096
1112	Gascoyne	Goldband Snapper	2,256	4.223	C	9.527	2.863
1112	Gascoyne	Redthroat Emperor	7,771	1.088	B	8.455	1.253
1112	Gascoyne	Baldchin Groper	3,178	2.368	S	7.526	1.397
1112	Gascoyne	Coral Trout	1,903	2.556	C	4.864	0.943
1112	Gascoyne	Goldspotted Rockcod	1,836	2.009	S	3.689	0.816
1112	TOTAL		71,301			143.419	8.154
1112	West	West Australian Dhufish	16,814	4.485	B	75.411	5.938
1112	West	Pink Snapper	14,023	2.315	B	32.463	2.611
1112	West	Baldchin Groper	12,764	2.337	B	29.829	2.935
1112	West	Breaksea Cod	9,874	1.031	S	10.180	0.798
1112	West	Blue Morwong	1,319	2.717	S	3.584	0.565
1112	West	Emperor	2,472	1.385	C	3.424	0.857
1112	West	Sergeant Baker	1,599	1.050	C	1.679	0.360
1112	West	Bight Redfish	1,069	1.171	S	1.252	0.195
1112	West	Sea Sweep	799	1.252	S	1.000	0.258
1112	West	Foxfish	982	0.811	S	0.796	0.136
1112	West	Eightbar Grouper	50	4.003	C	0.200	0.144
1112	West	Bass Groper	12	0	N/A	0	0
1112	West	Blue-Eye Trevalla	18	0	N/A	0	0
1112	West	Hapuku	0	0	N/A	0	0
1112	West	Ruby Snapper	0	0	N/A	0	0
1112	TOTAL		61,795			159.818	7.257
1112	South	Blue Morwong	4,568	2.717	S	12.411	1.872
1112	South	Bight Redfish	10,279	1.171	S	12.037	1.691
1112	South	Pink Snapper	3,556	2.476	S	8.805	2.097
1112	South	Breaksea Cod	8,437	1.031	S	8.699	1.459
1112	South	West Australian Dhufish	923	4.536	S	4.187	1.828
1112	South	Sea Sweep	2,432	1.252	S	3.045	0.871
1112	South	Swallowtail	2,672	1.091	S	2.915	0.570
1112	South	Harlequin Fish	1,262	1.401	S	1.768	0.382
1112	South	Sergeant Baker	722	1.050	C	0.758	0.193
1112	South	Foxfish	572	0.811	S	0.464	0.227
1112	TOTAL		35,423			55.089	4.189

Year	Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)t	Source	Estimated harvest (tonnes)	Standard Error
Demersal Resources (all Bioregions)							
1314	North	Grass Emperor	7,046	1.714	B	12.077	2.868
1314	North	Red Emperor	2,019	3.574	S	7.216	1.544
1314	North	Coral Trout	2,738	2.583	C	7.072	1.113
1314	North	Rankin Cod	1,730	3.719	S	6.434	1.450
1314	North	Spangled Emperor	3,182	1.929	S	6.138	1.481
1314	North	Blackspot Tuskfish	1,968	2.792	S	5.495	1.393
1314	North	Stripey Snapper	5,848	0.899	C	5.257	1.469
1314	North	Painted Sweetlips	1,339	3.206	C	4.293	2.667
1314	North	Mangrove Jack	3,291	0.775	S	2.551	0.525
1314	North	Golden Snapper	1,330	1.464	C	1.947	0.423
1314	TOTAL		30,491			58.480	5.274
1314	Gascoyne	Pink Snapper	9,712	2.342	S	22.746	2.712
1314	Gascoyne	Spangled Emperor	8,715	1.930	B	16.820	2.575
1314	Gascoyne	Goldband Snapper	3,445	4.295	C	14.796	3.445
1314	Gascoyne	Red Emperor	3,167	3.574	S	11.319	3.131
1314	Gascoyne	Grass Emperor	13,954	0.708	B	9.879	2.237
1314	Gascoyne	Rankin Cod	2,346	3.719	S	8.725	1.175
1314	Gascoyne	Baldchin Groper	2,836	2.247	S	6.372	1.292
1314	Gascoyne	Goldspotted Rockcod	2,229	2.770	S	6.174	1.748
1314	Gascoyne	Redthroat Emperor	3,670	0.834	B	3.061	0.570
1314	Gascoyne	Stripey Snapper	1,583	0.899	C	1.423	0.262
1314	TOTAL		51,657			101.315	6.867
1314	West	West Australian Dhufish	18,306	4.456	B	81.572	6.283
1314	West	Pink Snapper	12,681	2.394	B	30.358	2.827
1314	West	Baldchin Groper	9,426	2.235	B	21.067	1.971
1314	West	Breaksea Cod	10,975	0.919	S	10.086	0.913
1314	West	Emperor	2,472	1.455	C	3.597	0.837
1314	West	Blue Morwong	1,058	2.733	S	2.892	0.593
1314	West	Sea Sweep	1,228	1.244	S	1.528	0.409
1314	West	Bight Redfish	1,114	1.102	S	1.228	0.216
1314	West	Sergeant Baker	1,122	1.092	C	1.225	0.358
1314	West	Foxfish	1,108	0.772	S	0.855	0.159
1314	West	Eightbar Grouper	39	3.960	C	0.154	0.139
1314	West	Bass Groper	20	0	N/A	0	0
1314	West	Blue-Eye Trevalla	76	0	N/A	0	0
1314	West	Hapuku	0	0	N/A	0	0
1314	West	Ruby Snapper	0	0	N/A	0	0
1314	TOTAL		59,625			154.562	7.323
1314	South	Bight Redfish	8,343	1.102	S	9.194	1.217
1314	South	Blue Morwong	2,871	2.733	S	7.846	0.973
1314	South	Pink Snapper	2,579	2.342	S	6.040	0.941
1314	South	Breaksea Cod	5,482	0.919	S	5.038	0.651
1314	South	West Australian Dhufish	568	4.446	S	2.525	0.676
1314	South	Sea Sweep	1,052	1.244	S	1.309	0.274
1314	South	Harlequin Fish	908	1.137	S	1.032	0.163
1314	South	Swallowtail	1,559	0.340	S	0.530	0.130
1314	South	Sergeant Baker	476	1.092	C	0.520	0.127
1314	South	Foxfish	336	0.772	S	0.259	0.058
1314	TOTAL		24,174			34.293	2.081

Year	Bioregion	Species	Estimated catch (kept by number)	Average weight (kg)t	Source	Estimated harvest (tonnes)	Standard Error
Pelagic Resources (North Coast)							
1112	North	Spanish Mackerel	3,794	9.723	C	36.889	4.978
1112	North	Cobia	406	6.937	C	2.816	0.909
1112	North	Shark Mackerel	311	8.689	C	2.702	1.147
1112	North	Other Mackerel \& Tuna	252	9.723	C	2.450	1.235
1112	North	School Mackerel	1,197	1.972	C	2.360	0.651
1112	North	Northern Bluefin Tuna	201	5.653	C	1.136	0.396
1112	North	Mackerel Tuna	216	4.590	C	0.991	0.376
1112	North	Spotted Mackerel	343	2.226	C	0.764	0.254
1112	North	Skipjack Tuna	110	5.811	C	0.639	0.599
1112	North	Great Barracuda	108	0	N/A	0	0
1112	TOTAL		6,938			50.747	5.440
1314	North	Spanish Mackerel	2,506	9.507	C	23.825	4.107
1314	North	School Mackerel	1,539	1.959	C	3.015	1.559
1314	North	Cobia	320	6.955	C	2.226	0.675
1314	North	Northern Bluefin Tuna	216	5.867	C	1.267	0.411
1314	North	Mackerel Tuna	172	4.364	C	0.751	0.310
1314	North	Grey Mackerel	70	5.410	C	0.379	0.195
1314	North	Southern Bluefin Tuna	47	5.220	C	0.245	0.141
1314	North	Spotted Mackerel	79	2.184	C	0.173	0.087
1314	North	Amberjack	47	0	N/A	0	0
1314	North	Great Barracuda	160	0	N/A	0	0
1314	TOTAL		5,156			31.881	4.482
Crab Resources (all Bioregions)							
1112	North	Green (Giant) Mud Crab	4,730	1.044	C	4.938	1.018
1112	North	Brown (Orange) Mud Crab	4,778	0.621	C	2.967	0.486
1112	TOTAL		9,508			7.905	1.128
1314	North	Green (Giant) Mud Crab	4,252	1.103	C	4.690	0.941
1314	North	Brown (Orange) Mud Crab	4,696	0.621	C	2.916	0.651
1314	TOTAL		8,948			7.606	1.144
1112	North	Blue Swimmer Crab	14,802	0.229	S	3.390	0.910
1112	Gascoyne	Blue Swimmer Crab	19,050	0.229	S	4.362	1.797
1112	West	Blue Swimmer Crab	380,816	0.225	B	85.684	5.590
1112	South	Blue Swimmer Crab	12,164	0.229	S	2.786	0.720
1314	North	Blue Swimmer Crab	15,938	0.254	S	4.048	1.011
1314	Gascoyne	Blue Swimmer Crab	8,764	0.254	S	2.226	0.794
1314	West	Blue Swimmer Crab	254,373	0.231	B	58.760	4.560
1314	South	Blue Swimmer Crab	8,640	0.254	S	2.195	0.512

[^0]: * charter-boat recreational fishing (i.e. tour operators) was excluded from analysis in the report

